

Mining Long High Utility Itemsets in Transaction Databases

GUANGZHU YU, SHIHUANG SHAO and XIANHUI ZENG
 Information and Technology College, DongHua University, Shanghai, CHINA

ygz@mail.dhu.edu.cn
shshao@dhu.edu.cn

Abstract: Existing algorithms for utility mining are column enumeration based, adopt an Apriori-like candidate
set generation-and-test approach, and thus are inadequate on datasets with high dimensions or long patterns. To
solve the problem, this paper proposes a hybrid model and a row enumeration based algorithm, i.e.,
inter-transaction, to discover high utility itemsets from two directions: existing algorithms such as UMining [1]
can be used to seek short high utility itemsets from the bottom, while inter-transaction seeks long high utility
itemsets from the top. By intersecting relevant transactions, the new algorithm can identify long high utility
itemsets directly, without extending short itemsets step by step. In addition, new pruning strategies are used to
cut down search space; optimization technique is adopted to improve the performance of the intersection of
transactions. Experiments on synthetic data show that our method achieves high performance, especially in
large high dimensional datasets.

Keywords: long high utility itemset; hybrid mode; utility; intersection transaction; row enumeration

1 Introduction

The main task of traditional association rule mining
(ARM) is to identify frequent itemsets. It treats all
the items equally by assuming that the utility of each
item is always 1 (item is present) or 0 (item is
absent). Obviously, it’s unrealistic and will lead to
some useful patterns missed. For example, in a
transaction database, there are 1000 sale records of
milk which occupy 10% of the total transaction
number, contributing 1% of the total profit. In the
meantime, there are 600 sale records of birthday cake
that occupy 6% of the total transaction number,
contributing 5% of the total profit. If the support
threshold is 8%, according to traditional algorithms
for frequent itemset mining, milk will be reported as
a frequent itemset and birthday cake will be ignored.
But in fact, the market professional must be more
interested in birthday cake because it contributes a
larger portion to total profit than milk. The example
shows that support is not sufficient to reflect user’s
interest.

According to Expectancy Theory [2], we have
the well-known equation “motivation = probability *
utility”, which says that motivation is determined by
the utility of making a decision and the probability of
success. In retailing field, users are not only
interested in the frequency of occurrence of an
itemset (support), but also their utility. So a
decision-oriented ARM algorithm should output both
the support and the utility of interesting patterns. For
this reason, utility-based ARM has been proposed to
discover all itemsets in a database with utility values

higher than a user specified threshold.
Table 1 is an example of a simplified transaction

database where the total utility value is 162. The
number in each transaction in table 1 is the sales
profit of each item. If s(X) and u(X) represent the
support and utility of itemset X respectively, then
u(A,B)=43, s(A,B)=5, u(A,B,C) =54, s(A,B,C)=3,
u(A,B,C,D)=45, s(A,B,C,D)=2, u(A,B,C,D,E)=57.

Table1: A transaction database
 A B C D E
T1 0 0 5 0 1
T2 2 3 0 0 0
T3 3 5 15 7 4
T4 0 0 4 7 2
T5 4 5 8 0 0
T6 9 4 0 0 2
T7 6 0 8 3 6
T8 0 0 0 6 3
T9 3 0 0 9 5
T10 3 5 6 1 8

If the support threshold is 3 and the utility threshold
is 50, {A,B} is a frequent but not a high utility
itemset. On the other hand, {A,B,C} is both a
frequent and high utility itemset, {A,B,C,D} is
neither a frequent nor a high utility itemset and
{A,B,C,D,E} is a high utility but non-frequent
itemset.

From the above example, we can draw a
conclusion: downward closure property doesn’t
apply to utility mining. Relevant studies have shown
that utility constraint is neither anti-monotone,
monotone, succinct, nor convertible [3][4]. Because
of this property, most algorithms for frequent pattern
mining [5][6][7][8][9][10] can’t be used to find high

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
202

Issue 2, Volume 5, Feb. 2008

utility itemsets.
Although lots of researches have been

conducted to improve the usefulness of traditional
ARM [11][12][13][14][15][16][17][18], they are all
utility-related, not utility-based. To the best of our
knowledge, only UMining [1][19] and Two-phase
[20] can be used for utility mining, but both of them
are Apriori-like algorithms and are inadequate on
datasets with long patterns or high dimensions. To
solve the problem, we propose a hybrid
top-down/bottom-up search model and a
partitioning-based algorithm, inter-transaction, to
discover all high utility itemsets from two directions.
Under the hybrid model, existing algorithm such as
UMining [1] can be used to search the short high
utility itemsets by starting from the bottom, while the
inter-transaction searches long high utility itemsets
by starting from the top, they complement each other.

Inter-transaction is based on the characteristic
that there are few common items between or among
long transactions, which means that the intersection
of multiple long transactions is usually very short. In
a high dimensional data environment, the
characteristic is especially obvious. This paper
emphasizes the introduction of inter-transaction.

2 definitions

Utility of an item is a subjective term dependent on
users and applications; it could be measured in terms
of profit, cost, risk, aesthetic value or other
expressions of user preference. For easy understand,
in this paper, we refer to utility of an item as the
economic utility such as sales profit, and view all
datasets as transaction database, so that we can
define the utility of an item as the product of quantity
sold and the unit profit of the item.

Let I={i1, i2, …, im} be a set of items, D={T1,
T2, …, Tn} is a transaction database. Each transaction
Tq in database D (DTq∈) is a subset of I, i.e.,

ITq ⊆ . To simplify a notation, we sometimes write
a set { i1, i2, …, ik } as i1 i2 … ik. Adapting from the
notations described in [1] [20] and [21], we have
following definitions:

Definition1. The transaction utility of item x in
transaction Tq, denoted)T,x(u q , is the utility
brought on by item x when transaction Tq occur.
Take the example from table 1, u(A,1)=0, u(A,2)=2.

Definition 2. The transaction utility of itemset X in
transaction Tq, denoted)T,X(u q , is the sum of the
transaction utility of item x contained in X, i.e.,

∑
⊆∧∈

=
qx TXX

qq (1))T,x(u)T,(Xu (1)

For example, in table 1, u(AB,2)= u(A,2)+
u(B,2)=2+3=5, u(ABC,5)= u(A,5)+u(B,5)+u(C,5)
=4+5+8=17.

Definition 3. The partition utility of itemset X in
partition Pi , denoted)P,X(u i , is the sum of the
transaction utility of itemset X in partition Pi, i.e.,

∑
⊆∧∈

=
qiq TXPT

q)T,X(u),(iPXu (2)

For more details about partitions, refer to [21].

Definition 4. The utility of X in database,
denoted)X(u , is the sum of the transaction utility of
itemset X in database, i.e.,

∑∑
⊆∧∈⊆∧∈∧⊆

==
qqiiqq TXDT

q
DPPTTX

i)T,X(u)P,X(u)(Xu (3)

Examples can be seen in section 1.

Definition 5. The utility of transaction Tq,
denoted)T(u q , is the sum of the transaction utility of
item x in transaction Tq, i.e.,

∑
∈

=
qTx

qq)T,x(u)(Tu (4)

Definition 6. Transaction identifier list, denoted
tidlist, is a set of transaction ID.

Definition 7. Intersection transaction, denoted
T(tidlist), is an itemset obtained from the intersection
of transactions listed in tidlist. For example, let
T1=ABDF, T2=ADFG, T3=ADFQ, then one of the
tidlists is {1,2,3}, and the corresponding intersection
transaction T(1,2,3) = T1∩T2∩T3 = ADF. If |tidlist|=k
(1≤k≤N, N is the number of transactions), we refer to
T(tidlist) as k-intersection transaction.

Although a k-intersection transaction is actually
an itemset, there are some differences between them.
For example, a k-itemset means an itemset with k
items. The term doesn’t tell us any information about
its support (i.e., the number of transactions
containing the itemset); on the contrary, a
k-intersection transaction doesn’t tell us how many
items the itemset has (maybe zero or a positive
integer), but it tells us that the itemset stems from the
intersection of k transactions, with support no less

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
203

Issue 2, Volume 5, Feb. 2008

than k. To emphasize the difference between k and
support s, we refer to k as the current support of a
k-intersection transaction. Obviously, k≤s.
Transactions listed in a tidlist can form a partition. If
u(T(tidlist)) represents the utility of itemset T(tidlist),
u(T(tidlist),tidlist) represents the corresponding
partition utility of T(tidlist), according to equation (2)
and equation (3), u(T(tidlist),tidlist) should be less
than u(T(tidlist)). We also refer to u(T(tidlist),tidlist)
as the current utility of k-intersection transaction
under current support. If k=s, the corresponding
tidlist is called maximal tidlist, and
u(T(tidlist),tidlist)=u(T(tidlist)). In fact, the meaning
of the term “maximal tidlist” corresponds to the
feature support set in [8].

Definition 8. A long transaction is the transaction
that includes more than minlen items. Minlen is a
user defined value. Otherwise, called short
transaction. Likewise, we can define long/short
itemset and long/short pattern, and so forth.

Definition 9. A high utility itemset is the itemset with
a utility value higher than a user specified threshold,
i.e., minutil. If an itemset is a high utility itemset, we
say the itemset is high, otherwise, the itemset is low.

Definition 10. A long high utility itemset is the high
utility itemset with length longer than minlen.

Definition 11. A local high utility itemset is an
itemset in partition pi with partition utility value
higher than the local utility threshold minutil/n, n is
the partition number. We also define local long high
utility itemset as the local high utility itemset with
more than minlen items. To emphasize the difference
betweem local high utility itemset and high utility
itemset, we also refer to a (long) high utility itemset
as a global (long) high utility itemset. Similar
definitions can refer to [21], except they are about
frequent itemets.

3 Inter-transaction algorithm

Any high utility itemset must be in a closed itemset
(pattern). This means if we can firstly identify all
closed itemsets, then mine each closed itemset
separately to find all high utility subsets that the
closed itemset contains, all high utility itemsets can
be identified. Like CARPENTER and TD-CLose [9],
inter-transaction is based on row enumeration. Since
each closed itemset can be expressed as an
intersection transaction [8], mining all intersection
transaction has the same power as mining all closed

itemsets. In order to avoid the costly process of
pattern matching and the complicated data structure
such as X-conditional transposed table (which are
used in CARPENTER), inter-transaction enumerates
every intersection transaction and then computes the
current utility values of all subsets that the
intersection transaction contains. For details, refer to
subroutine Gen-LHU-itemsets.

3.1. Partition method

If N is the number of transactions (rows), there will
be 2N combinations of transactions at the worst
situation. As the number of transactions grows, the
explosive growth of the combination of rows causes
the performance of row-enumeration methods
decrease dramatically. In a real database, the number
of transactions can easily reach to several millions,
and enumerating all the 2N intersection transactions
is not feasible. To solve the problem, the
inter-transaction adopts a partition method to divide a
database into multiple partitions, with each partition
containing a fitting amount of transactions. In the
first scan of a database, inter-transaction finds all
local long high utility itemsets from every partition,
and then these local long high utility itemsets are
merged to generate a set of potential long high utility
itemsets. In the second scan of the database, the
actual utility and support for these itemsets are
computed and global high utility itemsets are
identified. The whole process is just like the one
described in [21]. The correctness of the partition
method is guaranteed by theorem 1:

Theorem 1 suppose D is a transaction database,
P=P1, P2, …, Pj is a set of partitions of D

(jiPPDP ji

j

i

i ≠Φ=∩=∑
=

,,
1

). If IX ⊆ is a high

utility itemset, it will appear as a local high utility
itemset in at least one of the partitions.
Proof. Let X be a high utility itemset, then u(X)≥
minutil. Divide D into n partitions, then X may fall
into m partitions (1 ≤ m ≤ n). Assume
B=Max(u(X,Pi)) denote the biggest partition utility
value of X in all partitions, By definition 4, we have

mB)P,X(u)X(u
DPPTTX

i
iiqq

≤= ∑
⊆∧∈∧⊆

If
n

minutilB < , then

 minutilminutil
n
m)X(u ≤<

But this is a contradiction.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
204

Issue 2, Volume 5, Feb. 2008

Let u be total utility value, and coefficient a be the
minimum acceptable ratio of the utility value of an
itemset to the total utility value in the database.
Suppose we divide the database D into n partitions,

the local utility threshold (
nn

minutil ua ∗
=) should

be far larger than the average transaction utility (
N
u

),

denoted as
N
u

n
u
>>

∗α
. Otherwise, a large amount

of local high utility itemsets would be generated. Let
S be partition size, we have:

 1
an

NS >>= (5)

Inequation (5) contradicts the goal of the partition
method (reducing the amount of transactions in a
partition). Experiments show that it’s applicable for S
to be between a

5 and a
10 in the context of our

datasets.

3.2. Task Decomposing

If the partition number is n, the size of partitions will
be N/n, and the total number of potential intersection

transactions becomes n
N

n2 . When N is too large,

enumerating n
N

n2 intersection transactions is still
not feasible. The partition method is insufficient in
reducing the search space.

 Generally, given a proper length threshold
minlen, most of the patterns in a database are short.
Although the number of long patterns is usually
much smaller than that of short patterns, it’s usually
true for these long patterns to cost most of the
resources in finding all high utility (or frequent)
itemsets when a down-top method is adopted, since a
long pattern always means a lot of short patterns
have to be handled ahead. On the other hand, there
are few common items between or among long
transactions, especially in sparse high dimensional
data, which means the intersection of multiple long
transactions, i.e., intersection transaction is usually
very short. The two characteristics are very useful for
our algorithm because it can obtain long itemsets
directly by intersecting relevant transactions, without
extending a short itemset step by step to obtain a
long itemset. On the contrary, short itemsets are
relatively dense; the overhead of enumerating all
intersection transactions (including short intersection
transactions) will be too high. Based on the different

features, it’s reasonable for us to decompose the
mining task into two subproblems (discovering long
high utility itemsets and short high utility itemsets),
so that we can choose proper algorithms to solve the
subproblems separately.

If we aim to find long high utility patterns
directly by intersecting relevant transactions, a new
pruning strategy can be used to narrow the search
space: filter out all short (intersection) transactions.
The rationale behind the pruning strategy is that short
transactions have no effect on the support or utility of
long patterns/itemsets, and the intersection of a short
transaction with another transaction must be short.
Now that the intersection of two long transactions is
usually very short, large amounts of intersection
transactions can be pruned out in time.

3.3 algorithms

Based on the above discussion, inter-transaction can
be described as follows:
Input: A database D, minutil, minlen
Output: All long high utility itemsets.
1) P=partition-database(D) //divide D into

multiple partitions
2) n=number of partitions
3) for i=1 to n do begin
4) read-in-partition (Pi∈P)
5) Hi=gen-LHU-itemsets(Pi)
6) end
7) for (i=minlen; n,...2,1j,H j

i =≠ϕ ; i++) do
begin

8) U n,...2,1j
j
i

G
i HC

=
=

9) end
10) for i=1 to n do begin
11) read_in_partition (Pi∈P)
12) for all candidates c∈CG compute utility

c.utility in terms of equation (3), along with
support c.count

13) end
14) HG={ c∈CG |c.utility minutil}≧
15) Answer= HG

Notations used in inter-transaction are shown in table
2. More details can refer to definition 11 in this paper
and [21]. The algorithm is very similar to the
partition algorithm [21], but there are two important
differences between them. One is that in the partition
algorithm, the size of partitions is chosen in terms of
the main memory size, such that at least those
itemsets and other information that is used for
generating candidates can fit in the main memory,
whereas inter-transaction seeks balance between

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
205

Issue 2, Volume 5, Feb. 2008

keeping a higher local utility threshold and reducing
the amount of transactions in a partition. The other
difference is that in the partition algorithm a certain
algorithm such as Apriori is used to generate local
frequent itemsets of all length, whereas the
inter-transaction discovers only local long high
utility itemsets via enumerating intersection
transactions.

Table 2: Notations used in algorithm

Notation Meaning
p
kH Set of local high utility k-itemsets in partition p

pH

Set of local high utility itemsets.

U minlenk
p
k

p HH
>

=

G
kC Set of global candidate k-itemsets

GC
Set of global candidate itemsets.

U minlenk
G
k

G CC
>

=

G
kH Set of global high utility k-itemsets

GH

Set of global high utility itemsets.

U minlenk
G
k

G HH
>

=

Gen-LHU-itemsets is responsible for generating
local long high utility itemsets in a partition. In the
subroutine, a tidlist is used to record which
transactions are involved in an intersection
transaction. If s(T(tidlist),tidlist) and
u(T(tidlist),tidlist) represent the current support and
current utility of a T(tidlist) respectively,
T(tidlist).tidlist represents the transaction identifier
list associated with T(tidlist), let tidlist= tidlist1∪
tidlist2 (tidlist1≠tidlist2), we have:

)T(tidlist2)T(tidlist1
 tidlist2)T(tidlist1 T(tidlist)

∩=
∪=

 (6)

tidlist2 tidlist1
.tidlist T(tidlist)

∪=
= tidlist

 (7)

 |tidlist2tidlist1|
|.tidlist T(tidlist) |tidlist)t),s(T(tidlis

∪=
=

 (8)

)),((tidlist)t),u(T(tidlis ∑
∈

=
tidlistTq

qTtidlistTu (9)

If X is a sub-itemset of T(tidlist) (X∈T(tidlist)), we
can use equation (10) to compute the current utility
of X under current support:

),(tidlist)u(X,
)(

∑
∈∧∈

=
tidlistTXtidlistTq

qTXu (10)

Both equation (9) and equation (10) stem from
equation (2). Subroutine gen-LHU-itemsets is
described as follows:
Input: A partition Pi, minutil, minlen

Output: All local long high utility itemsets in Pi
1) Take a partition Pi and calculate the utility of

each transaction (1≤k≤N) Tq independently
according to equation (4) for individual
transaction or equation (9) for intersection
transaction. If u(Tq) or u(Tq,tidlist) is more than
minutil/n, put Tq into the set of local high utility
k-itemsets: qT∪= p

k
p
k HH (| Tq |=k), then call

procedure mine_single_trans;
2) Perform all the intersections of any two long

transactions;
3) If there are no long transactions, the subroutine

ends;
4) Filter out all the short intersection transactions;
5) Check all the long intersection transactions. If

T(tidlist1)=T(tidlist2), merge the repetitious
intersection transactions into a single one, i.e.,
T(tidlist), such that T(tidlist) = T(tidlist1) =
T(tidlist2), tidlist = tidlist1∪tidlist2. All the long
intersection transactions can form a new partition,
go to step 1.

Since the intersection of two transactions is not
longer than any of the two transactions, the method
has a good convergence.

Subroutine mine_single_trans tries to discover
all local long high utility itemsets that an intersection
transaction contains. It can be described as follows:
Input: Tq=t(tidlist), minutil, minlen //Tq can be an
individual transaction or intersection transaction
Output: All local long high utility itemsets in Tq
Method:
1) Sort the transaction Tq decreasingly by its utility

value: Tq= t0 t1 t2 … tk-1 tk 。。。 tL-1, such
that))(T,t(u)T,t(u qq jiji ≤≥ ;

2) Let k=L-1;
3) p=0;
4) Let X=tp tp+1 … tp+k-1. Compute u(X, tidlist)

according equation (10). if u(X,
tidlist)>=minutil/n, add X into p

kH , go to step 5,
otherwise, the subroutine ends;

5) For j=1 to k do begin
6) Count=0；
7) For i=p to L-k-1 do begin
8) Replace tk-j in itemset X with tk+i，obtaining

a new itemset X’. If u(X’,tidlist)>=minutil/n，add
X’ into candidate set p

kH , count increases by
one; if u(X’,tidlist)<minutil/n，break (exit loop)；

9) End；
10) If count=0，break；
11) End；
12) If there isn’t a high utility k-itemset, the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
206

Issue 2, Volume 5, Feb. 2008

subroutine ends; if all the k-itemsets verified in
step 8 are high utility itemsets，p increases by
one, go to step 4 until all the k-itemsets are
verified;

13) Let k=k-1, go to step 3, until k=minlen;

The subroutine chooses a sorting algorithm to sort
the items in descending order by utility value so that
we can build and check only potential high utility
itemsets, pruning out low utility itemsets as early as
possible. Suppose there exist two itemsets Yi=X∪ti,
Yj=X∪tj, if i<j, then u(Yi) >u(Yj). If Yi is high, we
have to build and test Yj to decide whether Yj is high;
if Yi is low, Yj must be low. In this way, we can
prune out large amounts of itemsets which can be
expressed as X∪tk, if only X∪ti is low, and k>i.
Another pruning strategy is, if all the k-itemsets are
low, all (k-l)-itemsets must be low (1≤l≤k-1).
Theorem 2 can guarantee the correctness of the
pruning strategies.

Definition 13 Given two closed patterns III ⊆⊂ "' ,
if there exist no closed pattern I ′′′ , such that

III ′′⊂′′′⊂' , 'I and "I are adjoining each other.

Theorem 2 Given two adjoining closed patterns

IandI ′′ ' , satisfying III ⊆⊂ "' . if "I is not a high
utility itemset, its subset I ′′′ (III ′′⊆′′′⊂') must
be low.
Proof. Let closed itemsets },...,{' 21 miiiI = ,

},...,,...,{ .21 nm iiiiI =′′ ,)(IIXXII ′−′′⊆−′′=′′′ ,
By definition 13, I ′′′ must be non-closed pattern,
and)()(IsIs ′′=′′′ . (Shown in figure 3)
By definition 3, we have:

)()T),I((u

)T),I((u

)T),XI((u)T,I(u)(

qq

qq

qqqq

TIDT
q

TX)I(DT
q

TX)I(DT
q

TIDT
q

Iu

Iu

′′′=′′′=

′′′≥

+′′′=′′=′′

∑

∑

∑∑

⊆′′′∧∈

⊆+′′′∧∈

⊆+′′′∧∈⊆′′∧∈

If util
n

Iu min1)(≤′′ , then util
n

Iu min1)(≤′′′ . End.

The following example can show how the subroutine
works. Suppose there are three transactions T1, T3, T7,
their intersection is equal to ABCDEF, i.e.,
T(1,3,7)=ABCDEF, and the corresponding utility
values can be seen in table 3.

Table 3:An intersection transaction and item utility values
 A B C D E F

T1 2 1 1 0.3 1 0.5
T3 3 1 2 0.3 1 0.5
T7 1 2 2 0.4 1 1

Partition utility of items 6 4 5 1 3 2

Let Tq= T(1,3,7), corresponding item utility

values are 6, 4, 5, 1, 3 and 2 respectively. After
sorting, Tq can be expressed as ACBEFD, with item
utility values decreasing gradually. Here the length
of Tq is 6, i.e., L=6. If minutil=18, minlen=3,
itemsets will be examined in the order shown in
table 4.

Table 4: The process of calculating utility

 Itemset Utility comments
1 u(ACBEF)= 20 add ACBEF to Hi
2 u(ACBED)= 19 add ACBED to Hi
3 u(ACBFD)= 18 add ACBFD to Hi
4 u(ACEFD)= 17 stop finding 5-itemsets
5 u(ACBE) =18 add ACBE to Hi
6 u(ACBF) =17 stop finding 4-itemsets
7 u(ACB) =15 Algorithm end

Although sorting an (intersection) transaction is
costly, according to the step 1) of subroutine
gen-LHU-itemsets, only a small amount of
(intersection) transactions need to call the subroutine.
In this way, mining an individual transaction doesn’t
cause high computational cost.

3.4 Data layout alternatives for inter-transaction

Conceptually, a database is a two-dimensional matrix
and can usually be implemented in four different
ways (HIV, HIL, VTV, and VTL) [22][23]. If we
express each transaction in horizontal item-vector
format (HIV), an intersection transaction can be
obtained from the intersection of bit-vectors.
Although the bitwise logical (And) operation is well
supported by computer hardware and very efficient,
the overall performance of the intersection of two
transactions decreases dramatically with the increase
of the number of items. For example, if the number
of items is 8k, we have to use 1k bytes (8k bits) to
express each transaction. In order to perform the
intersection of two transactions, 8k bit operations are
needed and this is intolerable. If two transactions are
represented only in HIL format, the benefit of bitwise
logical operations couldn’t be shared. When the
length of data in HIL format becomes long, the
performance decreases dramatically.
 Some optimization techniques such as
run-length encoding (RLE), VIPER [22] and
DIFFSET [23] have been proposed to enhance the
performance of the intersection of two bit-vectors in
vertical mining algorithms. But they have limited

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
207

Issue 2, Volume 5, Feb. 2008

improvement on the speed of the intersection of long
transactions, the reason may be that most of them
aim at reducing the memory requirement of
algorithms, and thus adopt various compressed
formats to store databases. Because transaction
intersection can’t be performed directly in these
compressed formats, extra format converting can’t be
avoided. So in our algorithm, we not only refrain
from compressing each row in main memory, but
also use redundant information to reduce the amount
of bitwise logical operations.
 Besides the HIV format, we also store each
transaction in HIL format. Although this method will
waste lots of memory, the cost is affordable because
the partition method can save lots of memory. HIV
format is used to perform the intersection of
bit-vectors, while HIL format is used to store
redundant information, which can guide us to choose
only necessary bits in a bit-vector to perform bitwise
logical (And) operation. Let S1 be the length of
transaction T1 in HIL format, S2 be the length of
transaction T2, if S1>S2, we choose T2 (the shorter
transaction in HIL format) as the benchmark to
determine on what bits the bitwise logical operation
should be performed: if the k-th bit in T2 is 1, bitwise
And operation should be performed on the bit, all
other bits should be set 0 in the result of intersection
operation. For example, there are 3 transactions, the
corresponding data can be seen in table 5:

Table 5: The process of computing T(1,2,3)

 HIV format HIL format
T1 1011,1100,1100,0110,001 1,3,4,5,6,9,10,14,15,19
T2 11000,0000,0000,0000,011 1,18,19
T(1,2) 1000,0000,0000,0000,001 1,19
T3 1011,1100,1101,0110,001 1,3,4,5,6,9,10,12,14,15,19
T(1,2,3) 1000,0000,0000,0000,001 1,19

If we want to get T(1,2,3), we can first get T(1,2) by
intersecting transactions T1 with T2, then we get
T(1,2,3) by intersecting T(1,2) with T3. In order to
get T(1,2), we choose the shorter transaction T2 as
the benchmark and decide bitwise And operations
should be performed only on the first bit, the
eighteenth bit and the nineteenth bit (written in bold
Italic in table 5). As an intermediate result, we get
T(1,2)={1,19}(in HIL format). In the subsequent
process of intersecting T(1,2) with T3, we choose
T(1,2) as the benchmark and decide that bitwise And
operations should be performed only on the first bit
and the last bit. We get the final result T(1,2,3)=
{1,19}. As shown in table 5, only five bit operations
are needed for the whole process.
 In this way, the amount of bit operations linearly
depends only on the length of the short transaction in
HIL format. The experiment shows this method

outperforms VIPER and DIFFSET.

4 Experimental results

All the experiments were performed on a 2GHz
Legend server with 4GB of memory, running
windows 2003. The program was coded in Delphi 7.
 Seven datasets were used in our experiments; all
were generated by IBM quest data generator [24].
Six of them are T40.I30.D8000K with 0.5k, 1k, 2k,
4k, 8k and 16K items respectively, the seventh is
T20.I6.D8000K with 4k items, where T# stands for
the average length of transactions, I# for the average
length of maximal potentially large itemsets and D#
for the number of transactions. Because the generator
only generates the quantity of 0 or 1 for each item in
a transaction, we use Delphi function “RandG” to
generate random numbers with Gaussian distribution,
which mimic the quantity sold of an item in each
transaction. The unit profit of each item is defined as
item ID%100, where % is a modulus operator.

Figure 1 presents the scalability of
inter-transaction by increasing the number of
transactions from 0.25M to 8M. Experimental results
show that our algorithm scales linearly with the
number of transactions. We also modified our
program to find long frequent itemsets, and a similar
trend is obtained just as shown in figure 1. Obviously,
mining frequent patterns takes fewer times than
mining high utility itemsets.

Figure 2 shows the performance when varying
the number of items. Different from other algorithms,
the performance of inter-transaction improves as the
number of items increases. The reason is that the
number of items has a direct relationship with the
sparseness of a dataset. The more items there are, the
sparser the dataset, and the shorter the intersection of
two transactions. That means inter-transaction can
enumerate all long intersection transactions easily in
a sparse dataset. From figure 2 we can observe that
inter-transaction is suitable for those datasets with
more than 1k items.

In figure 3, minlen is the minimum length of
itemsets that the inter-transaction can discover within
a reasonable time. It actually decides the task
assigned to inter-transaction. Figure 3 shows that
minlen decreases as the number of items increases,
which means inter-transaction can complete more
mining tasks in a sparse database. The reason is just
the same as mentioned above.

Figure 4 shows that the size of partitions is very
important for inter-transaction. Just as we have
mentioned in section 3.1, a partition that is too small
or too large will degrade the performance of the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
208

Issue 2, Volume 5, Feb. 2008

algorithm.
To test the total performance of the hybrid

model, we choose Two-phase to mine short high
utility itemsets and then compare the performance of
the hybrid method (here hybrid method means
inter-transaction + Two-phase) and Two-phase.
That’s to say, the total running time of the hybrid
method is equal to the running time of
inter-transaction (used to find long high utility
itemsets) plus the running time of Two-phase (used
to find short high utility itemsets). Experiments were
performed on T20I6D8000K and T40I30D8000K,
minlen is set 3 for T20I6D8000K and 5 for

T40I30D8000K, the number of items is 4k.
Corresponding performance curves are illustrated in
figures 5 and 6.

From the two figures we can observe the hybrid
model is not suited for dataset with only short
patterns, this is because inter-transaction can’t take
obvious effect on these datasets. As for those datasets
with lots of long patterns, Two-phase has to extend
short itemsets step by step to obtain long itemsets,
while inter-transaction obtains long itemsets directly
by intersecting relevant transactions. In this situation,
the hybrid method has great advantages over the
Two-phase algorithm.

Items=1k,a=0.01,minlen=12,partition size=600

0

1000

2000

3000

4000

5000

0 2 4 6 8 10

Number of transactions(M)

E
x
e
c
u
t
io

n

t
i
m
e
(S

e
c
.
)

Execution time for high utility itemsets mining

Executime for frequent itemsets mining

Transaction=1M, a=0.01,minlen=12,partition size=600

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20

Number of items(k)

Ex
e
cu

ti
o
n

t
im

e(
S
ec

.)

Fig.1. Scalability with the number of transactions Fig.2. Scalability with the number of items

Transaction=1M,a=0.01,partition size=600

0

5

10

15

20

0 5 10 15 20

Number of items(k)

M
i
n
le
n

transaction=1M,items=1k,a=0.01,minlen=12

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

The size of partition

E
x
e
c
u
t
i
o
n

t
i
m
e
(
s
e
c
.
)

Fig.3. The effect of the number of items on minlen Fig.4. The effect of size of partitions on performance

Items=4k,a=0.01,minlen=5,partition size=600

0

2000

4000

6000

0 2 4 6 8 10

Number of transactions(M)

E
x
ec

u
t
io

n
t
im

e
(
Se

c
.)

Hybrid method Two-phase

Items=1k,a=0.01,minlen=3,partition size=600

0
200
400
600

800
1000
1200

0 2 4 6 8 10

Number of transactions(M)

E
x
e
c
u
t
i
o
n

t
i
m
e
(
S
e
c
.
)

Hybrid mrthod Two-phase

Fig.5. The execution time for T40I30D8000 Fig. 6. The execution time for T20I6D8000

5 conclusions

The paper proposes a hybrid model to discover high
utility itemsets from two directions. The intention of
the hybrid model is to decompose a complex
problem into two easy sub-problems, then use proper

methods to solve them separately. Inter-transaction
integrates the advantages of the partition algorithm
and row enumeration algorithms. For example, it
scans a database at most twice, is ideally suited for
parallelization and large high dimensional databases,
and so on. In the mean time, its performance is
affected by the characteristics of the database,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
209

Issue 2, Volume 5, Feb. 2008

including data skew and the number of items.
Parameters such as minimum length threshold
minlen and the size of partitions also affect its
performance.

References

References
1. Yao H. and Hamilton, H.J., Mining itemset

utilities from transaction databases, Data &
Knowledge Engineering, 59 , 2006, pp. 603 –
626

2. V. H. Vroom, Work and Motivation, John Wiley,
1964

3. Shen Y. D., Zhang Z. and Yang Q,
Objective-oriented utility-based association
mining, Proceedings of the 2002 IEEE
International Conference on Data Mining, 2002,
pp. 426-433

4. Yao H. and Hamilton H.J., A Unified
Framework for Utility Based Measures for
Mining Itemsets, Proceedings of the 2006
International Workshop on Utility-Based Data
Mining, Philadelphia, PA, 2006, pp. 28-37

5. Han J.W., Pei J. , Yin Y. and Mao R, Mining
Frequent Patterns without Candidate Generation:
A Frequent pattern Tree Approach, Data Mining
and Knowledge Discovery, 8, 2004, pp. 53-87

6. Ramesh C. Agarwal, Charu C. Aggarwal and
V.V.V. Prasad, A tree projection algorithm for
generation of frequent itemsets, Journal of
Parallel and Distributed Computing, 61(3), 2000,
pp. 350-371

7. Bayardo R, Efficiently mining long patterns
from databases. Proceedings of the ACM
SIGMOD International Conference on
Management of Data, 1998, pp. 85-93

8. Feng P., Gao. C.and et al.. CARPENTER: Finding
closed patterns in long biological database. Proc.
of SIGKDD, Washington, 2003, pp. 413-419

9. Hongyan Liu, Jiawei Han and et al. Mining
frequent Patterns from Very High Dimensional
Data: A Top-down Row Enumeration Approach.
Proceedings of the Sixth SIAM International
Conference on Data Mining, Bethesda, Maryland,
2006, pp. 20-22

10. Feng P., Gao C., and et al. COBBLER:
combining column and row enumeration for
closed pattern discovery. Proceedings of the
16th International Conference on Scientific and
Statistical Database Management, 2004, pp: 21-
30

11. K. Wang, S. Zhou, J. Han, Profit mining: from
patterns to action, Proceedings of International
Conference on Extending Database Technology,

2002, pp. 70-87
12. Lin TY, Yao YY, Louie E. Mining Value Added

Association rules, Proceedings of PAKDD, 2002,
pp. 328-333

13. Aumann Y., Lindell Y. , A Statistical Theory for
Quantitative Association Rules, Journal of
Intelligent Information Systems, 20, 2003, pp.
255–283

14. Geoffrey I. Webb, Discovering associations
with numeric variables, Proceedings of the
seventh ACM SIGKDD international
conference on Knowledge discovery and data
mining, 2001, pp. 383-388

15. C.H. Cai, Ada W.C. Fu, C.H. Cheng and W.W.
Kong, Mining Association Rules with Weighted
Items, Proceedings of the International Database
Engineering and Applications Symposium, 1998,
pp. 68-77

16. Lu S.F., Hu H.P. and Li F, Mining weighted
association rules, Intelligent Data Analysis, 5,
2001, pp. 211-225

17. Chan R., Yang, Q., and Shen, Y.D., Mining high
utility itemsets, Proceedings of the 3rd IEEE
International Conference on Data Mining, 2003,
pp.19-26

18. Barber, B., and Hamilton, H. J., Extracting
Share Frequent Itemsets with Infrequent Subsets,
Data Mining and Knowledge Discovery, 7, 2003,
pp. 153-185

19. Yao H., Hamilton, H.J. and Butz, C.J. A
Foundational Approach to Mining Itemset
Utilities from Databases. Proceedings 2004
SIAM International Conference on Data Mining,
2004, pp. 482-486

20. Liu, Y., Liao, W.-K., and Choudhary, A fast high
utility itemsets mining algorithm, Proceedings
of the First International Workshop on
Utiliy-based Data Mining, 2005, pp. 90-99

21. Savasere A, Omiecinsky E and Navathe S
(1995). An efficient algorithm for mining
association rules in large databases. 21st Int'l
Conf. on Very Large Databases, Zurich,
Switzerland, 1995, 432-444

22. Shenoy P, Haritsa J. R. and et al. Turbo-charging
Vertical Mining of Large Databases. Proceedings
of ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, 2000, pp.
22-33

23. Zaki M J, Gouda K. Fast vertical mining using
diffsets. In Proc. of ACM SIGKDD, Washington
DC, 2003, PP. 326-335

24. http://www.almaden.ibm.com/cs/projects/iis/hdb
/Projects/data_mining/datasets/syndata.html

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Guangzhu Yu, Shihuang Shao and Xianhui Zeng

ISSN: 1790-0832
210

Issue 2, Volume 5, Feb. 2008

