
PIRR: a Methodology for Distributed Network Management in
Mobile Networks

FILIPPO NERI
University of Piemonte Orientale

Department of Science
via Bellini 25/g, 13900 Alessandria

ITALY
filipponeri@yahoo.com

Abstract: The current centralized Network Management approach in mobile networks may lead to problems with
being able to scale up when new customer services and network nodes will be deployed in the network. The
next generation mobile networks proposed by 3rd Generation Partnership Project (3GPP) envision a flat network
architecture comprising some thousands of network nodes, each of which will need to be managed, in a timely and
efficient fashion. This consideration has prompted a research activity to find alternative application architectures
that could overcome the limits of the current centralized approaches. section approach to deal with the increasing
network size and complexity is to move from a centralized Network Management system to a more distributed
or decentralized approach where each Network Management application consists of a controller part and a set of
distributed parts running on the individual network elements. This approach however raises questions of how to
measure and estimate the resource requirements when planning to distribute the Network Management applications
in the mobile networks before starting to produce commercial systems. In this paper, we describe the PIRR
methodology we have developed to measure resource requirements for distributed applications in mobile networks
and the experimental findings of its application to new Network Management applications.

Key–Words: Software Agents, JADE, Telecom network management system, distributed simulation systems, 3G
cellular system.

1 Introduction
The basic research problem we want to study in our
work is how to measure and estimate the resource re-
quirements and performances of deploying distributed
applications into the network management (NM) sys-
tem of a mobile telecommunications network1.

Moreover we would like to use application spe-
cific performances, together with information about
the network configuration,

1. to compare alternative versions of an application
at the design time to decide which one to further
engineer, or

2. to decide at runtime if or not to run a dis-
tributed application by dynamically estimating
its resource requirements.

In order to provide some background knowledge
about mobile networks and their network management

1This work was partially funded through a Marie Curie fellow-
ship grant and done at Ericsson LMI Software Campus, Athlone,
Co. Westmeath, Ireland

systems, we will start to introduce a simplified model
of a mobile network. We present in the next section
a more detailed description of the main components
of a 2G/3G mobile network and how they cooperate
to provide user services, such as voice calls and data
transfer. From the point of view of our research, a tele-
com mobile network can be viewed as a set of several
types of network elements responsible for routing the
voice or data traffic across the network. In particular
for this research, we focus our attention to one Net-
work Element: the OSS (Operation Support System)
node and on the set of Network Management applica-
tions running on it. The OSS system assists the net-
work operator (for example, a company such as Voda-
fone, TMobile, etc.) in configuring and monitoring
the operation status of each network element and of
the network as a whole. Among other activities, the
OSS constantly updates a centralised database record-
ing the network configuration, by collecting data from
the network elements, and by propagating changes
across the network when a new configuration is de-
fined. State-of-the-art commercial telecom networks
adopt a centralized solution which resides and runs

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS
 

Filippo Neri

ISSN: 1790-0832
306

Issue 3, Volume 5, March 2008



on the OSS node. As can be easily understood with
the centralized approach, the OSS node become the
focus of high computational activity and of intense
message traffic which in turn require the provision of
expensive hardware and large amounts of bandwith.
As an example, status data from the Network Ele-
ments is copied to the OSS in order to be manipu-
lated and any new configuration data is pushed back
to the Network Elements affected by the configura-
tion change. This way of dealing with Network Man-
agement tasks results in scalability issues, in term of
number of Network Elements that can be controlled
by one OSS, and potentially problems also with data
consistency, as Network Element data may have to be
duplicated across the network. Therefore the central-
ized approach can result in the OSS having to oper-
ate with an outdated picture of the network, which
may then result either in the propagation of configura-
tion errors when, for example, new Network Elements
have to be included into the network, or it may result
in the inability of the network manager to detect when
a customer service, (such as video call), is not work-
ing properly because of a technical fault somewhere in
the network. A potential solution approach to the out-
lined problems could be to decentralise or distribute
more of the Network Management functionality di-
rectly to the network elements. This would have the
advantage of dealing with configuration changes at,
or close to, the data source, thus reducing issues with
data consistency, while at the same time freeing com-
putational resources on the OSS node, and reducing
bandwith requirements to/from the OSS node, and al-
low for a more scalable network architecture support-
ing a greater number of Network Elements being man-
aged from one OSS instance.

2 Related works
In [8], the authors show that predictive algorithms can
be successfully employed in the estimation of perfor-
mance variables and the prediction of critical events
in system management tasks.

In [2], the authors describe an off-line modeling
tool able to predict the impact of changes to a net-
work’s topology, configuration, traffic, and technol-
ogy.

In [6], Mobile Ad hoc NETworks (MANETs) are
studied. MANETs are dynamic networks populated
by mobile stations.

Ns-2 [7] is the de facto standard for network sim-
ulation. We are considering to use the ns-2 simulator
[7] for some advanced stage work on mobile network
modeling.

GloMoSim [10] from UCLA is the second most

popular wireless network simulator. Lack of docu-
mentation makes difficult to adopt and exploit the sim-
ulator.

The OPtimized Network Engineering Tools, OP-
NET, [3] is a network simulator proposed by MIT in
1986. It is a well-established and professional com-
mercial suite for network simulation.

Researchers at IBM [9, 5] report two approaches
to measure and predict performance behaviour under
growing workload for a centralized system.

3 Distributing NM to deal with new
services and more nodes in telecom
wireless networks

As mentioned earlier, the current centralized NM sys-
tem may run into problems when attempting to scale
up when new customer services and network nodes
will be deployed across a mobile network. This con-
sideration has prompted a research activity to find al-
ternative architectures that could overcome the limits
of the current centralized approaches.

A straightforward idea to deal with increasing
network size and complexity is to move from a cen-
tralized NM system to a distributed/decentralized one
where each NM application previously residing in the
OSS node is broken into a controller part running on
the OSS node and a distributed part running on each
affected network element. While such suggestion is
easy to promote, the difficulty lies in proving that the
suggestion can actually work and that actually im-
prove the NM operations while at the same time en-
suring that the performance of the network, in carry-
ing traffic, is not adversely affected. In the following
section we will review the tools available for simulat-
ing or modeling part of the telecom wireless network
and their limitations.

4 Selected mobile network simula-
tors

In our research, we would like to be able run code both
on NEs and on the OSS node, and we then would like
to use an experimental mobile network to verify the
effect produced by our code. This is easier said that
done as our experience proved.

Accessing an experimental mobile network is not
an easily achievable task as priority is obviously given
to the commercial production projects. Therefore we
decided to run our experiments on the JADE platform
[1, 4] and then to move the code to the experimental
mobile network when the procedures and the code for
the experiments are tuned.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Filippo Neri

ISSN: 1790-0832
307

Issue 3, Volume 5, March 2008



The JADE (Java Agent DEvelopment Frame-
work) is a java based middleware that simplifies the
implementation of multi-agent systems. We can use it
as we have based the development of our distributed
NM applications on Object Oriented programming
and the Software Agent paradigm. It is therefore
straightforward to prototype alternative versions of an
application in JADE and simulate the distributed NM
system of a mobile network by using a network of
cooperating agents where each agent implements one
NE.

5 Identifying relevant Performance
measures

In order to measure the impact of deploying dis-
tributed applications in a mobile network, a set of
measures has to be defined which should allow to
identify requirement for relevant limited resources.
For the scope of this research, we have defined the
following measures as relevant, but the list can be ex-
tended on a case by case need:

1. CPU usage - average CPU usage by the decen-
tralized application over time

2. Memory utilization - average memory usage over
time

3. Storage - maximum amount of hard disk space
needed

4. Bandwith - average bandwith utilization.

In particular, we are interested in monitoring varia-
tions in those measures under different load condi-
tions and ideally we would like to be able to estimate
how an application will perform under unseen load
conditions (number of nodes in the network).

6 The PIRR estimation methodology
Given our research problem, we would like to de-
velop a performance and resource estimation method-
ology which could predict the impact of deploying a
distributed application, NewApp, into the mobile net-
work. Because of the complexity of the problem we
are dealing with, and the limits of the available sim-
ulators, we decided to base our estimation method-
ology on a combination of empirical and analytical
practices.

We will call our methodology PIRR (pronounced
as the word ’peer’) from Performance Indexes and Re-
source Requirements estimation, and it consists of a
two step approach.

In the first phase, we will run NewApp in our
simulation environment and collect as much relevant
performance data as possible by using profiling tools.
Unfortunately not all the information we are interested
in is ready available from a profiling tool.

In the second phase, we will analyze the code of
NewApp in order to understand what part of the algo-
rithm affects the application’s performances. On the
base of this analysis, we will develop a mathemati-
cal model of NewAppl’s performances that should be
able to explain the set of observed performance data
and should allow to estimate the PIRR values when
NewApp runs in different network loads.

We will show on an example how the PIRR
methodology can be applied.

7 The PIRR methodology applied to
the OK-PING service

In order to show the PIRR methodology at work, we
selected two versions of the simplified OK-PING ap-
plication.

In the rest of the section, we will described the
two versions of the OK-PING application and we will
show how we were able to collect and estimate PIRR
data by using our methodology.

The simulation environment for the reported ex-
periments is based on JADE running on JVM 1.5. In
JADE, each NEs and the OSS node run as software
agents implemented as separate Java threads.

7.1 Centralized OK-PING
The OK-PING application in real mobile network has
a centralized architecture with the OSS node initial-
izing the communications towards to NEs and then
collecting their replies. If a NE does not reply be-
fore a time out period, a fault management procedure
is activated. The abstract code of the application parts
running on the OSS node and on each NEs follows:

// Location: OSS node; Application: OK-PING.
Every t seconds do {

for any NE in the mobile network
send a OK-PING request

NEset={the set of all the NEs in the network}
while ((some timeout is not exceed) and

not(empty(NEset))) {
collect OK-PING replies from any NE
remove from NEset the NE who replied

}
if not(empty(NEset))
{some NEs cannot be reached,

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Filippo Neri

ISSN: 1790-0832
308

Issue 3, Volume 5, March 2008



start fault management process }
}

// Location: NE; Application: OK-PING.
Every t seconds {

prepare status data
wait to receive a OK-PING request from OSS
send OK-PING reply to OSS with status data

}

For our work, the message size of a OK-PING request
is 10 bytes, an OK-PING reply consists of 60 bytes
and the interval of time, t, is set to 60 seconds. The
values of these parameters in real mobile networks de-
pends on the chosen configuration.

We are interesting in measuring PIRR data for
the concentrated OK-PING application when differ-
ent numbers of NEs are in the network. Those data
will provide information about the scalability of the
application. We will also use the collected PIRR data
to compare them against a different implementation
of the same application, reported below, where a more
distributed architecture is adopted.

By looking at the code, we can calculate that for
each NE two messages have to be exchanged (the re-
quest and reply ones) between the OSS node and the
NE to accomplish the task.

7.2 Decentralized OK-PING
This version of the OK-PING application is experi-
mental and is not deployed on real mobile network. In
this implementation, each single NE has the liability
to periodically update the OSS node about its status
by using a ’fire and forget’ approach. If no communi-
cation is received by every NEs before a timeout ex-
pires, than a fault management procedure is activited
for those NEs who have not sent the ’ok-ping’ mes-
sage. In this application, the OSS node periodically
listen to the incoming communication and update its
network status.

The abstract code of the application part running
on the OSS node and on each NEs and follows:

// Location: OSS node; Application: OK-PING.
Every t seconds do {

NEset={the set of all the NEs in the network}
while ((some timeout is not exceed) and

not(empty(NEset))) {
collect OK-PING replies from any NE
remove from NEset the NE who replied

}

if not(empty(NEset))
{some NEs cannot be reached,
start fault management process }

}

// Location: NE; Application: OK-PING.
Every t seconds {

prepare status data
send OK-PING message to OSS with status

}

For our study, the size of a OK-PING message is 60
bytes and the interval of time, t, is set to 60 seconds.

Also by examining the code, it appears that for
each NE only one message is needed to inform the
OSS node that the NE is working properly.

7.3 The PIRR methodology applied to the
centralized OK-PING

Ten experiments per each network configuration (us-
ing a simulated network of 20, 40, 80 NEs) have been
run to average the collected PIRR data by using the
concentrated version of the OK-PING application.

Applying the PIRR methodology
In order to collect some of the PIRR data we are inter-
ested in, we have used NetBeans 5.5 Profiler. The pro-
filer application allows for measuring the CPU time
used by every NEs and by the OSS in networks with a
different number of NE elements.

We then performed a linear interpolation in order
to estimated how much the OSS node’s CPU usage
would vary depending on the number of NEs present
in the network. This simple calculation, allows us to
represent PIRR data in a parametric form which is
useful when predictions for unseen condition have to
be made.

In order to measure the memory utilization, the
information provided by the profiler is not directly
useful as only the total memory used (Heap and
Stack) by the JVM is reported. So we have estimated
the memory used by each NE node to run the OK-
PING application, by averaging the total memory
variations, when running the simulator with different
NE load, over the number of NEs in the network. In
practice, we used the following formula:

((TMU(80) - TMU(40))/40 + (TMU(40) +
- TMU(20))/20)/2

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Filippo Neri

ISSN: 1790-0832
309

Issue 3, Volume 5, March 2008



where TMU(n) stands for Total Memory Used (aver-
aged over the 10 run experiments) when the number
of NEs in the network is n.

The bandwith required by the application has
been estimated by performing a code analysis, calcu-
lating the total byte size of the messages exchanged
over a period of time and dividing the total byte size
per the seconds in the time period. A communica-
tion set up overhead, whose value we were not able to
measure, has to be added.

The storage requirement have been calculated by
summing up the size of the compiled java file (class
files) that make up the application plus estimating the
size of temporary file used by the applications. No
temp files are used by the studied applications.

Reporting PIRR data
In the table below, PIRR data for a configuration
with 40 NEs reporting to the OSS are reported in a
parametric format:

OSS (40 NEs in the net) 1 NE
CPU 0.02% * 40 0.02%
Memory α 35 KB
Bandwith 6.4 B/s + (40 * conn set up) + 0.16 B/s +

conn set up +
60 B/s + (40 * conn set up) 1 B/s +

conn set up
Storage 9 KB 6 KB

Note that the Memory need (α) for the OSS node can-
not be estimated. We know, by the code analysis, that
the OSS node will use a fixed amount of memory for
its internal objects and that amount will not change
during runtime. If we run the system with only the
OSS system to measure the total heap memory use (in-
clusive of JADE environment) we notice that it stays
constant over time and does not exceed 700KB. That
means that the memory usage for the OSS node is sta-
ble and its upper bound is 700KB. Further if we in-
spect the application code running on the OSS and
we compare it with the code running on a NE, then
a better estimate for an upper bound for the OSS node
memory need is 50KB.

It is important to note that the PIRR data are re-
ported in a parametric format obtained by combining
the code analysis step with the experimental phase of
the PIRR methodology. We will then be able to use
the parametric data to estimate PIRR values for the
application when it might run in different configura-
tion settings.

7.4 The PIRR methodology applied to the
distributed version of OK-PING

Again by using the distributed OK-PING application,
we run ten experiments per each network configura-
tion (using a simulated network of 20, 40, 80 NEs),
and the averaged PIRR data have been collected.

In the table below, parametric PIRR data for a
mobile network with 40 NEs reporting to the OSS are
shown:

OSS (40 NEs reporting to it) 1 NE
CPU 0.02% * 40 0.02%
Memory β 35 KB
Bandwith 60 B/s + (40 * conn set up) 1 B/s +

conn set up
Storage 5 KB 5 KB

As in the previous subsection, the reported values are
parameter based, so they show the relationships be-
tween the application cost drivers and the number of
NEs in the network. As obvious, they could be used
to estimate PIRR data for the OK-PING, distributed
version, under different conditions.

7.5 Two ways to exploit PIRR tables
PIRR tables, associated with information about the
network configuration, could be used

1. to compare alternative versions of an application
at the design time to decide which one to further
engineer, or

2. to decide at runtime if or not to run a dis-
tributed application by dynamically estimating
its resource requirements.

As an example of the first use of PIRR tables, com-
paring alternative implementation of the same appli-
cation, the results reported in the above tables could
be used to support the case to substitute the decen-
tralized version of the OK-PING application for the
concentrated one. The decentralized version requires
less communication bandwith, as less messages are
exchanged, and thus could help reducing the amount
of network management traffic running through the
mobile network. Also the storage requirements for the
two versions, show that the distributed version can be
stored in a smaller bytecode file.

Coming to the second use of PIRR tables, any ap-
plication to be deployed into the mobile network could
have associated a parametric table calculated a priori
in a simulator. Then depending on overall load condi-
tion on the mobile network, a controller process could
estimate if the mobile network has enough resources
to run the application, and decide if to grant permis-
sion to execute to the application or postpone its exe-
cution when enough resources are available. This us-
age of the parametric PIRR table could support the
move from a centralized and static NM approach, such
as the one currently used in commercial systems, to
a distributed and dynamic one where the NM system
could deploy across the mobile network just the right
combination of NM applications, from a portfolio of
many, depending on the available resources and with

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Filippo Neri

ISSN: 1790-0832
310

Issue 3, Volume 5, March 2008



a reasonable certainty that they would run as required
and not adversely affect the network.

The control at runtime over which applications
are allowed to run or not, could allow to reduce both
the economic investment in network hardware and
bandwith, and the interference in the core network be-
tween payload traffic and NM traffic.

8 Conclusions
In the paper we described the proposal and applica-
tion of the PIRR methodology. The PIRR method-
ology can be used to measure and estimate compu-
tational resource requirements for distributed appli-
cations used in mobile networks. Moreover, we de-
scribed and commented the experiments performed in
a simulated network. We also show how to summa-
rize application performances in parametric PIRR ta-
bles that can be used to estimate the resource require-
ment for the application in different network work-
loads. We also commented that PIRR data could be
useful to evaluate at runtime when to deploy or delay
execution of an application in mobile network to avoid
overloading it.

References:

[1] F. L. Bellifemine, G. Caire, and D. Greenwood. De-
veloping Multi-Agent Systems with JADE. Wiley,
2007.

[2] Cisco Systems. Using cisco network planning
solution for capacity planning and optimiza-
tion. Technical report, Cisco Systems, 2006.
http://www.cisco.com/en/US/products/ps6363/pro-
ducts-white-paper0900aecd804b9201.shtml.

[3] F. Desbrandes, S. Bertolotti, and L. Dunand. Op-
net 2.4: An environment for communication network
modeling and simulation. In S. for Computer Simula-
tion, editor, European Simulation Symposium, pages
64–74, 1993.

[4] JADE authors. JADE - Java Agent DEvelopment
Framework, 2007. Available at http://jade.tilab.com/.

[5] S. R. Kunkel, R. J. Eickemeyer, M. H. Lipasti, T. J.
Mullins, B. O’Krafka, H. Rosenberg, S. P. Vander-
Wiel, P. L. Vitale, , and L. D. Whitley. A performance
methodology for commercial servers. IBM Journal of
Research and Development, 44(6):851–872, 2000.

[6] P. B. Luc Hogie and F. Guinand. An overview of
manets simulation. Electronic Notes in Theoretical
Computer Science, 150:81–101, 2006.

[7] ns2. The network simulator. ns-2., 1999.
http://www.isi.edu/nsnam/ns.

[8] R. Vilalta, C. Apté, J. L. Hellerstein, S. Ma, and S. M.
Weiss. Predictive algorithms in the management of

computer systems. IBM Systems Journal, 41(3):461–
474, 2002.

[9] E. Weyuker and A. Avritzer. A metric for predicting
the performance of an application under a growing
workload. IBM Systems Journal, 41(1):45–54, 2002.

[10] X. Zeng, R. Bagrodia, , and M. Gerla. Glomosim: A
library for parallel simulation of large-scale wireless
networks. In Workshop on Parallel and Distributed
Simulation, pages 154–161, 1998.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Filippo Neri

ISSN: 1790-0832
311

Issue 3, Volume 5, March 2008


