
Customizable Pattern-Oriented Verifiers for Web Applications

Nhor Sok Lang
University of Tokushima

Course of Info Sci. & Intel. Syst.
Tokushima

JAPAN
soklang@is.tokushima-u.ac.jp

Takao Shimomura
University of Tokushima

Dept. of Info Sci. & Intel. Syst.
Tokushima

JAPAN
simomura@is.tokushima-u.ac.jp

Quan Liang Chen
University of Tokushima

Course of Info Sci. & Intel. Syst.
Tokushima

JAPAN
quan@is.tokushima-u.ac.jp

Kenji Ikeda
University of Tokushima

Dept. of Info Sci. & Intel. Syst.
Tokushima

JAPAN
ikeda@is.tokushima-u.ac.jp

Abstract: This paper presents a method that enables programmers to easily define and customize verification items
for Web applications. In this method, we first specify verification conditions using regular expressions to indicate
a part of code of interest, and if it is against a verification item, this method provides a mechanism to automatically
correct that code using another expression. In addition, to make it possible to easily define complicated verification
items that check a sequence of the pieces of program code that appear at multiple locations of the programs, the
method provides several program interfaces with which we can check the part of the program code of interest in
more detail.

Key–Words: Customizable verifier, Regular expression, Verification, Web applications

1 Introduction

In order to develop Web applications of high quality,
it is important to apply efficient frameworks to stan-
dardize the process of development in projects [1], [2],
[3], [4], or apply useful design patterns to produce the
program code that can easily be enhanced [5]. How-
ever, it is not enough. In addition to these efforts, we
have to check the programs to see whether they keep
various kinds of rules such as verification items for
security which are common for all kinds of Web ap-
plications [6], [7], and verification items for coding
styles or code conventions which are pertain to each
project [8].

Tools that assist these kinds of verification are of-
ten incorporated into a part of integrated development
environments [9]. However, in most of the existing
tools [10], [11], [12], [13] , [14] , [15] , [16] , their
verification items are determined in advance, or even
if verification items can be added, they only permit
addition of the conditions that match a part of pro-
gram code to be verified. They do not have any mech-
anisms that help programmers correct the part of pro-
gram code if it turns out to be against the rules. More-
over, it is difficult to add verification items that check

a sequence of the pieces of program code that appear
at multiple locations of the programs.

This paper presents a method that enables pro-
grammers to easily define and customize verification
items. In this method, we first specify verification
conditions using regular expressions to indicate a part
of code of interest, and if it is against a verification
item, this method provides a mechanism to automat-
ically correct that code using another expression. In
addition, to make it possible to easily define compli-
cated verification items that check a sequence of the
pieces of program code that appear at multiple loca-
tions of the programs, the method provides several
program interfaces with which we can check the part
of the program code of interest in more detail [17].

2 Requirements for Verifiers

2.1 Verification items

For security, consistency, or completeness of Web ap-
plications, we need to check various kinds of items as
follows:

� Continuous sessions

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS
Manuscript received Aug. 20, 2007; revised Nov. 20, 2007

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 1439 Issue 12, Volume 4, December 2007

Verifier
Engine

Continuous
Session

DB
Transaction

DB
Access

Total
Verifier

Standard
Verifier

Customized

Verifiers

Predefined

Verifiers

Figure 1: Window configuration of Verifier engine

� Connection and transaction processes for
database

� Mutual exclusion of Servlets

� Secrecy of passwords

� SQL injections

� Cross-site scripting

� Authentication of users

� URL encoding of HTTP requests

� Consistency of parameters of form data to be sent
and received

� Internationalization of messages and images

For example, as for the verification item of con-
tinuous sessions, the URL of a Web page control
transfers to should be written as follows to continue
a session:

response.encodeURL(”example.jsp”)

When we simply write the URL of the next Web
page as ”example.jsp”, if a Web browser is set not to
accept cookies, which is sent from a Web server, a
user’s session will not be properly continued. In the
program code of Web applications, these URL appear
in such locations as:

�a href=”example.jsp” ...�
�form action=”example.jsp” ...�
window.open(”example.jsp”, ...)

The first �a� tag appears at a link of a Web
page. When we click on the link, the next Web
page will be shown. The second �form� tag is used

Verifire
Engine

Verifier1

Verifier2

Verifier3

Verifier
definitions

Verifier
classes

Source
files

(1) Read verifier definitions

(2) Load verifiers

(3) Read source files

(4) Remove comments

(5) Analyze matched patterns

(6) Invoke Verifier.verify()

(7) Display verified results

(8) Update verifiers' windows

Figure 2: Verification Processes

when we enter some data and submit them. The third
window.open function appears in a part of JavaScript
code. For example, when we click on a button, its
onclick event handler will be invoked. This han-
dler will invoke the window.open function to open a
new Web browser window or update an existing Web
browser window. If the URL of a Web page control
transfers to is not written in such a way that the ses-
sion will continue, we would like to detect such code,
and automatically replace the URL in the code with
the correct code wrapped by response.encodeURL()
method.

2.2 Requirements

To make it possible to flexibly and easily verify Web
applications, we take into account the following re-
quirements:

Requirement 1 We can easily add, modify and delete
verification items.

Requirement 2 If a part of program code is against
a verification item, the part of program code can
be automatically corrected.

Requirement 3 In addition to verifying a continuous
part of program code, the relationship between
several parts of program code that appear at dis-
tinct locations of the program can also be veri-
fied.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 1440 Issue 12, Volume 4, December 2007

Methods Functions
int patternCount() Number of pieces of matched text
String getText(int patternIndex) patternIndex-th matched text
int getLineNo(int patternIndex) Line no. of patternIndex-th matched text
int getLineOffset(int patternIndex) Column no. of patternIndex-th matched text
int groupCount(int patternIndex) Number of groups of patternIndex-th matched text
String getGroupText(int patternIndex, int groupIndex) Text of groupIndex-th group of patternIndex-th matched text
void addProblem(int patternIndex) Mark patternIndex-th matched text
void addMessage(message) Display message in Verifier engine

Table 1: Verification Methods for Customization

3 Verifier Engine and Verifiers

3.1 Window configuration of verifier engine
and verifiers

As shown in Fig. 1, the system Verifier engine opens
a verifier window for each of verification items. The
window displays the verification result of the verifi-
cation item and assists automatic correction of a part
of program code that is against the verification item.
Immediately a part of the program code is automati-
cally corrected in one verifier window, the contents of
all the other verifier windows will be updated to re-
flect this correction. This system provides Standard
Verifier and Total Verifier as predefined verifiers. In
Standard Verifier, programmers can enter a verifica-
tion condition and see the verification results right
away. A verification condition is specified as a reg-
ular expression, which could be complicated. Stan-
dard verifier helps understand exactly which pattern
will match a verification condition, which is entered
as a regular expression. When we construct a cus-
tomized verifier class, we can also use this Standard
Verifier to see whether its verification conditions are
valid or not in advance. Total Verifier shows the ver-
ification results of all the verifiers that are registered
in the Verifier engine at a time. The displayed results
may be complicated because the verification results
of multiple verification items are displayed at a time.
However, it is convenient when we check whether the
verification of all verification items is completed or
not after we finish verifying a series of verification
items.

3.2 Verification processes
Figure 2 shows the verification processes of Verifier
engine. The system first (1) reads a verifier defini-
tion file, which defines a verification condition and a
verifier class’es name, and then (2) dynamically loads
the verifier classes defined in the file. Next, accord-
ing to a user’s operation, (3) it reads a source pro-

gram file to be verified. (4) It then removes comments
from the source code to obtain the text to be veri-
fied, and concatenates all source lines so that it can
verify a part of program code that exists in multiple
lines. When a verification item is selected, the sys-
tem creates an instance of the verifier class that cor-
responds to the selected verification item. (5) It ana-
lyzes parts of program code (the code of interest) each
of which matches the verification condition specified
in the verification item. (6) The system invokes ver-
ify() method of the instance of the verifier class. This
verify() method checks whether the matched parts of
program code are correct or wrong. (7) The system
displays the summary of the verification results re-
turned by the verifier in the Verifier engine window.
(8) The verifier updates the display of the verifier win-
dow based on the verification results.

4 Implementation

4.1 Verification methods for customization
For each verification item, Verifier engine creates a
sequence of the pieces of the code of interest, each of
which matches the verification condition. The verifier
class of each verification item performs its own veri-
fication using this sequence of code. To make it eas-
ier to verify the code, Verifier engine provides public
methods shown in Table 1 for each verifier class. For
example, to know the number of pieces of text that
match a verification condition, patternCount() method
is invoked. Using the value “numOfPatterns” returned
by this method, each matched text can be obtained by
invoking getText(index) method, where index ranges
from 0 to “numOfPatterns” - 1. The verifier class uses
these public methods to check whether the sequence
of the code of interest is correct or wrong, and informs
the Verifier engine of the result using addProblem()
method. It can also send the summary of the verifica-
tion results to the Verifier engine using addMessage()
method.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 1441 Issue 12, Volume 4, December 2007

4.2 Definition of verification items

To make it possible to easily add verification items,
we prepare a file (verifier definition file) to define ver-
ification items (Requirement 1). Using the verifier
definition file, we define the name of a verification
item, the name of a verifier class, a verification con-
dition, and a method of correction as shown in Fig.
3 (a). We use a regular expression to define the ver-
ification condition. For example, in the verification
of continuous sessions described in Section 2.1, we
define the code, in which the URL of a Web page con-
trol transfers to appears, using a regular expression
“(window.open�(�action=�href=)”(.+?)”” as shown in
Fig. 3(a).

To make it possible to automatically correct code
when it is against a verification item, we provide
a method to specify how to correct the code of in-
terest (Requirement 2). We first divide the part
of the code that matches the verification condition,
which is written using a regular expression, into sev-
eral groups. Using symbols $1, $2, $3, ... , each
of which indicates the group number of the group,
we specify the correct code which will be replaced
with the code of interest. For example, in the ver-
ification of continuous sessions described in Sec-
tion 2.1, we specify the correct code as “$1”�%=
response.encodeURL(”$2”) %�”” as shown in Fig.
3(a). For example, suppose that a part of source text
“window.open(”/sp/request1.jsp”” matches the verifi-
cation condition. This source text is divided into two
groups, “window.open(” and “”/sp/request1.jsp””.
The first group is referred to as $1, and the sec-
ond group is referred to as $2. Therefore, the
correction of code will be “window.open(”�%= re-
sponse.encodeURL(”/sp/request1.jsp”) %�””.

We define a verifier class so that we can also ver-
ify the relationship between several parts of program
code that appear at distinct locations of the program
in detail (Requirement 3). We define this verifier class
to be a class that extends abstract class Verifier. The
verifier class can perform detailed verification using
verification methods for customization shown in Ta-
ble 1. For example, in the verification of continuous
sessions described in Section 2.1, when the code of
interest does not include “response.encodeURL”, this
verifier class judges that the code is wrong, and in-
forms Verifier engine using addProblem() method that
the code of interest has a problem. It also informs
Verifier engine of the number of the pieces of wrong
code using addMessage() method. We apply the tem-
plate method [5] to verifier classes because most of
the processes are common among them. Such com-
mon processes are implemented in abstract class Veri-
fier. By extending abstract class Verifier, each verifier

Continuous Session

ContinuousSession

(window.open\(|action=|href=)"(.+?)"

$1"<%= response.encodeURL("$2") %>"

(a) Verifier Definition

public class ContinuousSession extends Verifier {

 public void verify() throws Exception {

 int numOfPatterns = patternCount();

 for (int i = 0; i < numOfPatterns; i++) {

 String pattern = getText(i);

 Pattern p = Pattern.compile(".*response.encodeURL.*");

 Matcher m = p.matcher(pattern);

 boolean isNoProblem = m.matches();

 if (!isNoProblem) addProblem(i);

 addMessage("Number of problems = " + numOfProblems);

}

(b) Verifier Class

Figure 3: Definition of verified items and their verifi-
cation classes

class has only to define its own particular verification
using verify() method as shown in Fig. 3 (b).

4.3 System configuration
Figure 4 shows the relationship between a verifier
class for each verification item and the abstract class
Verifier that each verifier class extends. (1) When
a verification item is selected from a menu of Veri-
fier engine window, the system loads the correspond-
ing verifier class verCls, and creates an instance ver
of this verifier class. Then, the display() method of
the instance ver is invoked, and this actually exe-
cutes the display() method of the abstract class Ver-
ifier. This method detects the pieces of code that
matches the specified verification condition of the ver-
ification item, and then, invokes the verify() method
of instance ver to let it verify the program code ac-
cording to its verification item. The method finally
displays the verification results in the verifier window.
In a verifier window, (2-1) as soon as a part of code is
corrected, the document in instance ver (actually, the
document defined in the abstract class Verifier) will
detect this modification and update the source code
stored in the verifiedText object. Then, the verified-
Text object increments the value of variable textVer-
sionNo by one, which represents the version number
of the source code, and (3) informs all verifier classes
of this modification to let them update the contents
of their verifier windows. When a new source file is
read, (2-2) it also informs all verifier classes of this
change of source code to let them update the contents

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 1442 Issue 12, Volume 4, December 2007

Source

file

(2-1) modify

display

(2-2) read

(3) inform

verClsverifier window

Verifier

contents

Menu

Standard Verifier

Total Verifier

Continuous Session

DB Connection

abstract class Verifier {

 patternCount() {...}

 addMessage() {...}

 Verifier() {...}

 display(...) {

 detect matched patters

 verify();

 update display

 }

}verifiedText

textVersionNo

document
document

textVersionNo

display()

document

document

source code

verCls = Class.forName(verClsName);

ver = verCls.newInstance();

(1) select

Figure 4: Relationship between each verifier and its
abstract class

of their verifier windows. An instance of each verifi-
cation class also has variable textVersionNo, and only
if this value is consistent with the value of textVer-
sionNo in the verifiedText object, the verifier instance
updates the source code stored in the verifiedText ob-
ject to update the contents of its verifier window. Oth-
erwise, this window has already been updated when
the source code is modified in one of the other verifier
windows.

4.4 Correspondence between source and ver-
ified text

The source text is read from a source file, and it may
include some comments, which is not the target of ver-
ification. The system removes these comments from
the source text to obtain the text to be verified. It has
to manage the correspondence of positions between
them, because it will display the verification result on
the source text. Fig. 5 shows how to manage the corre-
spondence between source text and verified text. Sup-
pose that the source text contains some lines, whose
lengths are l1, l2, l3, and so on, and includes two
parts of comments, the lengths of which are c1 and
c2, respectively. After comments are removed from
the source text, the system obtains the verified text,
whose line lengths are l1, l2, s1, l4, and l5 - c2, and
so on. A two-dimensional array vs[][] records the cu-
mulative length of each comment’s position in both
of the verified and source text. For example, the first
comment starts at a position of l1 + l2 + s1 in the ver-
ified text, while it ends at a position of l1 + l2 + l3
in the source text. s(v) function returns a position in
the source text that corresponds to a position v in the
verified text. isV(s) function returns whether a po-
sition s in the source text is included in the verified

s1 c1

s2 c2

l1
 l2
 l3
 l4
 l5

Verified Text Source Text

l1
 l2
s1
 l4
l5 - c2

vs[][] structure

s(v), isV(s) and v(s) functions

vs[0] = { 0, 0 }
vs[1] = { l1+l2+s1, l1+l2+l3 }
vs[2] = { l1+l2+s1+l4+s2, l1+l2+l3+l4+(s2+c2) }
vs[3] =

s(v) = vs[i][1] + (v - vs[i][0])
 for i such that vs[i][0] <= v < vs[i+1][0]
isV(s) = (vs[i][1] + (vs[i+1][0] - vs[i][0])) > s
 for i such that vs[i][1] <= s < vs[i+1][1]
v(s) = vs[i][0] + (s - vs[i][1])
 for i such that isV(s) = true and
 vs[i][1] <= s < vs[i+1][1]

Figure 5: Correspondence between source and veri-
fied text

text. If isV(s) is true, v(s) function returns a position
in the verified text that corresponds to a position s in
the source text. For example, let v be a position of l1
+ l2 + s1 + 1 in the verified text. Because vs[1][0]
�= v � vs[2][0], s(v) will be vs[1][1] + (v - vs[1][0])
= l1 + l2 + l3 + 1. Reversely, let s be a position of
l1 + l2 + l3 + 1 in the source text. Because vs[i][1]
�= s � vs[2][1], isV(s) will be (vs[1][1] + (vs[2][0] -
vs[1][0])) � s, which is l1 + l2 + l3 + l4 + s2� l1 + l2
+ l3 + 1. It becomes true. Then, v(s) will be vs[1][0]
+ (s - vs[1][1]) = l1 + l2 + s1 + 1.

4.5 Example of continuous sessions

If we register verifier class Continuous Session shown
in Fig. 3, which performs a verification of continu-
ous sessions, in Verifier engine, we can perform ver-
ification as shown in Fig. 6. We here use a simple
source program of JSP page “verifier.jsp” as an exam-
ple [18]. In the verifier window of Continuous Ses-
sion, five pieces of code are detected as the URL of a
Web page control transfers to. The pieces of detected
code are shown in yellow. Among them, the pieces
of wrong code are shown in blue. The wrong code is
the code that Continuous Session verifier judged to be

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 1443 Issue 12, Volume 4, December 2007

(a) Verifier Engine

(b) Continuous Session Verifier

addMessage("Number of problems = " + numOfProblems);

addProblem(i);

Figure 6: Verification of continuous sessions

wrong and informed Verifier engine of using addProb-
lem() method. By clicking the “Next” button, we can
traverse the pieces of wrong code in turn. Among
them, which are shown in blue, the current wrong
code is shown in red with an underline. In Fig. 6 (b),
the part of code “window.open(”/sp/request1.jsp”” in-
dicates the current wrong code. If we click the
“Correct” button, this part of code will be au-
tomatically corrected to “window.open(”�%= re-
sponse.encodeURL(”/sp/request1.jsp”) %�”” (See
Fig. 8 (a)). If we click the “Verify” button, Verifier
engine window will show the summary of the verifica-
tion results that Continuous Session verifier informed
Verifier engine of using addMessage() method (See
Fig. 6 (a)).

4.6 Standard verifier
Figure 7 shows the result after we verify the target pro-
gram “verifier.jsp” using Continuous Session verifier
and then perform automatic correction on the piece of
wrong code in line 9. Figure 8 shows the result after
we verify the same program using Standard Verifier.
In its verifier window, we check the parts of code that
matches “/sp”. Although the verification results are
different in these two verifier windows, both windows
always show the same contents of the program even if
it is modified.

In the Standard Verifier, when we specify
a verification condition, we can immediately see
the pieces of code the Standard Verifier de-
tects. When we construct a customized contin-
uous session verifier class, we can know what

Figure 7: Correction of continuous sessions

parts of code will match the regular expression
“(window.open�(�action=�href=)”(.+?)”” in advance.
Moreover, we can also know which part of code
will match a more complicated regular expression
“(�input[ˆ>]+?type=”password”[ˆ>]+?value=”)
([ˆ"]*?)(”)”. If we need to modify the program code
a little bit, we can do it using Standard Verifier without
constructing a verifier class. When we click the “Ver-
ify” button, Standard Verifier shows the total number
of the pieces of code that match the verification con-
dition, and the number of the pieces of distinct code
among them (See Fig. 6 (a)).

5 Observation
This system enables us to easily add a new verifica-
tion item. We do not need to write a lot of code to
verify the item. Table 2 illustrates verification con-
ditions, correction code, and the lines of code which
is required to define a verifier class for some verifica-
tion items. For example, in the verification of con-
tinuous sessions described in Section 2.1, we were
able to define the verification class in 16 lines of
code. In addition, this system made it possible to
easily verify a sequence of the pieces of program
code that appear at multiple locations of the pro-
grams such as connection and transaction processes
for database. For the database connection, it veri-
fied the correct sequence of code for open and close,
such that “con = DriverManager.getConnection()” —
� “stm = con.createStatement()” —� “stm.close()”

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 1444 Issue 12, Volume 4, December 2007

Table 2: Definitions for Customizable Verifiers

Verification Item Condition Correction Verifier Class
(lines of code)

Continuous session (window.open�(�action=�href=)”(.+?)” 16
$1”�%= response.encodeURL(”$2”) %�”

DB connection getConnection�createStatement�stm.close�con.close $0 25
DB transaction setAutoCommit�stm.exec�commit�rollback $0 30
URL encoding �?[a-zA-Z0-9]+?=.+?[”;�n] $0 16
Password secrecy (�input[ˆ>]+?type=”password”[ˆ>]+?value=”) $1$3 14

([ˆ"]*?)(”)

Figure 8: Standard verifier

—� “con.close()”. For the database transaction,
it verified the correct sequence of code for com-
mit and rollback, such that “con.setAutoCommit()”
—� “stm.executeUpdate()” or “stm.execute()” —�
“con.commit()” —� “con.rollback()”. Moreover, it
verified whether the program locks the database tables
in total order to prevent dead lock.

6 Conclusion
This paper has presented a method that makes it pos-
sible to verify the program code that implements Web
applications from various points of view using vari-
ous kinds of verification items. Customized verifica-

tion items can be accumulated as not only the know-
how for Web application development but also a part
of executable verification mechanism. In future, we
are going to introduce a meta-language for regular ex-
pressions to enable programmers to easily define their
verification items and verifier classes.

References:

[1] The Apache Software Foundation : Struts.
http://jakarta.apache.org/struts/, 2004.

[2] A. S. Christensen, A. Moller, and M. I.
Schwartzbach. Extending java for high-level
web service construction. ACM TOPLAS,
Vol. 25, No. 6, pp. 814–875, 2003.

[3] Takao Shimomura. Visual design and program-
ming for web applications. Journal of Visual
Languages and Computing, Vol. 16, No. 3, pp.
213–230, 6 2005.

[4] A. Leff and J.T. Rayfield. Web-application de-
velopment using the model/view/controller de-
sign pattern. pp. 118–127, 9 2001.

[5] Steven John Metsker and William C. Wake. De-
sign Patterns in Java. Addison-Wesley, 4 2006.

[6] Takao Shimomura, Kenji Ikeda, Quan Liang
Chen, Nhor Sok Lang, and Muneo Takahashi.
Apty: Easy enjoyable effective e-learning. In
Proc. of the 7th WSEAS International Confer-
ence on Applied Informatics and Communica-
tions, pp. 211–216, 8 2007.

[7] Takao Shimomura, Quan Liang Chen, Nhor Sok
Lang, and Kenji Ikeda. Integrated laboratory
network management system. In Proc. of the 7th

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 1445 Issue 12, Volume 4, December 2007

WSEAS International Conference on Applied In-
formatics and Communications, pp. 188–193, 8
2007.

[8] Sun Microsystems, Inc. : Code Conventions.
http://java.sun.com/docs/codeconv/, 2006.

[9] The Eclipse Foundation : Eclipse.
http://www.eclipse.org/, 2006.

[10] D. Castelluccia, M. Mongiello, M. Ruta, and
R. Totaro. Waver: A model checking-based
tool to verify web application design. Elec-
tronic Notes in Theoretical Computer Science,
Vol. 157, No. 1, pp. 61–76, 5.

[11] E. Di Sciascio, F.M. Donini, M. Mongiello, and
G. Piscitelli. Anweb: a system for automatic
support to web application verification. pp. 609–
616, 7.

[12] Marco Pistore, Marco Roveri, and Paolo
Busetta. Requirements-driven verification of
web services. Electronic Notes in Theoretical
Computer Science, Vol. 105, No. 10, pp. 95–108,
12.

[13] Francesco Maria Donini, Marina Mongiello,
Michele Ruta, and Rodolfo Totaro. A model
checking-based method for verifying web appli-
cation design. Electronic Notes in Theoretical
Computer Science, Vol. 151, No. 2, pp. 19–38,
5.

[14] L. de Alfaro. Model checking the world wide
web. pp. 77–85, 2001.

[15] Shriram Krishnamurthi. Web verification: Per-
spective and challenges. Electronic Notes in
Theoretical Computer Science, Vol. 157, No. 2,
pp. 41–46, 5.

[16] D.R. Licata and S. Krishnamurthi. Verifying in-
teractive web programs. pp. 164–173, 2004.

[17] Takao Shimomura, Kenji Ikeda, Chen Liang
Quan, Lang Sok Nhor, and Takahashi Muneo.
Customizable verifiers for web applications and
their implementation. In Proc. of WSEAS Inter-
national Conference on Computer Engineering
and Applications, pp. 396–401, 1 2007.

[18] Sun Microsystems, Inc. : JavaServer Pages Tech-
nology. http://java.sun.com/products/jsp, 2006.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 1446 Issue 12, Volume 4, December 2007

