
Uniform Tag-based Rich Component Generation for Web
Application Development

Quan Liang Chen
University of Tokushima

Course of Info Sci. & Intel. Syst.
Tokushima

JAPAN
quan@is.tokushima-u.ac.jp

Takao Shimomura
University of Tokushima

Dept. of Info Sci. & Intel. Syst.
Tokushima

JAPAN
simomura@is.tokushima-u.ac.jp

Nhor Sok Lang
University of Tokushima

Course of Info Sci. & Intel. Syst.
Tokushima

JAPAN
soklang@is.tokushima-u.ac.jp

Kenji Ikeda
University of Tokushima

Dept. of Info Sci. & Intel. Syst.
Tokushima

JAPAN
ikeda@is.tokushima-u.ac.jp

Abstract: A variety of rich client technologies such as Flash, Flex, OpenLaszlo, JavaScript, AJAX, and Applet
have been employed to develop Web applications. They can display flexible and powerful graphical user interface
in Web pages and excel the original functions of Web browsers that display HTML documents. This paper presents
a rich-component definition method that enables programmers to easily write Web pages that contain rich compo-
nents, regardless of the types of rich clients. This separates Web programming from Web page design, and we can
share Web application development with other developers.

Key–Words: Flex, javascript, rich component, uniform tag, web applications

1 Introduction

A variety of rich client technologies such as Flash
[1], Flex [2], OpenLaszlo [3], JavaScript [4], AJAX
[5], and Applet [6] have been employed to develop
Web applications. They can display flexible and pow-
erful graphical user interface in Web pages and ex-
cel the original functions of Web browsers that dis-
play HTML documents. Some of these rich clients
need to incorporate their plug-in software into Web
browsers. Using the plug-in software, they display
particular files of their own formats, or execute par-
ticular programs.

To develop Web applications using these rich
clients, we need to define rich components displayed
in Web pages using not HTML but some other lan-
guages, such as JavaScript code and its invocation, or
XML-based code of their particular formats. There-
fore, the developers of Web applications have to be
accustomed with each of these languages. The aim of
this paper is to present a novel mechanism that cap-
sules these pieces of code.

Component-based development makes it much
more efficient to develop Web applications [7], [8],

[9]. If we employ useful components, we can develop
Web applications of higher quality, more easily and
more efficiently [10], [11]. Packaging techniques that
provide easy interface to use components are also im-
portant [12].

This paper presents a rich-component definition
method that enables programmers to easily write Web
pages that contain rich components, regardless of the
types of rich clients [13]. This separates Web pro-
gramming from Web page design, and we can share
Web application development with other developers
[14]. The paper first proposes uniform rich compo-
nent tags that can be written in the same way for any
rich client and that generate various kinds of rich com-
ponents. It then describes the method that implements
these rich component tags. To make it possible to
write tag handlers [15] that process rich component
tags as little code as possible for each rich client, it
applies the template method [16] to constructing these
tag handlers.

The remainder of this paper is organized as fol-
lows: Section 2 shows an example of the rich com-
ponent tags this paper presents, and explains the re-
quirements for implementation of these tags. Section

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS
Manuscript received August 17, 2007; revised November 15, 2007

Quan Liang Chen, Takao Shimomura, Nhor Sok Lang, Kenji Ikeda

ISSN: 1790-0832 1431 Issue 12, Volume 4, December 2007

<mm:mxml>

<mx:Application styleName="plain" ...>

<mx:Script source="Submit.as"/>

<mx:Script source="DragEventHandlers.as"/>

<mx:Model id="catalogModel" .../>

<mx:HBox width="100%" horizontalGap="10">

<mx:DataGrid id="srcgrid" ...>

...</mx:DataGrid>

<mx:DataGrid id="destgrid" ...>

...</mx:DataGrid>

</mx:HBox>

<mx:Button label="submit" click="submit()"/>

</mx:Application>

</mm:mxml>

................

<mm:mxml>

<mx:Application styleName="plain" ..

................

(a) MXML

<rc:flex name="drag" param="catalog cake"/>

<rc:flex name="drag" param="catalog fruit"/>

(b) Rich tag

Figure 1: Example of drag-and-drop GUI with Flex

3 presents how to implement these rich component
tags in a uniform way. Section 4 illustrates the pro-
cesses of the tag handlers that create rich components
such as Flex, Applet, and JavaScript. Section 5 dis-
cusses the effectiveness of this method and its limita-
tion. Finally, Section 6 summarizes the paper.

2 Requirements for Defining Rich
Components

This section shows an example of the rich component
tags this paper presents, and explains the requirements
for implementation of these tags.

2.1 Example of rich component definition

As an example of rich clients, Fig. 1 shows a Web
page that is displayed using Flex. The upper row in
the Web page shows a list of cake, and the lower row
shows a list of fruit. In both lists, we can select and
drag an item displayed in the left column and drop it
in the right column. By drag-and-drop operations, we
can change the order of items, return items from right
to left, and select multiple items at a time and move
them. In ordinary HTML functions, it is difficult to
use such flexible and powerful graphical user interface
on Web pages.

In Flex, we write such a Web page using a MXML
language. As shown in Fig. 1(a), we need to write a
lot of code, and we also have to get accustomed with
this MXML language. The method this paper pro-
poses enables programmers to easily write rich com-
ponents using a �rc:flex� tag (See Fig. 1(b)).

2.2 Requirements

To make it possible to define rich components, regard-
less of the types of rich clients, we take into account
the following requirements:

1. We identify rich clients with their rich compo-
nent’s tag name, and for any type of rich client,
we can specify the attribute values of the rich
component tag in a uniform way.

2. We do not need to write a tag handler that gener-
ates a rich component from scratch. For any type
of rich component, we can write its tag handler
in the same interface.

3. If a new rich client becomes available, we can
easily add a tag that defines its rich components.

3 Rich Component Generation

This section presents how to implement these rich
component tags in a uniform way.

3.1 Uniform tag handlers

We here simply explain uniform tags and how their
tag handlers work. As shown in Fig. 2, when a Web
browser sends a request to a JSP page on the Web
server, the Servlet engine on the server preprocesses
the JSP page, generates a Servlet program from it, and
invokes the Servlet program. The Servlet receives the
request, processes it, and then returns the response to
the Web browser.

In this JSP page, we can write any tag program-
mers provide in addition to standard HTML tags such
as �form�, �img�, and �a�. For example, when a
Web browser sends a request to a JSP page in which
�tag� is written, the Servlet engine preprocesses the
JSP page, generates a Servlet, and then invokes the
Servlet. This Servlet invokes a tag handler that pro-
cesses this �tag�. The tag handler analyzes the val-
ues of attributes of �tag�, and then returns an appro-
priate response to the Web browser.

This paper proposes the tags that define rich com-
ponents, and explains how to implement tag handlers
that process these rich component tags. Figure 3
shows the outline of this process. Let’s consider a
case in which a rich component tag �rc� is written
in a JSP page. When this JSP page receives a request,
the tag handler that corresponds to the rich component
tag is invoked. This tag hander generates a JSP file in
which some tags for the corresponding rich client are
written. The tag hander then transfers the request to
this dynamically generated JSP file, and includes the
response this JSP page returns.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Quan Liang Chen, Takao Shimomura, Nhor Sok Lang, Kenji Ikeda

ISSN: 1790-0832 1432 Issue 12, Volume 4, December 2007

<%@ taglib uri="rc.tld" prefix="rc" %>

<rc:flex name="drag" param="catalog cake"/>

<rc:flex name="drag" param="catalog fruit"/>

(a) JSP page (flex.jsp)

(b) Tag library (rc.tld)

(c) Tag handler (FlexTag)

<tag>

<name>flex</name>

<tag-class>FlexTag</tag-class>...

<tag>

public class FlexTag extends TagSupport {

 String name;

 HashMap<String, String> params;

 public void setName(String name) {...}

 public void setParam(String param) {...}

 public int doEndTag() {

 generateJsp(...);

 JspRuntimeLibrary.include(...);

 return EVAL_PAGE;

 }

}

(d) JSP file

drag.jsp
generate

include

Figure 4: Generation of rich components using tags

...

.....

Servlet engine

Web browser JSP page Servlet

Tag handler

preprocess

preprocess

invoke

request

request

response

response

...

<tag/>

Figure 2: Invocation of tag handlers

When the dynamically generated JSP file is in-
cluded, this JSP file is preprocessed by the Servlet
engine, and the tags in this JSP file the rich client
provides are processed by the tag handlers of the rich
client. For example, if the generated JSP file contains
Flex’s tags written in MXML language, the tag han-
dler of Flex will generate a Flash movie to return to
the Web browser as its response.

3.2 Rich Component Generation Processes

There are some rich clients in which, to define their
rich components, we have only to write a combination
of HTML and JavaScript code, and others in which,
we need to write XML-based code of their particu-

...

<mxml/>

...

<rc/> ...

.....

Tag handler

of rich component

invoke

preprocess

...

.....

Tag handler

of each rich client

invoke

preprocess

response

generate

include

Figure 3: Generation and inclusion of JSP pages

lar formats such as MXML [2], Code generation tags
[17], and LZX [3].

If we need to write only HTML code to define
rich components to be displayed in a Web page, the
tag handler that processes the rich component tag has
only to transform the tag into HTML code as in Page-
Gen [18]. However, in the case of JSP pages in which
particular XML-based code is written as in Flex, this
simple method does not work because the JSP page
must be preprocessed by the tag handler the corre-
sponding rich client provides.

In the method this paper proposes, program-

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Quan Liang Chen, Takao Shimomura, Nhor Sok Lang, Kenji Ikeda

ISSN: 1790-0832 1433 Issue 12, Volume 4, December 2007

(a) Abstract tag handler (RichTag)

(b) Tag handlers

(c) JSP pages

public class FlexTag extends RichTag {

 public void generateJsp(...) {...}

}

public abstract class RichTag extends TagSupport {

 String name;

 HashMap<String, String> params;

 public void setName(String name) {...}

 public void setParam(String param) {...}

 public int doEndTag() {

 request.setAttribute("params", params);

 generateJsp(...);

 JspRuntimeLibrary.include(...);...

 }

 public abstract void generateJsp(...);

}

(d) JSP file

drag.jspgenerate

include

<rc:flex name="drag" param="catalog cake"/>

<rc:applet name="ReserveApplet" param="..."/>

<rc:javascript name="select" param="fruit 0"/>

Figure 5: Implementation of tag handlers for rich
components

mers specify the type of a rich client using the tag
name of a �rc:richComponent� tag, and all types
of rich clients can commonly use the values of tag
attributes (Requirement 1). The tag handler of the
�rc:richComponent� tag generates a JSP file that is
written in a particular XML-based language of the
corresponding rich client. The tag handler then in-
cludes this generated JSP file to let the rich client’s
tag handler preprocess it. In the case of generating a
combination of HTML and JavaScript code, the tag
handler skips the processes of generating and includ-
ing a JSP file. If the JSP file written in a particular
XML-based language is already prepared, the tag han-
dler skips the process of generating a JSP file and only
performs the process of including a JSP file.

Let’s consider a case in which we use a�rc:flex�
tag in a JSP page to create a Flex rich component. As
shown in Fig. 4 (a), the name of the tag handler of
a �rc:flex� tag is specified in a tag library descrip-
tor file rc.tld. This file rc.tld specifies that the name
of the tag handler class for the tag whose name is
flex is FlexTag. Therefore, to process the �rc:flex�
tag, FlexTag tag handler is invoked. As shown in Fig.
4 (c), Tag handler FlexTag first reads the values of
attributes name and param using setName() and set-
Param() methods, and then using doEndTag() method,
generates a JSP file, and includes the generated JSP
file (discussed in Section 4.1 in detail).

(b) FlexTag

(a) JSP page

public class FlexTag extends RichTag {

 public void generateJsp(...) {}

}

(c) drag.jsp

<rc:flex name="drag" param="catalog cake"/>

<%

HashMap params = (HashMap)

request.getAttribute("params");

String catalog = (String)

params.get("catalog");

%>

<mm:mxml><mx:Application

Figure 6: Generation of rich components for Flex

3.3 Introduction of abstract tag handler

The tag handlers that generate rich components need
to perform a series of processes such as reading the
values of attributes name and param, generating a JSP
file, and including the generated JSP file. The process
of generating a JSP file is dependent on the type of
rich component. On the other hand, the other pro-
cesses are common among all tag handlers of rich
components. Therefore, instead of writing a tag han-
dler for each type of rich clients separately, we intro-
duce an abstract tag handler so that we can write tag
handlers in the same interface and as little code as pos-
sible (Requirement 2).

As shown in Fig. 5, the abstract RichTag class
reads the values of attributes name and param. The
value of attribute param consists of a sequence of a
pair of name and value. Class RichTag stores those
values in variable params of type HashMap with name
as a key. The doEndTag() method invokes an abstract
method generateJsp() to let the tag handler of each
rich component generate its own JSP file. In addition,
it stores the value of variable params in the request ob-
ject so that the generated JSP file can also refer to the
values of attribute param of the rich component tag
when it is included.

The tag handler of each rich component has only
to implement generateJsp() method because it inher-
its the abstract RichTag class. This makes it easy to
add a rich component for a new rich client when it
becomes available (Requirement 3). For example, for
other rich components such as Applet and JavaScript,
we have only to define the classes of their tag handlers
and write their generateJsp() methods. It is because
the syntax of these rich component tags is the same
although the semantics is different.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Quan Liang Chen, Takao Shimomura, Nhor Sok Lang, Kenji Ikeda

ISSN: 1790-0832 1434 Issue 12, Volume 4, December 2007

<rc:applet name="ReserveApplet"

param="archive reserve.jar width 420 height 300"/>

<rc:applet name="AnimationApplet"

param="image dog frames 3 width 160 height 160"/>

Figure 7: Example of meeting-room reservation and
animation with JApplet

4 Rich Component Tag Handlers

This section illustrates the processes of the tag han-
dlers that create rich components such as Flex, Applet,
and JavaScript.

4.1 Generation of rich components for Flex

We can generate the Flex rich component shown in
Fig. 1 by writing FlexTag class that inherits ab-
stract RichTag class. Using generateJsp() method, we
may dynamically generate JSP page drag.jsp written
in MXML. However, to make it easier to maintain
drag.jsp, it is better to prepare this JSP page separately
as a file.

Abstract class RichTag stores the value of at-
tribute param of the �rc:flex� tag in the request
object in advance. Therefore, as shown in Fig.
6(c), JSP page drag.jsp can receive this value as
a HashMap object. This makes JSP page drag.jsp
flexible, and makes it possible for multiple �rc:flex
name=“drag”/� tags to use the same JSP page
drag.jsp to include.

<rc:applet name="ReserveApplet"

param="archive reserve.jar width 420 height 300"/>

(a) JSP page

(b) AppletTag

public class AppletTag extends RichTag {

 public void generateJsp(...) {

 pw.print("<jsp:plugin type=\"applet\"

 code=\"" + name + ".class\"" +

 archive() + width() + ... + ">" +

 params() + "</jsp:plugin>");

 }

 private String archive() {

 if (params.containsKey("archive")) {

 String archive = params.get("archive");

 return " archive=\"" + archive + "\"";

}

<jsp:plugin type="applet"

code="ReserveApplet.class"

archive="reserve.jar"

width="420" height="300">

</jsp:plugin>

(c) ReserveApplet.jsp

generate

Figure 8: Generation of rich components for JApplet

4.2 Generation of rich components for Ap-
plet

Figure 7 shows an example of definition of Applet rich
components. The upper row of the Web page shows
a Web-based reservation system for meeting rooms.
When we specify a date (year, month, day) and click
on the ”Display Reservation” button, the reservation
status for that day is shown. The top row shows the
names of meeting rooms, room A, room B, and room
C. The left column shows several periods of time. For
example, room B is reserved by Quan from 11:00. To
make a reservation, we choose a vacant cell and then
click on the ”Reserve” button. To cancel a reserva-
tion, we select a reserved cell and then click on the
”Reserve” button. The ”Cancel” button cancels the
current selections. The lower row shows the anima-
tion of a dog.

Although we can easily define applets using
�applet� tags, we can also define them using
�rc:applet� tags in the same way as we define other
types of rich components. We can specify various
kinds of values in an �applet� tag all together using
attribute param of the �rc:applet� tag.

As shown in Fig. 8, the �rc:applet� tag dynam-
ically generates a JSP file (ReserveApplet.jsp) whose
name is the same as the applet, and then includes this
JSP file.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Quan Liang Chen, Takao Shimomura, Nhor Sok Lang, Kenji Ikeda

ISSN: 1790-0832 1435 Issue 12, Volume 4, December 2007

<rc:javascript name="selectDef" param="fruit 4"

 ext="Fruit, Price:asc Price:desc, ..."/>

<rc:javascript name="select" param="fruit 0"/>

<rc:javascript name="select" param="fruit 1"/>

<rc:javascript name="select" param="fruit 2"/>

<rc:javascript name="select" param="fruit 3"/>

Figure 9: Example of hierarchical pull-down menus
with JavaScript

4.3 Generation of rich components for
JavaScript

Figure 9 shows an example of definition of JavaScript
rich components that display hierarchical pull-down
menus. The upper row shows three hierarchical pull-
down menus for employees, and the lower row shows
four hierarchical pull-down menus for fruit. Below
the pull-down menus for fruit, there is a table that has
four fields, fruit, price, source, and arrival. These pull-
down menus are related to each other.

In the hierarchical pull-down menus for fruit, for
example, four menus are displayed in a line, and they
specify the order in which fruits are arranged in the
table below. The menu consists of six menu items
such as “Fruit”, “Price:asc”, “Price:desc”, “Source”,
“Arrival:asc”, and “Arrival:desc”. In the first pull-
down menu, if we choose “Price:desc” that arranges
the fruits in descending order of price, the second pull-
down menu will show only four of six menu items
that consists of “Fruit”, “Source”, “Arrival:asc”, and
“Arrival:desc”, because the order of price has already
been specified. If we then specify “Arrival:desc” in
the second pull-down menu, the third pull-down menu
will show only two menu items “Fruit” and “Source”.

Using a �rc:javascript name=“selectDef”� tag,
we specify the number of pull-down menus. We also
specify the name of each menu item, and the group

<rc:javascript name="selectDef" param="fruit 4"

 ext="Fruit, Price:asc Price:desc, ..."/>

<rc:javascript name="select" param="fruit 0"/>

<rc:javascript name="select" param="fruit 1"/>

<rc:javascript name="select" param="fruit 2"/>

<rc:javascript name="select" param="fruit 3"/>

(b) JavascriptTag

(a) JSP page

public class JavascriptTag extends RichTag {

 public void setExt(String ext) {...}

 public void generateJsp(...) {

 if ("selectDef".equals(name)) {...}

 else if ("select".equals(name)) {...}

 }

}

<script type="text/javascript">

window.onload=createOptions;

........

</script>

<select id="fruit0" name="fruit0"

onchange="changeSelect(0)"></select>

jspWriter.print()

jspWriter.print()

Figure 10: Generation of rich components for
JavaScript

it belongs to using attribute ext of the tag as addi-
tional information. A �rc:javascript name=“select”�
tag defines each pull-down menu displayed in a Web
page.

Hierarchical pull-down menus have only to gen-
erate a combination of HTML and JavaScript code.
Therefore, the generateJsp() method of the tag han-
dler generates HTML and JavaScript code instead of
generating a JSP file. In this case, the tag handler
does not perform its including process. As shown in
Fig. 10, the �rc:javascript name=“selectDef”� tag
generates JavaScript code to operate hierarchical pull-
down menus, and the �rc:javascript name=“select”�
tag generates HTML code to display those hierarchi-
cal pull-down menus.

5 Observation

Some rich clients use a combination of HTML and
JavaScript code to define their rich components, and
other rich clients use particular XML-based languages
such as MXML and LZX. In the method this pa-
per has presented, various kinds of rich compo-
nents can be defined in a uniform interface by using
�rc:richComponent� tags. This makes it possible to
separate the programming of Web applications from
the design of Web pages.

Table 1 shows the comparison between the con-
ventional development with JSP and the rich compo-
nent method with �rc� tags. The table compares the
lines of code that are required by both methods when
we create and use rich components provided by rich

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Quan Liang Chen, Takao Shimomura, Nhor Sok Lang, Kenji Ikeda

ISSN: 1790-0832 1436 Issue 12, Volume 4, December 2007

Table 1: Lines of code required to define rich components

Conventional development with JSP Rich component method with �rc�
Web Common Web Rich component
programmer modules programmer programmer

Flex dragging 151 0 30 129
items (MXML 48, — (�rc� 1, (JSP 7,

ActionScript 74, XML 29) MXML 48,
XML 29) ActionScript 74)

(FlexTag handler 4)
text input 37 0 1 40

(MXML 37) — (�rc� 1) (JSP 9,
MXML 31)

Applet reservation 3 279 2 279
(JSP 3) (Java 279) (�rc� 2) (Java 279)

(AppletTag handler 73)
animation 7 62 2 62

(JSP 7) (Java 62) (�rc� 2) (Java 62)
JavaScript hierarchical 49 471 6 485

pull-down (JSP 49) (Java 312, (�rc� 2, (JavaScriptTag handler 326,
menus JavaScript 159) �rc� 4) JavaScript 159)
HTML view 102 419 82 431
editor (JSP 23, (Java 136, (�rc� 3, (JavaScriptTag handler 148,

MenuFile 79) JavaScript 283) MenuFile 79) JavaScript 283)

clients such as Flex, Applet, and JavaScript. The ef-
fects of reducing the number of lines of code with
rich component tags are remarkable when we use rich
components for such rich clients as Flex in which a
XML-based language is used to define their rich com-
ponents. Once rich component programmers prepare
Flex rich components, Web programmers can define
these rich components using �rc� tags any number
of times. For Applet rich components, although the
effects of reducing code with rich component tags are
small, we think that the effects of enabling program-
mers to define rich components using �rc� tags in a
uniform way are not small. For JavaScript rich com-
ponents, we can define rich components using �rc�
tags concisely. Even in the conventional development,
Web programmers might be able to define rich com-
ponents concisely if the most parts of JSP code are
incorporated into the common modules. In this case,
however, we think that this method that uses �rc�
tags is better.

The�rc� tags have common attributes name and
param. The value of attribute param consists of a se-
quence of a pair of (name, value), with which we spec-
ified various kinds of values such as (catalog, cake),

(archive, reserve.jar), and (width, 420) as shown in
Figures 1 and 7. However, there are some values that
are difficult to define using such a pair of values. For
example, for the hierarchical pull-down menus com-
posed as JavaScript rich components, when we spec-
ified the menu items, their order, and the groups they
belong to, we had to introduce another attribute ext
(See Fig. 9).

This method has introduced an abstract class
RichTag to apply the template method to construct-
ing the tag handlers of rich components. This makes
it possible to easily add new rich components to Web
pages when the corresponding rich client becomes
available. The method enables programmers to easily
develop rich component tags for various kinds of rich
clients to prepare useful rich components, and makes
the process of developing Web applications efficient.

6 Conclusion

This paper has proposed rich component tags that en-
able programmers to easily write Web pages that are
displayed by various kinds of rich clients, and de-
scribed their implementation. This method makes

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Quan Liang Chen, Takao Shimomura, Nhor Sok Lang, Kenji Ikeda

ISSN: 1790-0832 1437 Issue 12, Volume 4, December 2007

it possible to define various kinds of rich compo-
nents in a uniform interface. The tag handlers that
process rich components dynamically generate JSP
pages and include them. Therefore, the recursive
process of �rc:richComponent� tags is possible in
which generated JSP pages are also defined using
�rc:richComponent� tags. We are going to investi-
gate various kinds of applications for rich component
tags.

References:

[1] Adobe Systems Inc.
http://www.adobe.com/products/flash/, 2006.

[2] Adobe Systems Inc.
http://www.adobe.com/products/flex/, 2006.

[3] Laszlo Systems, Inc.
http://www.openlaszlo.org/, 2006.

[4] Michael Brooks. Essentials for Design
Javascript Comprehensive. Prentice Hall, 7
2006.

[5] Edmond Woychowsky. Ajax : Creating Web
Pages with Asynchronous Javascript and Xml.
Prentice Hall, 8 2006.

[6] Sun Microsystems, Inc. : Java
2 Platform Standard Ed. 5.0.
http://java.sun.com/j2se/1.5.0/docs/api/, 2004.

[7] Seung C. Lee and Ashraf I. Shirani. A com-
ponent based methodology for web application
development. Journal of Systems and Software,
Vol. 71, No. 1-2, pp. 177–187, 4 2004.

[8] Takao Shimomura, Kenji Ikeda, Quan Liang
Chen, Nhor Sok Lang, and Takahashi Muneo.
Visual programming for web applications that
use html frame facilities. In Proc. of WSEAS In-
ternational Conference on Computer Engineer-
ing and Applications, pp. 384–389, 1 2007.

[9] Takao Shimomura, Kenji Ikeda, Quan Liang
Chen, Nhor Sok Lang, and Muneo Takahashi.
Visual programming of hierarchical frames for
web applications. WSEAS Transactions on In-
formation Science & Applications, Vol. 4, No. 5,
pp. 968–975, 2007.

[10] K.M. Khan and J. Han. Composing security-
aware software. IEEE Software, Vol. 19, No. 1,
pp. 34–41, 2002.

[11] A. Repenning, A. Ioannidou, M. Payton, W. Ye,
and J. Roschelle. Using components for rapid
distributed software development. IEEE Soft-
ware, Vol. 18, No. 2, pp. 38–45, 2001.

[12] J. Hopkins. Component primer. Communica-
tions of the ACM, Vol. 43, No. 10, pp. 27–30, 4
2000.

[13] Takao Shimomura, Kenji Ikeda, Quan Liang
Chen, Nhor Sok Lang, and Muneo Takahashi.
Rich component generation for web applications
using custom tags. In Proc. of WSEAS Inter-
national Conference on Computer Engineering
and Applications, pp. 390–395, 1 2007.

[14] A. Leff and J.T. Rayfield. Web-application de-
velopment using the model/view/controller de-
sign pattern. In Fifth International Enterprise
Distributed Object Computing Conference, pp.
118–127, 9 2001.

[15] Sun Microsystems, Inc. : JavaServer Pages Tech-
nology. http://java.sun.com/products/jsp, 2006.

[16] Steven John Metsker and William C. Wake. De-
sign Patterns in Java. Addison-Wesley, 4 2006.

[17] Iron Speed, Inc. : Iron Speed Designer.
http://www.ironspeed.com/, 2006.

[18] Nasir Al-Darwish. Pagegen: an effective scheme
for dynamic generation of web pages. Informa-
tion and Software Technology, Vol. 45, No. 10,
pp. 651–662, 7 2003.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Quan Liang Chen, Takao Shimomura, Nhor Sok Lang, Kenji Ikeda

ISSN: 1790-0832 1438 Issue 12, Volume 4, December 2007

