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Abstract:An energy transport model coupled with the density gradient method as quantum mechanical corrections
has been proposed and numerically investigated. We called it quantum corrected energy-transport model, QCET
model. This model used a parabolic approximation for the energy relaxation time but this is often inadequate
to describe advanced semiconductor phenomena. In this paper we extend the QCET model to consider the non-
parabolic band diagrams in the sense of Kane. We get explicit expressions of energy relaxation time involving
the non-parabolic band effects. An adaptive algorithm for solving this model is applied to solve the problem.
Numerical simulations on diodes with the length down to 30 nm using this model have been performed and adaptive
meshes are given to demonstrate the accuracy and efficiency of the algorithm. It shows that the energy-band non-
parabolicity effect is significant for nano-scale semiconductor devices.
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1 Introduction

For microelectronics, the progress of semiconductor
fabrication technology for the advanced metal oxide
semiconductor field effect transistor (MOSFET) has
been of great interests. The device channel lengths
are so small that nonlocal effects become more im-
portant for the device characteristics and performance
[1, 2, 3, 4]. Semiconductor devices can be simu-
lated by means of the semiconductor Boltzmann equa-
tion. However, this method is too costly and time
consuming to model real problems in semiconduc-
tor applications. Acceptable accuracy can be reached
by solving macroscopic semiconductor models which
derived from the Boltzmann equation. The simplest
models are drift-diffusion models which consist of the
mass continuity equation for the charge carriers and a
definition for the particle current density [5]. These
models, however, are not accurate enough for nano-
scale device modelling, owing to the rapidly changing
fields and temperature effects [6, 7, 8].

The quantum-corrected energy transport (QCET)
model consisting of seven self-adjoint nonlinear par-
tial differential equations (PDEs) describes the steady
state of electron and hole flows, their energy trans-
port, and classical and quantum potentials within a
nano-scale semiconductor device [9, 10]. Our model
is able to explain that electron temperature essentially

differs from the lattice temperature. It is clear that
this effect cannot be described by the density gradient
(DG) model along [11, 12, 13, 14]. Quantum hydro-
dynamic (QHD) models give accurate simulation re-
sults, but the numerical methods to solve this system
are too costly and time consuming to model real prob-
lems in semiconductor production mode where sim-
ulation results are needed in hours or minutes. The
QCET model is of parabolic type so that its numeri-
cal solution needs less effort than QHD models which
contain the hyperbolic nature of the model equations
[7, 15, 16].

In this paper, we compute explicitly about the en-
ergy relaxation time involving the non-parabolic band
effects. For non-parabolic bands in the sense of Kane
[7, 17], the coefficients can be computed analytically.
We use the Gamma function to compute the energy
relaxation time. Moreover, we present the energy
relaxation time profiles for both parabolic and non-
parabolic band structures.

We assume that the energy-band diagram of the
semiconductor crystal is spherically symmetric and
monotone in the modulus of the wave vector

−→
k , that

non-degenerate Boltzmann statistics can be used and
that a momentum relaxation timeτ can be defined by
τ(ε) ∼ ε−βN(ε)−1, whereε is the energy,N(ε) de-
notes the density of states, andβ > −2 is a param-
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eter. Then, using the general formulas for the coeffi-
cientsand densities from [6, 18], we get more explicit
expressions than those of [6], involving the energy-
band functionε(

−→
k ) and depending on the tempera-

ture. Thus, we get analytical expressions under the
additional assumption of non-parabolic bands in the
sense of Kane.

The paper is divided into the following sections:
Section 2 briefly recalls the QCET model considered
in [9] and the parabolic energy relaxation time model
[19, 20]. A non-parabolic energy relaxation time for-
mulation is then given in Section 3. In Section 4,
numerical results of simulation on various diodes to
compare with the results in the literature to demon-
strate the effectiveness of the proposed model. A short
concluding remark is given in Section 5.

2 The Quantum Corrected Energy-
Transport Model

As in [9], we consider the following energy-transport
model

∆φ =
q

εs
(n− p+ C), (1)

1

q
∇ · Jn = R, (2)

1

q
∇ · Jp = −R, (3)

∇ · Sn = Jn ·E− n

(

ωn − ω0

τnω

)

, (4)

∇ · Sp = Jp ·E− p

(

ωp − ω0

τpω

)

, (5)

where

E = −∇φ, (6)

Jn = −qµnn∇φ+ qDn∇n, (7)

Jp = −qµpp∇φ− qDp∇p, (8)

Sn =
Jn

−q
ωn +

Jn

−q
kBTn +Qn, (9)

Sp =
Jp

+q
ωp +

Jp

+q
kBTp +Qp, (10)

Qn = −κn∇Tn, (11)

Qp = −κp∇Tp, (12)

κn = 2

(

kB
q

)2

nqµnTL, (13)

κp = 2

(

kB
q

)2

pqµpTL, (14)

andφ is the electrostatic potential,q is the elementary
charge,εs is the permittivity constant of semiconduc-

tor,C is the doping profile,n andp are the carrier con-
centrations,Jn andJp are the carrier current densities,
R is the function describing the balance of generation
and recombination of electrons and holes,Sn andSp

are the energy fluxes for carriers,ωn andωp are the
carrier average energies,τnω andτpω are the carrier
energy relaxation times,Qn andQp are the heat fluxes
for carries,κn andκp are carrier conductivities,µn and
µp are the carrier mobilities,Dn andDp are carrier
diffusion coefficients,kB is Boltzmann’s constant and
Tn, Tp andTL are the electron, hole and lattice tem-
peratures.

With the help of the DG model and suitable
variable transformation [9] we can obtain the QCET
model. The PDEs of the QCET model that govern the
carrier transport are then [9]

∆φ = F (φ, u, v, ζn, ζp), (15)
1

q
∇ · Jn = R(φ, u, v, ζn, ζp), (16)

1

q
∇ · Jp = −R(φ, u, v, ζn, ζp), (17)

∆ζn = Zn(φ, u, v, ζn, ζp), (18)

∆ζp = Zp(φ, u, v, ζn, ζp), (19)

∇ ·Gn = Rn(gn), (20)

∇ ·Gp = Rp(gp), (21)

where

F =
qnie

εs
·
[

u · exp
(

φ+ φqn

VT

)

− v exp

(−φ− φqp

VT

)]

+
q · C
εs

, (22)

Jn = +qDnnie exp

(

φ+ φqn

VT

)

∇u, (23)

Jp = −qDpnie exp

(−φ− φqp

VT

)

∇v, (24)

n = nie exp

(

φ− ϕn + φqn

VT

)

= nie exp

(

φ+ φqn

VT

)

u = ζ2n, (25)

p = nie exp

(−φ+ ϕp − φqp

VT

)

= nie exp

(−φ− φqp

VT

)

v = ζ2p , (26)

Zn =
ζn
2bn

[

VT ln(ζ2n)

−VT ln(unie)− φ] , (27)

Zp = − ζp
2bp

[

−VT ln(ζ2p )

+VT ln(vnie)− φ] , (28)
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φqn = VT ln(ζ2n)− VT ln(unie)− φ, (29)

φqp = −VT ln(ζ2p ) + VT ln(vnie)− φ, (30)

Gn = κn exp

(

5ϕn

4VT

)

∇gn, (31)

Gp = κp exp

(

− 5ϕp

4VT

)

∇gp, (32)

Rn = n

(

ωn − ω0

τnω

)

− Jn ·E, (33)

Rp = p

(

ωp − ω0

τpω

)

− Jp ·E, (34)

u andv are the Slotboom variables,nie is the intrin-
sic carrier concentration,Gn andRn are the rewrit-
ten terms for the electron energy transport equation,
φqn is the quantum potential and the coefficients
bn = h2

12m∗

nq
is the material parameter measuring the

strength of the gradient effects in the gas. For the
equation (25) we know that a Maxwell-Boltzmann
formula is applied to express the approximation of the
carrier concentrations in semiconductors. The impor-
tant relations and notations are thatVT = (kBTL)/q is
the thermal voltage,kB is Boltzmann’s constant,ϕn is
the generalized quasi-Fermi potential,u = exp(−ϕn

VT
),

and ζn =
√
n is a new variable used in the QCET

model [9]. In this paper an approximation ofRn with
parabolic energy relaxation time is presented as fol-
lows:

Rn(gn) = n

(

ωn − ω0

τnω

)

− Jn ·E, (35)

where

ωn =
3

2
kBTn, (36)

ω0 = 3/2kBTL is the thermal energy,τnω is ex-
pressed by [19, 20]

τnω =
3

2

µn0

qv2sn

(

kBTnTL

Tn + TL

)

+
1

2

m∗

nµn0TL

qTn
(37)

µn0 is the low field electronic mobility,vsn is the elec-
tron saturation velocity,m∗

n is the effective electron
mass andgn is the Slotboom-like variable defined by

Tn = gn exp

(

5ϕn

4VT

)

. (38)

We note that there are another expressions for the elec-
tron energy flux. Substituting (7), (11), (13) and (25)
into (9) we obtain

Sn = −5

2

Jn

q
kBTn − κn∇Tn, (39)

=
5

2
kBµnTn(n∇φ)− 5

2
kBDn(Tn∇n)

−κn∇Tn. (40)

3 A Non-parabolic Energy Relax-
ation Time

In this section we reformulate the energy relaxation
time for the QCET model and make four important
assumptions as in [6]:

(H1) The energy-band diagramε of the semiconduc-
tor crystal is spherically symmetric and a strictly
monotone function of the modulusk = |−→k | of
the wave vector

−→
k .

(H2) A momentum relaxation time can be defined by

τ(ǫ) =
(

φ0(2N0 + 1)εβN(ε)
)

−1
, β > −2,

(41)
whereN(ε) is the density of states of energyε =
ε(k).

(H3) The electron densityn and the internal energy
E are given by non-degenerate Boltzmann statis-
tics.

(H4) The relation for non-parabolic bands in the
sense of Kane [6] is defined as follows,

ε(1 + αε) =
k2

2m∗
, (42)

wherem∗ is the (scaled) effective electron mass
given bym∗ = m0kBTL/h̄

2k20, andα > 0 is
the (scaled) non-parabolicity parameter. Notice
that we get a constant energy relaxation time if
α = 0.

Under these assumptions, the (scaled)
temperature-dependent energy relaxation time
model can be written as [6]

τβ(Tns) = τ0
3q(αTns, 0)

2rβ(αTns)
T 1/2−β
ns (43)

whereTns = Tn/TL is the scaled electron temper-
ature,τ0 is the energy relaxation time constant, i.e.,
0.4× 10−12 seconds used in this paper,rβ is

rβ(αT ) =

∫

∞

0
(1 + αTu)(1 + 2αTu)2u1+βe−u du,

(44)
andq(αT, l) is

q(αT, l) =

∫

∞

0
(1+αTu)1/2(1+2αTu)u1/2+le−u du.

(45)
In the physical literature, the valuesβ = 1/2 (used
by Chen et al. [7]) andβ = 0 (used by Lyumkis et
al. [8]) have been used in the case of parabolic and
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non-parabolic band structure. By the notations in [6]
we know that the scaled stationary energy-transport
model reads as follows:

λ2△φs = ns − Cs, (46)

−∇ · Jns = 0, (47)

−∇ · Sns = −Jns · ∇φs +Wns, (48)

Jns = ∇(µ
(1)
β Tnsns)− µ

(1)
β ns∇φs, (49)

Sns = ∇(µ
(2)
β T 2

nsns)− µ
(2)
β Tnsns∇φs,(50)

where the similar dimensionless quantities marked by
the subscripts,

µ
(i)
β = µ0

pβ(αTns, i+ 1)

q(αTns, 0)
T−1/2−β
ns , i = 1, 2,

(51)
µ0 is the low-field mobility constant, i.e.,1.5 × 103

cm2 V−1 s−1 used in this paper, and

pβ(αT, l) =

∫

∞

0

1 + αTu

(1 + 2αTu)2
ul−β−1e−u du.

(52)
Consider the caseα = 0 andβ = 1/2.

q(0, 0) =

∫

∞

0
u1/2e−u du,

p1/2(0, 2) =

∫

∞

0
u1/2e−u du,

p1/2(0, 3) =

∫

∞

0
u3/2e−u du.

Let the symbolΓ denotes the Gamma function defined
by

Γ(s) =

∫

∞

0
us−1e−u du, s > 0.

We know thatΓ(3/2) =
√
π/2, Γ(5/2) = 3

√
π/4

andΓ(7/2) = 15
√
π/8. We obtain

q(0, 0) =
1

2

√
π, (53)

p1/2(0, 2) =
1

2

√
π, p1/2(0, 3) =

3

4

√
π, (54)

µ
(1)
1/2 = µ0T

−1
s , µ

(2)
1/2 =

3

2
µ0T

−1
s , (55)

Sns = −3

2
µ0∇(Tsns) +

3

2
µ0ns∇φs,

= −3

2
µ0(Ts∇ns)−

3

2
µ0(ns∇Ts)

+
3

2
µ0(ns∇φs). (56)

Comparing (40) and (56) we know that the QCET
model is the same structure as the model used by Chen
et al. with model parameterβ = 1/2. Thus, we only
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Figure 1: Parabolic and non-parabolic energy relax-
ationtime models.

consider the caseβ = 1/2. A first-order approxima-
tion can be obtained as follows,

r1/2(αT )
.
=

∫

∞

0
(1 + 5αTu)u3/2e−u du,

=

∫

∞

0
u3/2e−u du+ 5αT

∫

∞

0
u5/2e−u du

q(αT, 0)
.
=

∫

∞

0
(1 +

5

2
αTu)u1/2e−u du.

=

∫

∞

0
u1/2e−u du+

5

2
αT

∫

∞

0
u3/2e−u du

So the scaled energy relaxation time model can be ap-
proximated by

τ1/2(T ) = τ0
12 + 45αT

12 + 150αT
(57)

andthe unscaled one is

τ1/2(Tn) = τ0
12TL + 45αTn

12TL + 150αTn
(58)

Fig. 1 shows the behaviors of the parabolic and non-
parabolic energy relaxation time models whereτ0 =
0.4 · 10−12s [6]. The energy balance equation with
non-parabolic energy relaxation time is

∇ ·
(

κn exp(
5ϕn

4VT
)∇gn

)

=
3

2
·
kBn

(

gn exp(
5ϕn

4VT
)− TL

)

τ0
12TL + 45αgn exp(

5ϕn

4VT
)

12TL + 150αgn exp(
5ϕn

4VT
)

−Jn ·E. (59)
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Figure 2: Electron temperature versus position in a
600nm silicon diode.

4 Numerical Results

To demonstrate the effectiveness and accuracy of the
QCET model, several numerical studies have been
made for sample diode device structures with 1D and
2D cases. A benchmark device, namely, an abrupt
n+ − n − n+ silicon diode is first used to verify our
methods and formulation with the results reported in
literature. Numerical experiments are performed first
on a 600nm silicon diode withn+ = 5.0×1017cm−3

andn = 2.0× 1015cm−3. The length of then-region
is approximately 400nm. The numerical experiments
for energy relaxation time are performed by employ-
ing the QCET model which is defined by (11) and
(19) with non-parabolicity parameterα = 0.5. The
steady state results for this problem are illustrated by
the solid and dashed curves with respective to the
parabolic case and the non-parabolic case in Fig. 2.
The applied voltageVO is taken as2.0V and1.5V .
The numerical results in [6] show that the temperature
is reduced due to the non-parabolicity effects. Our re-
sults agree very well with that previously reported in
the paper.

To consider quantum mechanic effects including
non-parabolicity, we then reduce the scale down to
two cases. Case (1) is a 120nm silicon diode with
n+ = 5.0 × 1018cm−3 andn = 2.0 × 1015cm−3.
The length of then-region is approximately 80nm.
The applied voltageVO is taken as1.2V and1.0V .
Case (2) is a 30nm silicon diode withn+ = 5.0 ×
1019cm−3 andn = 2.0×1015cm−3. The length of the
n-region is approximately 20nm. The applied volt-
ageVO is taken as1.0V and0.8V . Figs. 3 and 4 show
the significant change of the electron temperature pre-
dicted by the new model.
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Figure 3: Electron temperature versus position in a
120nm silicon diode.
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Figure 4: Electron temperature versus position in a 30
nmsilicon diode.
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Figure 5: A 2D silicon device. Contacts are denoted
by bold lines.

The next model that we have verified is a typical
2D n+ − n − n+ deep-submicron diode illustrated
in Fig. 5. The bold lines indicate the contact po-
sitions [20]. Contacts A-B and A-F are terminated
at a distance of0.1µm from the top left corner. In
order to simulate a realistic device, contacts are not
extended to the fulln+ region near the top left cor-
ner as shown in Fig. 5. The channel lengthL is
0.18µm. The doping profile in the highly doped re-
gions is5.0 × 1017cm−3 and in the lowly doped re-
gions is2.0× 1015cm−3.

The applied voltage is1.0V . The correspond-
ing temperature distribution for parabolic and non-
parabolic models are shown in Figs. 6 and 7 respec-
tively. Similarly, we reduce the scale down to 40
nm. The doping profile in the highly doped regions
is 5.0 × 1019cm−3 and in the lowly doped regions is
2.0 × 1015cm−3. The applied voltage is1.0V . The
corresponding temperature distribution for parabolic
and non-parabolic models are shown in Figs. 8 and 9
respectively.

The third example of our simulation test on the
model is a typical 2D MOSFET device structure illus-
trated in Fig. 10. The device has an elliptical1020 cm3

Gaussian doping profiles in the source and drain re-
gions and1016 cm3 in thep-substrate region as shown
in [21]. The junction depth is 200 nm, the lateral dif-
fusion under gate is 80 nm and the channel length is
340 nm. WithVBS=0 V, VDS=1.5 V, andVGS=1.0
V, Figs. 11 and 12 present the electron temperature
distributions for parabolic and non-parabolic models.
Similarly, we reduce the channel length down to 34
nm. It has an elliptical1019 cm3 Gaussian doping
profiles in the source and drain regions and1016 cm3

in thep-substrate region as shown in [9]. The junction

Figure 6: A 2D MOSFET device.

depthis 20 nm, the lateral diffusion under gate is 8
nm. WithVBS=0 V, VDS=1.0 V, andVGS=0.8, Figs.
13 and 14 show the electron temperature distributions
for parabolic and non-parabolic models. Tables 1 and
2 show results for maximal electron temperature be-
tween the parabolic and non-parabolic energy relax-
ation time models. The numerical results are in good
agreement that the temperature is reduced due to the
non-parabolicity effects.

Table 1
Maximal temperatures for two time models (diodes)
600nm (1D) 120nm (1D)
V = 2.0 V = 1.5 V = 1.2 V = 1.0

PM 3085.9 2332.6 4149.5 3464.3
NM 1356.2 1087.2 2628.3 2250.3

30nm (1D) 400nm (2D) 40nm (2D)
V = 1.0 V = 0.8 V = 1.0 V = 1.0

PM 4139.4 3296.6 2483.9 4212.5
NM 3572.7 2880.3 1171.5 3060.6

Table 2
Maximal temperatures for two time models (MOSFETs)

340nm (2D) 34nm (2D)
VGS = 1.0 VGS = 0.8

PM 3950.2 3645.6
NM 2729.1 2574.8

In the tables,PM denotesthe parabolic energy
relaxation time model andNM denotes the non-
parabolic energy relaxation time model.

5 Conclusion
An extension for the QCET model to consider the
non-parabolic band diagrams in the sense of Kane has
been proposed. We get explicit expressions of energy
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Figure 7: Electron temperature for parabolic time
modelin a 400 nm silicon diode.

relaxation time involving the non-parabolic band ef-
fects. There is an important parameter, namely, the
non-parabolicity parameterα. Numerical simulations
on diodes with the length down to 30 nm using this
model have been performed. The results for 30nm
device have displayed that the electron temperature is
reduced significantly from the parabolic case to the
non-parabolic case. The non-parabolic effect is very
important for hot-electron nano-devices and should be
considered in advanced semiconductor simulation.
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Figure 11: Electron temperature for parabolic time
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Figure 12: Electron temperature for non-parabolic
timemodel in a 340 nm MOSFET.
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Figure 13: Electron temperature for parabolic time
modelin a 34 nm MOSFET.
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Figure 14: Electron temperature for non-parabolic
timemodel in a 34 nm MOSFET.
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