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Abstract: - This paper proposes a dynamic scheduling method that considers no-concurrency of resource with a 

subsequent event. We focus on repetitive discrete event systems with a MIMO (Multiple Inputs and Multiple 

Outputs)-FIFO structure. The behavior of this kind of system can be described with linear equations in the 

max-plus algebra, also referred to as MPL (Max-Plus Linear). Conventional MPL representation formulates 

no-concurrency of resource with a previous event and can provide the earliest starting times in internal facilities. 

We recently proposed a calculation method for a single job; however, resource no-concurrency with a subsequent 

job is not considered. Thus, it may not give an optimal solution if a large number of jobs have to be considered 

simultaneously. Therefore, we derive a general form of the MPL representation that provides the latest start times 

considering no-concurrency with a subsequent event. We also consider an effective rescheduling method that is 

applicable in cases in which the system parameters are changed after the job has commenced. 

 

Keywords: Repetitive system, state-space representation, max-plus linear system, earliest/latest time, 

forward/backward type, rescheduling 

 

1   Introduction 
An approach based on MPL representation provides 

modeling and analysis methods for discrete event 

systems with a MIMO-FIFO structure. The behavior 

of such systems can be described in a simple form 

using the max-plus algebra [1], [2], a subclass of 

Dioid algebra [3] in discrete mathematics. In the 

max-plus algebra, the ‘max’ and ‘+’ operations are 

defined as addition and multiplication, respectively. 

Hereafter, we focus on systems with synchronization 

of multiple events, no-concurrency of resource usage 

or repeatability. Using the max-plus algebra, the 

behavior of the focused systems is described with 

simple linear equations [4], also referred to as MPL. 

These are similar to the state-space representation [5] 

in modern control theory. Thus, several research 

developments in control theory have been applied to 

MPL systems; typical examples include scheduling 

algorithms. 

On the other hand, there is another well-known 

approach based on TPN (Timed Petri Net) [6], a 

subclass of Petri nets. Methods based on TPN can 

take into account complex rules for transferring to 

the next state. The computation time, however, 

increases very sharply as the number of constraints or 

the scale of the system grows. This implies that they 

are not suitable for large scale or repetitive systems. 

In contrast, methods based on MPL can formulate 

systems that have a simple structure, such as where 

each facility manufactures a single type of product. 

However, since they can consider no-concurrency 

with preceding and succeeding jobs with ease, they 

are suitable for large scale or repetitive systems. As 

such, approaches based on MPL representation have 

been applied to assembly manufacturing systems [7], 

batch processing systems [8], transportation systems 

[9], and communication networks [10], etc. For 

modeling these systems, state, input and output 

variables are allocated to the starting times of 

processes or tasks, input times from external inputs 

and output times to external outputs, respectively. In 

terms of control theories, several concepts in 
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conventional ),( ×+  algebra such as MPC (Model 

Predictive Control) [11], [12] and adaptive control 

[8], [13] have been applied to MPL systems. 

Most of these applications are aimed at 

determining or adjusting control inputs to minimize 

errors between the desired and actual output values. 

Moreover, the state variables are usually treated as 

being unobservable, or uncontrollable if they are 

observable. These assumptions are, however, often 

undesirable for those discrete event systems for 

which MPL representation is suitable, such as 

manufacturing systems or project management. It 

should be noted that these are not only observable, 

but sometimes controllable as well. Accordingly, in 

the MPL representation, the internal states of systems 

should be treated as observable and controllable, thus 

requiring an extension to practical systems. 

According to [14], the conventional MPL 

representation includes the concept of PERT in the 

field of OR. Maximum values are allocated to state 

variables among which the same output value is 

obtained and confirmed to be equivalent to the latest 

starting times. A method is also proposed for 

calculating the corresponding latest start time and for 

finding bottleneck processes. With the help of these 

methods, the changes in systems’ internal states can 

be monitored and a desirable rescheduling can be 

achieved when an unpredictable event occurs. 

Accordingly, the MPL approach is applicable to 

fields in which continuous monitoring is required and 

the schedule is frequently changed. However, in [14] 

no-concurrency of resource is considered with 

respect only to a previous job. Since many existing 

manufacturing or transportation systems operate 

using the same resources repeatedly, it is desirable to 

formulate and optimize systems by considering the 

no-concurrency of resource with respect to a 

subsequent job. 

This paper therefore, derives an MPL state-space 

representation taking into account no-concurrency 

with a subsequent job. Since the proposed method 

represents the internal states with those of the 

subsequent job, we refer to this as the ‘backward 

representation’. In contrast, we refer to the 

conventional MPL representation that considers 

no-concurrency with a previous event as the ‘forward 

representation’. If the forward representation is 

applied to scheduling problems for manufacturing 

systems, the earliest start times for the mid-facilities 

can be calculated. However, if we start 

manufacturing at the earliest times in all facilities, 

many in-processing inventories will accumulate 

immediately before a facility with a low processing 

ability. This may lead to an undesirable result such as 

degradation of product or inflation of disposal cost. 

On the other hand, the backward MPL representation 

can provide the latest start times for mid-facilities 

taking into account no-concurrency with succeeding 

events. If the manufacturing starts at the latest time, 

in-processing inventories will not accumulate. 

However, it should be noted that the manufacturing 

completion time may be delayed if the start times in 

the mid-facilities are delayed even slightly. Hence, 

we should schedule by continuously keeping track of 

the earliest and latest start times and locations of 

bottleneck processes. In addition, in large practical 

systems which have complicated precedence 

constraints, we often find cases where a delay in 

manufacturing or work occurs or a request is 

received to bring forward the due date. To fulfill 

these requirements, this paper also proposes a 

rescheduling method that can be applied when an 

unpredictable event arises. 

 

 

2   Conventional Representation 
We briefly review conventional MPL representation 

taking into account no-concurrency with a previous 

event. First, the relevant operators from the max-plus 

algebra are defined. 

 

2.1 Basic operators 

Assume that the real field is denoted by R . Max-plus 

algebra is an algebraic system in which ‘max’ and ‘+’ 

operations are defined as addition and multiplication. 

The following two operators are defined in 

{ }∞−∪= RD : 

),(max yxyx =⊕ , yxyx +=⊗ ,  

where the multiply operator ⊗  is often omitted if no 

confusion is likely to arise. We denote the unit 

elements for these by )( −∞=ε  and )0(=e , 

respectively. They follow the properties given below 

for an arbitrary D∈x : 

xxx =⊕=⊕ εε , xxeex =⊗=⊗ .  

Moreover, the following operators are also defined: 

),min( yxyx =∧ , yxyx +−=\ .  

The unit operators for these are )( +∞=T  and 

)0(=e , respectively, as defined below: 

xxx =∧=∧ TT , xxe =\ , xex −=\ .  
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where the latter is a left unit element. Operators for 

multiple terms are, if nm ≤ , 

),,(max
nmk

n

mk
xxx L=

=
⊕ , ),,(min

nmk

n

mk
xxx L=

=
∧ . 

For matrices, if nm×∈DX , 
ij

][X  expresses the 

),( ji th element and T
X  is the transpose matrix. If 

nm×
∈DYX , , 

)][,]([max][
ijijij

YXYX =⊕ ,  

)][,]min([][
ijijij

YXYX =∧ .  

If pllm ×× ∈∈ DD YX , , 

( ) )][][(max][][][
,,11

kjik
lk

kjik

l

k
ij

YXYXYX +=⊗=⊗
==

⊕
L

,  

( ) )][][(min][\][][
,,11

kjik
lk

kjik

l

k
ij

YXYXYX +−==
==

∧
L

� .  

The priority of operators ⊗ , \  and � is higher than 

that of ⊕  and ∧ . These operators follow the 

operation rules given below [2], [14]. If 
mlmml
DDD ∈∈∈ ××

wvZYX ,,,, , 

)()()( vYvXvYX ��� ∧=⊕ , (1) 

)()()( wXvXwvX ��� ∧=∧ , (2) 

vZYvZY ���
TTT )()( = . (3) 

For unit matrices, 
mn
ε  and 

mn
T  are nm×  sized 

matrices, all elements of which are ε  and T , 

respectively. 
m

e  is an mm ×  sized matrix, all 

diagonal elements of which are e  and all 

off-diagonal elements are ε . 

 

2.2 Max-plus linear system 

The max-plus linear system is classified as a system 

in which event occurrence times can be formulated 

by linear equations in the max-plus algebra. The 

independent variable is allocated to the number of 

event occurrences from an initial state, and is also 

referred to as the event counter. The input and output 

variables are allocated to the input times from 

external inputs and the output times to external 

outputs, respectively. Moreover, the state variables 

are allocated to manufacturing start or completion 

times. In this paper, we use the manufacturing start 

times only. 

We focus on production systems in which all 

execution sequences are predetermined and have the 

following characteristics: 

• The number of facilities, external inputs and 

external outputs are n , m  and p , respectively. 

• Every job uses all the facilities, once only, from 

upstream to downstream. 

• The transportation times from an external input to 

an internal facility, between facilities and from an 

internal facility to an external output can be 

ignored, and the buffer capacities on these paths 

are infinite. 

Additionally, we assume that the following 

constraints regarding manufacturing sequences are 

imposed. 

• While a facility is busy, the next job cannot be 

started. 

• Facilities that have preceding facilities cannot 

start manufacturing until the manufacturing in the 

earlier facilities has been completed. 

• Facilities which have external inputs cannot start 

manufacturing until all required materials are 

supplied from these inputs. 

Although we use a production system as the example 

here, the same concept can also be applied to project 

management by regarding facility and job as work 

and project, respectively. 

For the k th job, denote the manufacturing start 

time and the processing time in each facility by 

i
k)]([x  and )0()( ≥kd

i
 )1( ni ≤≤ , respectively. 

Moreover, let the output time in each external output 

be denoted by )1()]([ pik
i

≤≤y , and set the initial 

condition to 
1

)0(
n
εx = . In addition, define the 

following representation matrices kP , 
k

F , 0B  and 

kC  to specify structures of the system. 

 





=
ε

)(
][

kd i

ijkP  
: if ji =  

: otherwise 









=

ε

)(

][

kd
j

ijk
F  

: if facility i  has a preceding 

facility j  

: if facility i  does not have a 

preceding facility j  









= ε

e

ij][ 0B  

: if facility i  has an external input 
j  

: if facility i  does not have an 

external input j  









=

ε

)(

][

kd j

ijkC  

: if facility j  has an external output 

i  

: if facility j  does not have an 

external output i  

According to [14], in facility i , ik k )]1([ 1 −− xP , 

ik
k)]([ xF  and ik)]([ 0uB  represent the 

manufacturing completion time of the previous job, 

the latest of all manufacturing completion times in 
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the preceding facilities and the latest of the feeding 

times from external inputs, respectively. Moreover, 

ik k)]([ xC  gives the latest of the manufacturing 

completion times in facilities attached to the i th 

output. These results imply that the earliest starting 

times and output times in all facilities and external 

outputs can be summarized as shown below: 

)()1()()( 01 kkkk kEkE uBxPxFx ⊕−⊕= − , (4) 

)()( kk kE xCy = .  (5) 

where the suffix E  represents the earliest time. 

Moreover, Eq. (4) can be transformed into the form 

given below: 

)()1()( 0
*

1
*

kkk kkkE uBFxPFx ⊕−= − , (6) 

where 

12* −⊕⊕⊕⊕= l

kkknk
FFFeF L , 

nn

l

k
εF = , (7) 

and )1( nll ≤≤∃  is an instance that depends on the 

precedence constraints of the system. 

 

 

3   Backward Representation 
A method for calculating the latest start times and the 

earliest input times is considered. Since this method 

predicts the state variables iteratively by decreasing 

the event counter and giving the output times, we 

refer to this as the ‘backward representation’. 

In obtaining the earliest start times using Eq. (6), 

a lower limit for the predicted value of the state 

variables )(kx  is considered by giving both the 

earliest manufacturing start times of the previous job 

)1( −kx  and the feeding times )(ku . On the other 

hand, the latest start times can be obtained by 

calculating the upper bound of the predicted value of 

the state variables )(kx  with the estimated output 

times )(ky  and the manufacturing start times of the 

subsequent job )1( +kx . 

Next, the constraints with respect to the 

manufacturing sequence are considered. The relevant 

constraints mentioned in Section 2.2 consider 

no-concurrency with a previous job, which can be 

restated by taking into account no-concurrency with 

a subsequent job in the following manner. 

• The manufacturing completion time of the 

corresponding job must be equal to or earlier than 

the manufacturing start times in the succeeding 

facilities. 

• Facilities that have succeeding facilities, must 

complete manufacturing on or earlier than the 

manufacturing start times in these facilities. 

• Facilities that have external outputs must finish 

manufacturing on or earlier than the estimated 

output times. 

We now consider deriving the latest manufacturing 

start time of the k th job in each facility. We utilize 

the same representation matrices kP , 
k

F , 0B  and 

kC , and the system parameter for the processing 

time )(kd
i

 defined in Section 2.2. For facility i , 
i
Q  

and 
i
S  express a number set of attached external 

outputs and succeeding facilities, respectively. For 

the systems dealt with in this paper, the following 

relationship holds: 

If }{φ=
i
S , then }{φ≠

i
Q .  

By setting the latest manufacturing start time to 

iL
k)]([x  the latest completion time in each facility 

can be formulated as follows: 

)()]([ kdk iiL +x   

))]([())]([()]1([ j
j

jL
j

i kkk
ii

yxx ∧∧
∈∈

∧∧+=
QS

. 
(8) 

The first term on the right side represents the 

manufacturing start time of the subsequent job. The 

second and third terms represent the manufacturing 

start times in the succeeding facilities and the 

estimated output times in facilities with external 

outputs, respectively. By solving Eq. (8) for iL k)]([x , 

the relationship given below is obtained: 

i

T

k

jij

T

k

p

j
jLij

T

k

n

j

iii

T

k

jikj

p

j
jikjL

n

j

iiki

ij
j

ijL
j

iiiL

k

kk

k

kk

k

kdkkdk

kdkk

ii

)]1([

))]([\][())]([\][(

))]1([\]([

)][)]([()][)]([(

)][)]1(([

))()]([())()]([(

))()]1(([)]([

11

11

+=

∧∧

+=

−∧−∧

−+=

−∧−∧

−+=

∧∧

∧∧

∧∧

==

==

∈∈

xP

yCxF

xP

CyFx

Px

yx

xx

�

QS

 
 

i

T

kiL
T

k kk )]([)]([ yCxF �� ∧∧ . (9) 

Note that )1( +kx  does not have to be identical to 

the latest start times )1( +k
L

x . Since Eq. (9) is true 

for all i  )1( ni ≤≤ , the latest start times for all 

processes )(k
L

x  can be represented by: 

)(kLx   

.)()1()( kkk
T

k

T

kL
T

k yCxPxF ��� ∧+∧=  (10) 
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Next, consider simplifying Eq. (10). In Eq. (2), 

replace v  by vu ∧  and utilize Eq. (2) again. Then, 

the following formula is obtained: 

)()()()( wXvXuXwvuX ���� ∧∧=∧∧ . (11) 

With the help of this formula and Eqs. (1) and (3), 

substitute the entire right hand-side of Eq. (10) for 

the first term )(k
L

x . This leads to: 

)1()]([)(

)()1()()(

)1()()(

)()1()]}(

)1()([{)(

2

2

+⊕∧=

∧+∧

∧+∧=

∧+∧∧

+∧=

kk

kkk

kk

kkk

kkk

T
knkL

T

k

T

k

T

k
T

kk

T
kkL

T

k

T

k

T

k

T

k

T

kL
T

k
T

kL

xFePxF

yCxPyFC

xFPxF

yCxPyC

xPxFFx

��

���

��

���

���

  

)()]([ k
T

knk yFeC �⊕∧ .  

Substitute the entire right side for the first term again, 

and repeat the same procedure. Then, the following 

simplified expression is derived: 

L=

⊕⊕∧

+⊕⊕∧

=

)()]([

)1()]([

)()(

2

2

3

k

k

kk

T
kknk

T
kknk

L

T

kL

yFFeC

xFFeP

xFx

�

�

�

  

)()()1()( **
kk

T
kk

T
kk yFCxFP �� ∧+= . (12) 

where *

k
F  is the same as Eq. (7). 

Furthermore, a relationship between the latest 

input time and the state variable can be found. 

Designating 
i
W  as the number of processes attached 

to the i th external input, the input variable iL k)]([u  

can be represented by: 

)][)](([)]([)]([ 0
1

jij

n

j
j

j
iL kkk

i

Bxxu −== ∧∧
=∈W

  

i

T

jij

T
n

j

kk )]([))]([\]([ 00
1

xBxB �== ∧
=

.  

Since this holds true for all i  )1( mi ≤≤ , the latest 

input times )(k
L

u  can be obtained in the following 

manner: 

)()( 0 kk
T

L xBu �= .  

As shown above, we have obtained the MPL 

state-space representation taking into account 

no-concurrency of resource with a subsequent job. 

Since Eq. (12) calculates the state variables for the 

k th job using those of the next job, this paper refers 

to this as the backward MPL representation. 

To summarize, the backward MPL state-space 

representation consists of the following two 

equations: 

)()()1()()( **
kkk

T
kk

T
kkL yFCxFPx �� ∧+= , (13) 

)()( 0 kk
T

L xBu �= .  (14) 

Equation (13) states that the latest manufacturing 

start times are given by the internal states of the 

subsequent job )1( +kx  and the estimated output 

times )(ky . If manufacturing of the subsequent job 

starts sufficiently after the current job has completed, 

the state vector can be set to 
1

)1(
n

k T=+x  and Eq. 

(13) is simplified to: 

)()()( *
kk

T
kkL yFCx �= .  

This is equivalent to the result in [4 where 

no-concurrency of resource with a subsequent job is 

not considered. Furthermore, Eq. (14) yields: 

)]()[()( *
0 kk

T
kk

T

L yFCBu ��=   

)()( 0
*

k
T

kk yBFC �= .  

if we start manufacturing at the latest times, that is, 

when )()( kk Lxx = . This result is equivalent to [14] 

which proposes a method for calculating the latest 

input times so that manufacturing is completed at the 

desired time. As implied by these issues, the 

backward MPL representation in this paper can be 

seen as a general extension of previous research. 

Using Eqs. (5), (6), (13) and (14), the total floats 

can be calculated and bottleneck processes can easily 

be identified. According to [14], the total floats of the 

processes are given by: 

)()()( kkk EL xxw −= , (15) 

and the bottleneck processes are the collections of 

elements which satisfy the following relationship: 

Bottlenecks: }0)]([|{ =
i

ki w .  

 

 

4   Dynamic Scheduling 
In the previous section, we imposed an ideal 

condition on calculating the earliest and latest 

starting times, the earliest output times and the latest 

input times; the system operates completely 

according to the predetermined schedule. However, 

in practice, the relevant parameters may change due 

to a variety of reasons; for instance, the arrival time 

of material may be delayed or the due date brought 

forward. Changes like these would have an affect on 

the system parameters, float times and/or locations of 

bottleneck processes. Thus, it is essential to develop 

a rescheduling method which can be applied even 
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after the job has commenced. Reference [14] 

proposed a rescheduling method for the forward 

MPL representation considering a single job. In 

contrast, this section proposes a method for a 

representation of the backward type. 

 

4.1 Rescheduling for the backward type 

Suppose several parameters such as estimated output 

time, manufacturing start time or processing time is 

changed for some reason after the job has 

commenced. We append a symbol ]~[ ⋅  to denote the 

changed variables as follows: 

i]
~[ y )1( qi ≤≤ , i]

~[x )1( ni ≤≤ .  

where the event counter )(k  is abbreviated for 

simplicity. If the processing times are changed, they 

would then influence the system, output and 

adjacency matrices: 

P
~

, C
~

, F
~

,  

where the suffix k , representing the event counter, is 

once again omitted. Note that the input matrix 0B  is 

invariant with respect to its definition. Utilizing the 

above variables and representation matrices, we 

recalculate the changed state variables. First, set 

)(]~[ )0( ∞== T
i

x  (16) 

for all facilities i  which require recalculation. The 

upper suffix (0) stands for an initial value for 

recalculating the state variable iteratively. Facilities 

that do not require recalculation are those that have 

already commenced or for which the starting times 

are fixed. In a similar way to Eq. (9), the latest 

starting time 
i

]~[ )1(
x  in facility i  can be expressed as: 

i]
~[ )1(
x   

i
T

i
T

i
T

k ]~~
[]~~

[)]1([ )0(
yCxFxP ��� ∧∧+= , (17) 

where facility i  is located in the lowest stream where 

no facility downstream requires recalculation, and 

there may be multiple elements. In a similar way to 

Eq. (9), the latest starting time in the upstream 

facilities is calculated iteratively as follows: 

)0(1

2

)2()1(

)0(2

)1()2(

~~

)1()]
~~

(
~

[

~~~~
)1(

~~

~)]
~

(
~

[

~~
)1()]

~
(

~
[

~~~~
)1(

~~

xF

xFFeP

yCxFxPx

yFeC

xFxFeP

yCxFxPx

�

�

���

�

��

���

Tl

Tl
n

TlTTl

T
n

TT
n

TTT

k

k

k

k

−

−

−−

∧

+⊕⊕⊕=

∧∧+=

⊕∧

∧+⊕=

∧∧+=

L

M
  

yFFeC ~)]
~~

(
~

[ 2
�

Tl
n

−⊕⊕⊕∧ L   

yFCxFPx ~)
~~

()1()
~~

(~ **)(
��

TTl
k ∧+= . (18) 

where 1* ~~~ −⊕⊕⊕= l

n
FFeF L , 

nn

l
εF =

~
, and the 

element number 
i

][⋅  is abbreviated for simplicity. 

Utilizing Eqs. (17) and (18), the latest manufacturing 

start times that require recalculation are determined 

iteratively moving upstream. Recalling Eq. (16), the 

manufacturing start times that require recalculation 

are set to T . Thus, the latest starting times of all 

facilities 
L

x~  for rescheduling can be represented in 

the following way: 

)()1()0( ~~~~ l

L
xxxx ∧∧∧= L .  

Utilizing Eqs. (17) and (18), the coefficients of 

)1( +kx , )0(~x  and y~  for 
L

x~  are simplified as 

follows: 

)1()]
~~

(
~

[

)1()]
~

(
~

[)1(
~

1 +⊕⊕⊕∧

∧+⊕∧+

−
k

kk

Tl
n

T
n

T

xFFeP

xFePxP

�

��

LL
  

)1()
~~

( * += k
T

xFP � ,   

)0(*)0(1)0()0( ~~~~~~~ xFxFxFx ���
TTlT =∧∧∧ −

L ,  

yFFeC

yFeCyC

~)]
~~

(
~

[

~)]
~

(
~

[)(~~

1
�

��

Tl
n

T
n

T
k

−⊕⊕⊕∧

∧⊕∧

LL
  

yFC ~)
~~

( *
�

T= .   

Therefore, the latest starting times of all facilities 

)(~ k
L

x  are obtained by: 

)(~)
~~

()1()
~~

()(~ **
kkk

T
kk

T
kkL yFCxFPx �� ∧+=   

)(~~ )0(*
k

T

k xF �∧ . (19) 

The equation given above is the general form that is 

applicable to cases in which the manufacturing start 

times and/or processing times have been changed, 

and are now either smaller or greater than their 

original values. However, this form also has a 

disadvantage in that all terms must be recalculated 

even if a single parameter is changed, and this may 

be undesirable in terms of calculation efficiency. 

Hence, in the next subsection, we consider a 

simplified, more efficient calculation method. 

 

4.2 Moving up the schedule 

In practical systems, we often find situations in 

which the initial schedule has to be brought forward 

due to unpredictable changes in the states. For 

instance, the due date may have to be moved forward 

to fulfill requests from customers. The 

manufacturing start times may have to be brought 

forward for convenient arrangement of facilities or 
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employees. Hence, we consider a simple 

rescheduling method for cases where the 

manufacturing start times or estimated output times 

are brought forward while keeping processing times 

unchanged. 

First, consider the case where a certain 

manufacturing start time has been moved forward 

from the initial value 
L

x . For )0(~x , we update the 

elements, of which the manufacturing start times 

have changed and have already been fixed, and keep 

the original values for other facilities. Hence, 

iLi
][]~[ )0(

xx ≤  for all i  )1( ni ≤≤  and the 

representation matrices are invariant as shown 

below: 

PP =
~

, CC =
~

, 
**~

FF = . (20) 

Accordingly, 
L

x~  in Eq. (19) can be obtained using 

Eqs. (13) and (20) as follows: 

.~

~)()1()(~

)0(*

)0(***

xFx

xFyCFxPFx

�

���

T

L

TTT
L k

∧=

∧∧+=
 

Since [4] proved that the diagonal elements of *
F  

are )0(=e , 

)]~[][(]~[ )0(*

1

)0(*
mmi

n

m
i

T
xFxF +−= ∧

=

�   

iLiLiiiii ][][][]~[][ *)0(*
xxFxF =+−≤+−≤ .  

Since this holds true for all i  )1( ni ≤≤ , the 

following formula for calculating )(~ k
L

x  is obtained: 

)(~)(~ )0(*
kk

T

kL
xFx �= . (21) 

Next, consider the case where the due date is 

brought forward. It follows that ii ][]~[ yy ≤  for all i  

)1( qi ≤≤  and Eq. (20) is also satisfied. Since no 

manufacturing start times are recalculated at this 

stage, set Lxx =)0(~ . Utilizing Eqs. (13) and (1)-(3), 

Eq. (19) can be simplified in the following manner: 

yCF
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yCFx ~)( *
�

T
L ∧= .  (22) 

where we utilize the relationship below: 

***
FFF = .  

Equation (21) implies that the rescheduling can 

be accomplished only by applying �
T*

F  to the 

updated state variables )0(~x  if one or more 

manufacturing start times are brought forward. 

Moreover, Eq. (22) means that the updated 

manufacturing start times are calculated with 

minimal computation cost only if the due date is 

moved forward. 

As the above consideration implies, there is a 

method for calculating the latest starting times, 

which is simpler than Eq. (19) and applicable only if 

the starting times in the mid-facilities or the due date 

is moved up. 

 

 

5.   Numerical Example 
This section presents a numerical example for 

scheduling problems based on both the forward and 

backward MPL representations.  

Fig. 1 shows a block diagram of a simple 

manufacturing system with four-facilities, 

two-inputs and one-output. Arrows represent the 

precedence constraints. Numbers in boxes and 

brackets represent the process numbers and 

processing times, respectively. Numbers in circles 

mean input or output numbers. Assume the 

processing times are constant and do not depend on 

the job number k . The representation matrices 

introduced in Section 2.2 are as follows: 



















=

3

1

2

4

εεε

εεε

εεε

εεε

P , 



















=

εε

εεε

εεεε

εεε

14

2

2

F ,  

T

e

e








=

εεε

εεε
0B , [ ]3εεε=C ,  

where the suffixes k  are abbreviated. With respect 

to the adjacency matrix F , since it holds: 



















=

εεε

εεεε

εεεε

εεεε

6

2
F , 44

3
εF = ,  

Eq. (7) is calculated in the following manner. 
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Moreover, the relevant matrices of the MPL 

representation in Eqs. (6) and (13) are calculated as: 
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)( * T
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First, we consider a scheduling problem for a single 

job in which concurrencies with succeeding and 

preceding jobs are not considered. With 1=k , the 

initial and terminal states are set as 41)0( εx = and 

41
)2( T=x , respectively. Assuming the material 

feeding times are given by T]00[)0( =u , the 

earliest starting and output times are obtained using 

Eqs. (5) and (6) as shown below: 

)1()()0()()1( 0
**

uBFxPFx ⊕=E   

T]6202[)1()( 0
* == uBF , (23) 

9)1()( == EE k xCy .  (24) 

Equation (24) implies that process 2 can start 

manufacturing at time 0=t , while process 1 cannot 

start manufacturing until time 2=t  since it has to 

wait for the completion of the manufacturing in the 

preceding process 2. Moreover, assume that the due 

date is given by: 

9)1( =y , (25) 

which is also referred to as the desired output value. 

Then, the latest manufacturing start and feeding 

times are obtained in the following way: 

)1()()2()()1( **
yCFxPFx

TT
L ∧= � ,   

TT ]6502[)1()( * == yCF � , (26) 

T

L

T

L
]02[)1()1( == xBu � .  (27) 

Moreover, the total floats in Eq. (15) are calculated 

as: 

T

EL
]0300[)1()1()1( =−= xxw , (28) 

and the bottleneck processes can be identified as 

}4,2,1{ . Fig. 2 is a Gantt chart presenting the 

calculation results based on Eqs. (23) and (26), which 

implies the correctness of Eqs. (24), (27) and (28). 

Next, no-concurrency with a subsequent job is 

considered. Assume that the manufacturing start 

times of 2=k , are given by those in which four unit 

times are appended to Eq. (23), as shown below: 

T]9535[)2( =x . (29) 

If the due date is also given by Eq. (25), the latest 

start time of 1=k  is calculated using Eq. (13): 

)1()()2()()1( **
yCFxPFx

TT
L ∧= �   

T]6411[ −= .  (30) 

The actual output time in this case is 

9)1()1( == LxCy , which is exactly the same as the 

given due date. Fig. 3 is the Gannt chart showing the 

results of Eqs. (29) and (30). Compared with Eqs. 

(26) and (30), both of these give the same output 

times, whereas the latter requires an earlier 

manufacturing start in processes 1, 2 and 4. This is 

because the latter case considers no-concurrency 

with a succeeding job. 

Furthermore, we consider a rescheduling method. 

Suppose the initial plan is given by Eqs. (29) and (30), 

but the manufacturing start time of process 1 is 

moved up to 5.0)]1(~[
1

)0( =x  after the job has begun. 

Let us examine the rescheduling method based on Eq. 

(19). Since the manufacturing times of all processes 

remain unchanged, the relationships given below are 

followed: 

**~
,

~
,

~
FFCCPP === .  

Moreover, we set the initial state variables to: 

T
. ]50[)1(~ )0( TTT=x .  

Using these values and Eq. (19), the rescheduled 

result can be obtained in the following manner: 

)1(~~

)1(~)
~~

()2()
~~

()1(~

)0(*

**

xF

yFCxFPx

�

��

T

TT
L

∧

∧=
  

T]645.15.0[ −= .   

Comparing with Eq. (30), the latest manufacturing 

start times are moved forward only in processes 1 

and 2. This indicates that only process 1 and its 

preceding ones are affected by this reschedule. Note 

that the same result can be obtained with Eq. (21) by 

setting the state variables to: 

T
-. ]64150[)1(~ )0( =x .  

Finally, a further rescheduling problem in which 

the feeding time is brought forward is considered. Let 
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us consider the case where the due date is moved up 

to 5.8)1( =y  and the initial schedule is given by Eqs. 

(29) and (30). Setting the initial state variables to: 

T][)1(~ )0( TTTT=x ,  

a rescheduling result is obtained using Eq. (19) as 

follows: 

T

L
-. ]5.545.150[)1(~ =x .  

The same result can be obtained using Eq. (22) by 

setting the initial state variables to: 

T

L
]6411[)1( −=x .  
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Fig. 1. A block diagram of a simple manufacturing system. 
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Fig. 2. Scheduling for a single job. 
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Fig. 3. Scheduling taking into account no-concurrency with a succeeding 

job. 

 

6.   Conclusion 
This paper has derived an MPL representation of the 

backward type taking into account no-concurrency of 

resource with a subsequent event and has considered 

a method for obtaining the latest start and input times. 

Previous research focused on an MPL representation 

of the forward type that considers no-concurrency 

with a previous job. This method often results in 

schedules that can delay the due date if the schedules 

of the corresponding and subsequent jobs are too 

similar. On the other hand, since our research takes 

into account no-concurrency with a subsequent job, 

such delays do not occur. In addition, we have 

proposed a rescheduling method for cases in which 

the relevant parameters are changed after the job has 

begun. We have also proposed a simplified method 

that is applicable for cases in which the state 

variables or output values are smaller than the 

original ones. 

No-concurrency between either previous or 

subsequent jobs has been taken into account in this 

paper. However, several practical systems process 

many jobs simultaneously, by lot units for instance. 

In such cases the conventional or proposed method 

may not provide an effective schedule. Some form of 

model predictive control (MPC) is required to cope 

with this problem. This extension remains a future 

work. 
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