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Abstract: An analysis of a mixed convection and entropy generation for a fluid flow through porous medium,
between two inclined parallel plates has been performed. The entropy generation is estimated via an analytical
solution of the temperature and velocity profiles obtained from the mass, momentum and energy equations gov-
erning the flow and heat transfer of the problem, with the given conditions. The optimum values of the involved
parameters at which the entropy generation assumes its minimum is calculated. The Bejan number is also obtained
and discussed.
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1 Introduction

The study of flow through a saturated porous me-
dia in channels and over parallel plates have been
the focus of many research papers over the last
decades. This configuration is encountered in many
of energy-related applications, such as solar power
collectors, geothermal energy systems, conventional
flat plate collectors or the cooling of modern elec-
tronic systems. The vertical parallel plates configu-
ration is applicable in the design of electronic equip-
ment cooling systems. A huge amount of papers re-
lated to flow and heat transfer through porous ma-
terials were written by researchers such that Bay-
tas and Pop [2], Pilevne and Misirlioglu [17] and
Theeran et al. [19]. Also, studies in capillary porous
media (see Farjad et al. [10] ), in channels partially
filled by a porous material (Keyhani et al. [14]) or of
thermal instability in the presence of magnetic field
(Hanadi et al. [11]), were recently reported.

The process of studying the entropy generation
in porous media is comparatively harder than the
clear fluid case partly due to the increased number of
variables present in the governing equations. Also,
different models for viscous dissipation, that lead to
different fluid friction irreversibility terms are avail-
able. Moreover, the complexity of the problem be-
comes clearer when one observes that, numerical
or theoretical, solutions addressing the second law
analysis of natural, forced or mixed convection in

porous ducts, are mostly restricted to circular tubes
or parallel plate channels where the geometry allows
analytical solution of closed form.

Minimization of entropy generation is a method
for modeling and optimizing of energy systems (see
Bejan [4]). In earlier studies related to the natu-
ral convection, only the first-law of thermodynamics
was used. However, the method of entropy genera-
tion combines from the start the most important pa-
rameters of thermodynamics, heat transfer and fluid
mechanics. To improve the heat transfer perfor-
mance is a chief task in heat exchanger designs (see
Ingham and Pop [13]). Owing to the fact that the
heat transfer enhancement is always achieved at the
expense of the increase of friction loss, the optimal
trade-off by selecting the most appropriate configu-
ration and the best flow conditions has become the
critical challenge for the design work. The analysis
of the energy utilization and the entropy generation
has become one of the primary objectives in design-
ing a thermal system. Bejan [3], has described the
systematic methodology of computing entropy gen-
eration through heat and fluid flow in heat exchang-
ers. Fundamentals of entropy generation are also
presented by Narusawa [15] and Rosen [18]. Re-
cent papers related to this subject were written by
Hooman and Ejlali [12] and Nejma et al. [16].

The present paper studies the entropy genera-
tion production for a problem of a mixed convec-
tion flow of a fluid saturated porous medium through
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an inclined channel with uniform heated walls, see
Cimpean et al. [8]. Another mixed convection prob-
lem but in different conditions, for a non-Newtonian
fluid flow over a permeable wedge embedded in a
porous medium, was treated recently by Chamkha
[5].

2 Problem formulation
Consider the mixed convection flow in an inclined
infinitely long two-dimensional channel bounded by
parallel plane walls and filed with a fluid-saturated
porous medium, see Cimpean et al. [8]. The x
axis is considered up lengthways and the y axis is
oriented into the channel, see Figure 1. The fluid
and porous media properties are constant except for
the variation of density in the buoyancy term of
the Darcy equation. The fluid has an uniform up-
ward streamwise velocity distribution at the channel
entrance and the walls are at uniform heat flux q.
Under these assumptions, and with the use of the
Darcy’s law and the Boussinesq approximation, the
governing equations are written as follows

∂u

∂x
+

∂v

∂y
= 0 (1)

∂u

∂y
− ∂v

∂x
=

gβK

ν

(
∂T

∂y
sin γ − ∂T

∂x
cos γ

)
(2)

u
∂T

∂x
+ v

∂T

∂y
= αm

(
∂2T

∂x2
+

∂2T

∂y2

)
(3)

where u and v are the cartesian velocity components,
T is the fluid temperature. The coefficients are β the
fluid thermal expansion, K the specific permeability
of the medium, ν the kinematic viscosity and αm the
effective fluid thermal diffusivity. Also, the tilt an-
gle, measured counterclockwise from the horizontal
is denoted by γ in the considered equations.
The equations (1)-(3) have to be solved subject to
the boundary conditions:

v = 0, ∂T
∂y = − q

k on y = 0

v = 0, ∂T
∂y = q

k on y = D (4)

where q is the heat flux to the wall, D is the channel
width and k is the thermal conductivity of the fluid.

D 

g 
q 

q 

U
0
 

x 
y γ 

Fig.1 Channel configuration.

We introduce the following non-dimensional
variables:

X =
x

D
, Y =

y

D
, U =

u

U0
, θ =

T − T0

qD/k
(5)

Further, we consider

U = U(Y ), θ(X, Y ) = C1X + F (Y ) (6)

and following the paper by Cimpean et al. [8], from
the given conditions we have C1 = 2/Pe and a third
order ordinary differential equation is obtained:

d3F

dY 3
− (2λ sin γ)

dF

dY
+

4λ cos γ

Pe
= 0 (7)

which has to be solved, subject to the boundary con-
ditions:

dF

dY
= −1 at Y = 0;

dF

dY
= 1 at Y = 1 (8)

In the Eq. (7) the parameters are

λ =
gβKqD

U0νk
, Pe =

U0D

αm
(9)

the mixed convection parameter and the P éclet
number, respectively.

Another important parameter to consider in our
results, is the Rayleigh number, defined as Ra =
λPe.

It is assumed that the P éclet number is Pe > 0
throughout. Only channels inclined in an upward
direction are considered, then, we can limit γ to the
range 0 ≤ γ ≤ π/2. Hence, in Eq. (7) we have
the terms sin γ ≥ 0 and cos γ ≥ 0, for γ = 0 for
horizontal channels.
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2.1 General case γ > 0

Further, we will take into account the general case
of the inclination of the channel ( γ > 0) and the
analytical solutions for this case is given by:

dF

dY
=

2 cot γ

Pe
+

(
1− 2 cot γ

Pe

)
sinhαY

sinhα
−

−
(

1 +
2 cot γ

Pe

)
sinhα(1− Y )

sinhα
(10)

where α =
√

2λ sin γ > 0.

The velocity profile is

U(Y ) =
α

2 sinhα

[(
1 +

2 cot γ

Pe

)
coshα(1− Y )

]

+
α

2 sinh α

[(
1− 2 cot γ

Pe

)
coshαY

]
(11)

On integrating Expression (10) and applying the
condition

∫ 1

0
F (Y )U(Y )dY = 0 (12)

we find that

F (Y ) =
1

α sinhα

[(
1 +

2 cot γ

Pe

)
coshα(1− Y )

]

+
1

α sinhα

[(
1− 2 cot γ

Pe

)
coshαY

]
+

+
2 cot γ

Pe
Y + A0 (13)

where the constant A0 is given by

A0 = −(coshα + 1)(sinhα + α)
2α sinh2 α

−

−2 cot2 γ(3 sinhα− α)(coshα− 1)
Pe2α sinh2 α

−

−cot γ

Pe
− 2 cot2 γ

Pe2
(14)

2.2 Vertical channel γ = π/2

For the vertical channel, the solutions from Expres-
sions (10) and (11) become:

dF

dY
=

sinhαY

sinhα
− sinhα(1− Y )

sinhα
(15)

U(Y ) =
α

2 sinhα
[coshαY + coshα(1− Y )]

(16)

The analytical results of both, the general case
and the vertical channel case, will be useful, from
now on, to observe the entropy generation into the
channel.

3 Entropy generation minimization
3.1 The volumetric entropy generation

The entropy generation is caused by the non-
equilibrium state of the fluid, resulting from the ther-
mal gradient between the two media. For the prob-
lem involved, the exchange of energy and momen-
tum within the fluid-saturated porous medium and at
the solid boundaries, give the non-equilibrium con-
ditions which cause the entropy generation in the
flow field of the channel. This entropy generation
is due to the irreversible nature of heat transfer and
viscosity effects, within the fluid and at the solid
boundaries. From the known temperature and ve-
locity fields, volumetric entropy generation can be
calculated by the equation (see Baytas [1] and Bejan
[3]):

Sg =
k

T 2
0

(∇T )2 +
µ

KT0

(
u2 + v2

)
(17)

The first term on the right-hand side is the local en-
tropy generation due to heat transfer across a finite
temperature difference and is denoted by (Sg)heat

and the second term is the local entropy generation
due to fluid friction, denoted by (Sg)fric.

The volumetric entropy generation is written as
follows:

Sg = (Sg)heat + (Sg)fric (18)

3.2 The characteristic entropy generation
rate

It is important to describe the dimensionless number
for the local entropy generation rate. This number
is defined by dividing the local volumetric entropy
generation rate to a characteristic entropy generation
rate. Then, first, we have to define the characteristic
entropy generation rate (see Yazdi et al. [22]):

Sg0 =
k4T 2

D2T 2
0

(19)

Here, k is the thermal conductivity of the fluid and
4T is given from the boundary conditions (8), such
that 4T 2 = (q/k)2.
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3.3 The entropy generation number

To obtain the dimensionless entropy generation
number, we use the formula:

N =
Sg

Sg0

(20)

then we obtain

N =
4

Pe2
+

(
dF

dY

)2

+ ΦU2 (21)

Here Pe is the P éclet number defined in (9) and
Φ is called the irreversibility distribution ratio (see
Baytas [1]), defined as

Φ =
µT0

k

[
α2

m

K(∆T )2

]
(22)

Also, we have to notice that, by using the expres-
sions (5) in the Eq. (17) the formula for entropy
generation number, N , is obtained (see Cimpean and
Pop [9]).

The total local entropy generation number can
be written as a summation of the local entropy gener-
ation due to heat transfer, denoted by Nheat and the
local entropy generation due to fluid friction, given
as Nfric, as follows

N = Nheat + Nfric (23)

The last expression gives us the possibility to calcu-
late these terms separately and then compare them to
notice which entropy generation mechanism domi-
nates. In the convection problems, both, fluid fric-
tion and heat transfer, contribute to the rate of en-
tropy generation. From (21) and (23) Nheat and
Nfric are obtained separately

Nheat =
4

Pe2
+

(
dF

dY

)2

, Nfric = ΦU2 (24)

3.4 The Bejan number

The entropy in a system is associated with the pres-
ence of irreversibility. We have to notice that the
contribution of the heat transfer entropy genera-
tion, Nheat, to the overall entropy generation rate,
is needed in many engineering applications.

The Bejan number, Be, is an alternative irre-
versibility distribution parameter and it represents
the ratio between the heat transfer irreversibility,

Nheat and the total irreversibility due to heat transfer
and fluid friction, N . It is defined by

Be =
Nheat

N
=

Nheat

Nheat + Nfric
(25)

The Bejan number takes the values between 0 and
1, see Cimpean et al. [7]. The value of Be = 1
is the limit at which the heat transfer irreversibility
dominates, Be = 0 is the opposite limit at which the
irreversibility is dominated by fluid friction effects
and Be = 1/2 is the case in which the heat transfer
and fluid friction entropy production rates are equal
(see Varol et al. [20], [21]). Further, the behavior of
the Bejan number is studied for the optimum values
of the parameters at which the entropy generation
takes its minimum.

4 Results and discussion
First, the case of a vertical channel, γ = π/2 is con-
sidered to study the entropy generation. It is ob-
served from the expressions (15) and (16) that the
solutions is independent of P éclet number, but the
entropy generation number N , given by Eq. (21)
still depends on it. There is no reversed flow since
U(Y ) > 0 for 0 ≤ Y ≤.

Figure 2 illustrates the entropy generation num-
ber N versus Y for equal values of the P éclet and
Rayleigh parameters, Pe = Ra. For Figure 2a,
the vertical channel is considered and, as for the
solutions presented in Cimpean et al. [8], the en-
tropy profile is symmetric about the center line of
the channel Y = 1/2. For high P éclet numbers, the
entropy generation number, N , take minimum val-
ues. As Pe number increases from 10, no important
change is seen. A similar behavior is obtained for a
different inclination angle of the channel (see Figure
2b for γ = π/4).

Figure 3 represents the total local entropy gen-
eration number N for a high mixed convection pa-
rameter λ = 100, and different P éclet numbers,
Pe = 1, 10, 100. This results that, the Rayleigh
number takes the values Ra = 102, 103, 104. The
entropy number has a maximum in the middle of the
channel for Pe = 1. Also, for larger values of λ,
could be seen that the boundary layers develop near
the walls, in which there are increased flow rates. In
the central part of the channel is a very low flow rate,
so the entropy generation number takes there smaller
values for the mixed convection parameter λ.
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Figures 4a and 4b compare the entropy genera-
tion number obtained by (21) with the entropy gen-
eration due to heat transfer, Nheat, given by (24), for
small and great Pe numbers. The shape of Nheat

follows the N shape for all λ values. For Figure
4a, a minimum is observed close to the lower wall
(Y = 0) for the inclination angle γ = π/4. The
heat transfer irreversibility reach the zero value for
Y ∈ (0, 0.1) and high λ numbers and a maximum
value to the middle of the channel. A different be-
havior is observed at high Pe numbers (see Figure
4b), where the entropy for both N and Nheat take the
minimum for Y = 1/2. Then, the best choice for the
parameters contains a great Pe number and small λ
value for obtaining the optimum entropy generation
number.

The fluid friction irreversibility and entropy
generation number are plotted versus Y in Figures
5a and 5b. The influence from the fluid friction
seems to be important near the walls of the channel,
greater for small Pe number to the lower wall.

In order to observe the entropy generation be-
havior to the walls, the solutions from the expres-
sions (10) and (11) for Y = 0 (lower wall) and
Y = 1 (upper wall) are considered. Also, for a no-
ticeable effect on the flow and heat transfer, a moder-
ate values of P éclet number is required, as observed
from the first figures. Provided that, cot γ is not too
small i.e. the channel is not inclined at a smaller an-
gle to the horizontal, we observe from Eqs. (10) -
(13) that the result approaches the symmetric solu-
tion (for γ = π/2) in the limit as Pe → ∞ (this is
equivalent to setting cot γ = 0 in these equations.

Thus, from Eq. 11, we obtain:

U(0) =
α

2 sinh α

[
coshα + 1 +

2 cot γ

Pe
(coshα− 1)

]

(26)

U(1) =
α

2 sinh α

[
coshα + 1− 2 cot γ

Pe
(coshα− 1)

]

(27)
By following the results by Cimpean et al. [8]

and from the Eqs. (26) and (27), U(0) > 0 for all
parameter values. If

Pe <
2(coshα− 1)
coshα + 1

cot γ (28)

then U(1) < 0 and we can expect a reversed flow
region within the channel.

Figures 6-9 present the entropy generation be-
havior to the walls as functions of the important pa-
rameters involved in the problem. Figures 6a and 6b
show the entropy generation numbers to the lower
wall (Y = 0) and upper wall (Y = 1), respec-
tively, versus the inclination angle of the channel
γ ∈ (0, π). Symmetrical profiles to the vertical
(γ = π/2) is seen for N(0) and N(1). The en-
tropy numbers to the walls increase as the mixed
convection parameter λ increases, having a maxi-
mum for γ ∈ (π/4, π/2) and a minimum for γ ∈
(π/2, 3π/4) at the lower wall and reverse for the up-
per wall, respectively. Only the values for λ = 1 are
excepted from this rule.

The influence of the fluid friction irreversibility
to the walls is important only for the great λ val-
ues and small inclination of the channel, see Fig-
ures 7 and 8. The variation of the entropy gener-
ation is given at the walls by the fluid friction, the
influence from the heat transfer remains constant for
unchanged Pe number, according to the condition
of the problem.

On the walls, the influence of the heat transfer
to entropy generation is greater than of the fluid fric-
tion and varies only with Pe number. The entropy
generations, to both walls, yield to constant values
for Pe > 10, see Figure 9.

The Bejan number given by (25), shows if the
irreversibility is dominated by fluid friction or heat
transfer. From the figure 10, it is obvious that the
heat transfer irreversibility dominates between the
walls of the channel. The Bejan number takes the
value 1 for λ = 50 into the middle of the chan-
nel. The influence of the fluid friction irreversibility
could be seen better for the lower wall and γ = π/4
(see Figure 10b), confirming the obtained conclu-
sions.

If Pe varies from 1 to 10, the Bejan number
yields to 1 for higher λ numbers. The minimum
value is Be = 0.82 for Pe = 10, see Figure 11.
The entropy generation production is dominated by
the heat transfer.

5 Conclusion

The present paper investigates the minimization of
entropy generation for a mixed convection flow of
a fluid saturated porous medium, between two in-
clined parallel heated plates. The analytical results
obtained for the velocity and temperature profiles
are used in order to obtain the entropy generation
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production. The non-dimensional entropy genera-
tion number is calculated for the problem involved.
The results of heat transfer irreversibility and fluid
friction irreversibility are studied for different values
of the important parameters of the problem, namely
the P éclet number, Pe, the mixed convection pa-
rameter, λ, and the inclination angle of the channel
from the horizontal, γ. The Bejan number is also
calculated to conclude that, the influence of the heat
transfer dominates the entropy generation mecha-
nism. The results and discussion show the optimum
values of the parameters at which the entropy gener-
ation number takes its minimum.
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Fig.2 Entropy generation number N versus Y for
λ = 1, γ = π/2 (a) and for γ = π/4 (b).
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Fig.3 Entropy generation number N versus Y
for λ = 100 and γ = π/4.
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Fig.4 The entropy generation numbers N (shown
by line) and Nheat (shown by broken line) versus Y

for γ = π/4 for Pe = 1 (a) and Pe = 100 (b).
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Fig.5 The entropy generation number, N ,
(shown by line) and fluid friction irreversibility,

Nfric, (shown by dots) versus Y ,
for γ = π/4 and for the P éclet numbers

Pe = 1 (a) and Pe = 100 (b).
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Fig.6 The entropy generation number to the lower
wall, N(0) (shown by line) and the entropy

generation number to the upper wall, N(1), (shown
by broken line), versus the inclination angle of the

channel, γ, for different mixed convection
parameters λ = 1, 10 (a) and λ = 50, 100 (b).
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