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Abstract: - Time series analysis and subsequent forecasting can be an important part of a process control 
system. By monitoring key process variables and using them to predict the future behavior of the process, it 
may be possible to determine the optimal time and extent of control action. We can find applications of this 
prediction also in the control of the Centralized Heat Supply System (CHSS), especially for the control of hot 
water piping heat output. Knowledge of heat demand is the base for input data for the operation preparation of 
CHSS. The course of heat demand can be demonstrated by means of the Daily Diagram of Heat Supply (DDHS) 
which demonstrates the course of requisite heat output during the day. This diagram is of essential importance for 
technical and economic considerations. The aim of paper is to give some background about analysis of time 
series of heat demand and identification of forecast model using Time series package which is integrated with 
the Wolfram Mathematica environment. The paper illustrates using this environment for designing the forecast 
model of heat demand in specific locality.  
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1 Introduction 
Analysis of data ordered by the time the data were 
collected (usually spaced at equal intervals), called a 
time series. Common examples of a time series are 
daily temperature measurements, monthly sales, 
daily heat consumption and yearly population 
figures. The goals of time series analysis are to 
describe the process generating the data, and to 
forecast future values.  
The impact of time series analysis on scientific 
applications can be partially documented by 
producing an abbreviated listing of the diverse fields 
in which important time series problems may arise. 
For example, many familiar time series occur in the 
field of economics, where we are continually 
exposed to daily stock market quotations or monthly 
unemployment figures. For example, in the paper 
[1] a multivariate structural time series model is 
described that accounts for the panel design of the 
Dutch Labour Force Survey and is applied to 
estimate monthly unemployment rates. Social 
scientists follow population series, such as birthrates 
or school enrollments. An epidemiologist might be 
interested in the number of influenza cases observed 
over some period. In medicine, blood pressure 
measurement traced over time could be useful for 

evaluating drugs used in treating hypertension. 
Many of the most intensive and sophisticated 
applications of time series analysis and their 
forecast exist also in a variety of other problem area, 
including quality and process control, financial 
planning or distribution planning [2]. Forecasting 
can be an important part of a process control system. 
By monitoring key process variables and using them 
to predict the future behavior of the process, it may 
be possible to determine the optimal time and extent 
of control action. We can find applications of this 
prediction also in the control of the Centralized Heat 
Supply System (CHSS), especially for the control of 
hot water piping heat output. Knowledge of heat 
demand is the base for input data for the operation 
preparation of CHSS. The term “heat demand” 
means an instantaneous heat output demanded or 
instantaneous heat output consumed by consumers. 
The term “heat demand” relates to the term “heat 
consumption”. It expresses heat energy which is 
supplied to the customer in a specific time interval 
(generally a day or a year). The course of heat 
demand and heat consumption can be demonstrated 
by means of heat demand diagrams. The most 
important one is the Daily Diagram of Heat Demand 
(DDHD) which demonstrates the course of requisite 
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heat output during the day (See Fig. 1). These heat 
demand diagrams are of essential importance for 
technical and economic considerations [20]. 
Therefore forecast of these diagrams course is 
significant for short-term and long-term planning of 
heat production. It is possible to judge the question 
of peak sources and particularly the question of 
optimal load distribution between the cooperative 
production sources and production units inside these 
sources according to the time course of heat demand 
[3]. The forecast of DDHD is used in this case. In 
the other work [4], a model for operational 
optimization of the CHSS in the metropolitan area is 
presented by incorporating forecast for demand 
from customers. In the model, production and 
demand of heat in the region of Suseo near Seoul, 
Korea, are taken into account as well as forecast for 
demand using the artificial neural network.  
Many others works solve the question of 
economical heat production and distribution in 
DHS. Some methods able to predict dynamic heat 
demand for space heating and domestic warm water 
preparation in DHS, using time-series analysis was 
presented [19]. Other work present one step ahead 
prediction of water temperature returned from 
agglomeration based on input water temperature, 
flow and atmospheric temperature in past 24 hours 
[23]. 
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Fig. 1: DDHD for the concrete locality 

 
Most forecasting models and methods for heat 
demand prediction have already been suggested and 
implemented with varying degrees of success. They 
may be classified into two broad categories: 
classical (or statistical) approaches and artificial 
intelligence based techniques. 
The statistical methods forecast the current value of 
a variable by using a mathematical combination of 
the previous values of that variable and previous or 
current value of exogenous factors, specially 
weather and social variables. These include linear 

models, solving by means of non-linear models, 
spectral analysis method, ARMA models, Box-
Jenkins methodology etc. The methods based on 
artificial intelligence techniques process mass data. 
These include expert systems, neural networks, 
fuzzy neural models etc. However, the models that 
have received the largest attention are the artificial 
neural networks [8], [21], [22]. 
But most applications in the subject consider the 
prediction of electrical-power loads. Nevertheless 
was created several works, which solve the 
prediction of heat demand and its use for control of 
District Heating System (DHS). A number of these 
works are based on mass data processing [8], [9]. 
But these methods have a big disadvantage. It 
consists in out of date of real data. From this point 
of view is available to use the forecast methods 
according to statistical method. The basic idea of 
this approach is to decompose the load into two 
components, whether dependent and whether 
independent. The weather dependent component is 
typically modeled as a polynomial function of 
temperature and other weather factors. The weather 
independent component is often described by a 
Fourier series, ARMA model, Box-Jenkins 
methodology or explicit time function. Previous 
works on heat demand forecasting [5], [7], show 
that the outdoor temperature, together with the 
social behaviour of the consumers, has the greatest 
influence on DDHD (with respect to meteorological 
influences). Other weather conditions like wind, 
sunshine etc. have less effect and they are parts of 
stochastic component.  
In this paper we propose the forecast model of 
DDHD based on the Box-Jenkins [6] approach. This 
method works with a fixed number of values which 
are updated for each sampling period. This 
methodology is based on the correlation analysis of 
time series and works with stochastic models which 
enable to give a true picture of trend components 
and also that of periodic components. As this 
method achieves very good results in practice, it 
was chosen for the calculation of DDHD forecast. 
Identification of time series model parameters is the 
most important and the most difficult phase in the 
time series analysis. This paper is dealing with the 
identification of a model of concrete time series of 
heat demand. We have particularly focused on 
preparing data for modeling as well as on estimating 
the model parameters and diagnostic checking. 
Finally the results of heat demand prediction by 
means of selected models are presented. 
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2 Software environment for time 
series analysis  
Currently, there is a wide range of free and 
commercial products intended for the Windows and 
UNIX platforms, which offer an extremely wide 
spectrum of possibilities for the time series analysis 
and subsequent forecast of these time series. These 
environments can be broken down into three main 
classes. The first includes free or open source 
software like Zaitun Time Series, TISEAN, or Gretl. 
Zaitun Time Series [11], for example, is open source 
software designed for statistical analysis of time 
series data. It provides easy way for time series 
modeling and forecasting. It provides several 
statistics and neural networks models, and graphical 
tools that will make your work on time series 
analysis easier. It is free software and can be used 
for any purpose, includes for commercial use. 
TISEAN [12] is free software project for the 
analysis of time series with methods based on the 
theory of nonlinear deterministic dynamical 
systems, or chaos theory, if you prefer. The software 
has grown out of the work of groups in Frankfurt 
and Dresden Universities during the last 15 years.  
The second class of these environments includes 
software, which can be freely downloaded, but are 
usually restricted or limited in some way. 
GeneXproTools, DTREG or Prognosis belong to 
this class. DTREG [13] is software for predictive 
modeling and forecasting. DTREG implements the 
most powerful predictive modeling methods that 
have been developed. We can use decision tree 
based methods including TreeBoost and Decision 
Tree Forests as well as Neural Networks, Support 
Vector Machine, Gene Expression Programming 
and Symbolic Regression, K-Means Clustering, 
Linear Discriminant Analysis, Linear Regression 
models and Logistic Regression models. DTREG 
also can perform time series analysis and 
forecasting. DTREG includes Correlation, Factor 
Analysis, Principal Components Analysis, and PCA 
Transformations of variables. 
The third such class is that of the generation of 
software which is the part of extensive interactive 
environments. Representatives of this class include 
for instance STSA - Statistical Time Series Analysis 
toolbox for O-Matrix, Statistics Toolbox for 
MATLAB, LabView Time Series Analysis Tools 
and Time Series package for Wolfram Mathematica.  
The STSA toolbox [14] is an extensive collection of 
O-Matrix functions for performing time series and 
statistics related analysis and visualization. The 
STSA toolbox provides capabilities for ARMA and 
ARFIMA, Bayesian, non-linear and spectral 

analysis related models. Extensive time series 
filtering functions and spectral analysis functions 
are provided. Numerous random number generators 
are included for both time series, and general 
statistical analysis. The STSA toolbox aids in the 
rapid solution of many time series problems, some 
of which cannot be easily dealt with using a canned 
program or are not directly available in most 
analysis software packages. Statistics Toolbox of 
MATLAB [15] performs statistical analysis, 
modeling, and algorithm development. It provides a 
comprehensive set of tools to assess and understand 
data. Statistics Toolbox includes functions and 
interactive tools for modeling data, analyzing 
historical trends, simulating systems, developing 
statistical algorithms, and learning and teaching 
statistics. The toolbox supports a wide range of 
tasks, from calculating basic descriptive statistics to 
developing and visualizing multidimensional 
nonlinear models. It offers a rich set of statistical 
plot types and interactive graphics, such as 
polynomial fitting and response surface modeling. 
Our workplace is equipped with a Mathematica 
environment, which is used for education and 
academic research. Mathematica is renowned as the 
world's ultimate application for computations. But 
it's much more—it's the only development platform 
fully integrating computation into complete 
workflows, moving you seamlessly from initial 
ideas all the way to deployed individual or 
enterprise solutions. Mathematica environment is 
the product of the Wolfram Research company [16], 
and is one of the world's most powerful global 
computation system. Time Series is a package of 
Wolfram Mathematica [17]. It is a fully integrated 
environment for time-dependent data analysis. Time 
Series performs univariate and multivariate analysis 
and enables you to explore both stationary and 
nonstationary models. It is possible to fit data and 
obtain estimates of the model's parameters. This 
package can choose from standard methods such as 
Yule-Walker, Levinson-Durbin, long 
autoregression, Hannan-Rissanen, and others. After 
reading in and plotting data, use the built-in Time 
Series transforms for linear filtering, simple 
exponential smoothing, differencing, moving 
averages, and more to transform raw data into a 
form suitable for modeling. Calculating and plotting 
the correlation and partial correlation functions 
which help spot patterns, are included. Time series 
package makes it easy to estimate the model 
parameters and check its validity using residuals and 
tests such as the portmanteau, turning points, 
difference-sign, and others. Best linear predictor and 
approximate best linear predictor are among the 
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commonly used forecasting techniques included. In 
addition, Time Series package enables to analyze 
data in frequency space. The spectral analysis tools 
inside Time Series use the Fourier transform and 
other robust numerical methods. 
 
 
3 Preparing real data for modeling 
The real data were obtained due to close cooperation 
of our research workplace with energy plant 
operations. In our case it is close cooperation with 
company United Energy a.s. - Power and Heating 
plant Most-Komořany.  
Measured data from district heating systems in the 
region Most, Czech Republic is used in our analysis. 
This system has a typical day load (winter day) of 
about 100-140 MW. These time series contain 
besides time and type of the day, the value of heat 
demand for every hour. Measured data of period 
November, 2008 – February, 2009 are available. 
In order to fit a time series model to data, we often 
need to first transform the data to render them 
"wellbehaved". By this we mean that the 
transformed data can be modeled by a zero-mean, 
stationary type of process. We can usually decide if 
a particular time series is stationary by looking at its 
time plot. Intuitively, a time series "looks" 
stationary if the time plot of the series appears 
"similar" at different points along the time axis. Any 
nonconstant mean or variability should be removed 
before modeling. The way of transforming the raw 
data of heat demand into a form suitable for 
modeling are presented in this section. Time series 
package enables to use many transformations. These 
transformations include linear filtering, simple 
exponential smoothing, differencing, moving 
average, the Box-Cox transformation and others. 
Only differencing is considered for time series 
analysis of heat demand. 
 
 
3.1 Differencing the time series of heat 
demand 
The graph [see Fig.1] shows that the values of heat 
demand signalling a possible nonconstant mean. 
Therefore it is necessary to use a special class of 
nonstationary ARMA processes called the 
autoregressive integrated moving average (ARIMA) 
process. Equation (1) defines this process with order 
p, d, q or simply ARIMA(p,d,q). 
 

tt
d BzBB1 εθφ )()()( =−  (1)

 

Non-negative integer d is degree of differencing the 
time series, p represents the order of autoregressive 
process and q is order of moving average process. 
φ(B) and θ(B) are polynomials of degrees p and q. 
ARIMA(p,d,q) series can be transformed into an 
ARMA(p,q) series by differencing it d times. Using 
the definition of backward shift operator B it is 
possible to define differencing the time series zt for 
d=1 in the form (2). 
 

1ttt zzB1z −−=−=∇ )(  (2)
 
Determination of a degree of differencing d is the 
main problem of ARIMA model building. 
Differencing is an effective way to render the series 
stationary. In Time series package it is possible to 
use the function ListDifference[data,d] to 
difference the data d times  
In practice, it seldom appears necessary to 
difference more than twice. That means that 
stationary time series are produced by means of the 
first or second differencing. A number of 
possibilities for determination of difference degree 
exist. It is possible to use a plot of the time series, 
for visual inspection of its stationarity. In case of 
doubts, the plot of the first or second differencing of 
time series is drawn. Then we review stationarity of 
these series. Investigation of sample autocorrelation 
function (ACF) of time series is a more objective 
method. If the values of ACF have a gentle linear 
decline (not rapid geometric decline), an 
autoregressive zero is approaching 1 and it is 
necessary to difference. The work [10] prefers to 
use the behaviour of the variances of successive 
differenced series as a criterion for taking a decision 
on the difference degree required. The difference 
degree d is given in accordance with the minimum 
values of variance 222

2,, zzz ∇∇ σσσ ... .  
Sometimes there can be seasonal components in a 
time series. These series exhibit periodic behaviour 
with a period s. For these time series a 
multiplicative seasonal ARMA model of seasonal 
period s and of seasonal orders P and Q and regular 
orders p and q is defined in the form (3).  
 

t
s

t
sDsd BBzBBB1B1 εΘθΦφ )()()()()()( =−− (3)

 
Φ(B) and Θ(B) are polynomials of degrees P*s and 
Q*s. Model in the form (3) is referred to as SARIMA 
(p,d,q)×(P,D,Q)s. 
Firstly it is necessary to determine a degree of 
seasonal differencing - D. In seasonal models, 
necessity of differencing more than once occurs 
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very seldom. That means D=0 or D=1. The first 
seasonal differencing with period s is defined in the 
form (4). 
 

sttt
s

t zzzB1z −−=−=∇ )(D
s  (4)

 
It is possible to decide on the degree of seasonal 
differencing on the basis of investigation of sample 
ACF. If the values of ACF at lags k*s achieve the 
local maximum, it is necessary to make the first 
seasonal differencing (D=1) in the form ts z∇ . In 
Time series package it is possible to difference the 
data d times with period 1 and D times with the 
seasonal period s and obtain data in the form (5) 
using function ListDifference[data,{d,D},s]. 
 

t
Dsd

t
d zB1B1z )()( −−=∇∇ D

s  (5)
 
An example of the determination of the difference 
degree for our time series of heat demand is shown 
in this part of paper. The course of time series of 
heat demand [see Fig.1] exhibits an evident non-
stationarity and also seasonality. It is necessary to 
difference. We use the course of sample ACF and 
values of estimated variance of differenced series 
for determination of degree of regular differencing 
and degree of seasonal differencing. The clear 
periodic structure in the time plot of the heat 
demand is reflected in the correlation plot [see the 
Fig.2]. The pronounced peaks at lags that are 
multiples of 24 indicate that the series has a 
seasonal period s=24. That represents a seasonal 
period of 24 hours by a sampling period of 1 hour. 
We also observe that the ACF decreases rather 
slowly to zero. This suggests that the series may be 
nonstationary and both seasonal and regular 
differencing may be required. 
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Fig. 2: The course of sample ACF of time series of 

heat demand 
 

The course of first regular differenced time series is 
shown in Fig. 3. The differenced series looks 
stationary now. This fact is confirmed by the sample 
ACF of differenced data (see Fig.4).  
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Fig. 3: The course of first regular differenced time 

series of heat demand 
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Fig. 4: The course of sample ACF of regular 

differenced time series of heat demand 
 

24 48 72 96
k

-0.4

-0.2

0.2

rk

 
Fig. 5: The sample ACF of data after regular and 

seasonal differencing with period 24 
 
Seasonal period s=24 confirm also the course of 
sample ACF for data after regular and seasonal 
differencing with period 24 [see Fig. 5]. On the 
basis of the executed analysis, it is necessary to 
make the first differencing and also the first 
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seasonal differencing with period 24 of time series 
of the heat demand in the form (6). 
 

 
For the comparison, it is possible to calculate the 
variance of time series and differenced series 
according to [10]. The results are presented in the 
Tab. 1. These results confirm transforming the time 
series of heat demand by differencing in the form (6).  
 
Table 1: The values of variance of differenced series 

Raw data of heat demand 6492212
z .ˆ =σ  

Regular differencing  .ˆ        .ˆ 093131542280 2
z

2
z 2 ==

∇∇ σσ  
Seasonal differencing  .ˆ 4418352

z24
=∇∇σ  

 
Fig. 6 presents the time series of heat demand after 
regular and seasonal differencing with period 24. 
These differenced data are prepared for the next 
modeling and forecasting. 
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Fig. 6: Time series of heat demand after regular and 

seasonal differencing with period 24 
 
 
4 Selecting the orders of model 
After differencing the time series, we have to 
identify the order of autoregressive process AR(p) 
and order of moving average process MA(q) and 
seasonal orders P and Q. There are various methods 
and criteria for selecting the orders of an ARMA or 
an SARIMA model. The sample ACF and the 
sample partial correlation function (PACF) can 
provide powerful tools to this. The traditional 
method consists in comparing the observed patterns 
of the sample autocorrelation and partial 
autocorrelation functions with the theoretical 
autocorrelation and partial autocorrelation function 
patterns. These theoretical patterns are shown in 
Tab 2. 

Table 2: Behaviour of theoretical autocorrelation 
and partial autocorrelation function 

Model ACF PACF 
AR(p) Tails off Cuts off after p
MA(q) Cuts off after q Tails off 
ARMA(p,q) Tails off Tails off 

 
The expression Tails off in Table 1 means that the 
function decreases in an exponential, sinusoidal or 
geometric fashion, approximately, with a relatively 
large number of nonzero values. Conversely, Cuts 
off implies that the function truncates abruptly with 
only a very few nonzero values. In the case of 
SARIMA model, the Cuts off in the sample 
correlation or partial correlation function can 
suggest possible values of q + s*Q or p + s*P. From 
this it is possible to select the orders of regular and 
seasonal parts. The standard errors of the ACF and 
PACF samples are useful in identifying nonzero 
values. As a general rule, we would assume an 
autocorrelation or partial autocorrelation coefficient 
to be zero if the absolute value of its estimate is less 
than twice its standard error.  
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Fig. 7: The sample PACF of data after regular and 

seasonal differencing with period 24 
 
The sample ACF and PACF of our differenced 
series of heat demand are shown in the Fig. 6 and 
Fig. 7. The single prominent dip in the ACF 
function at lag 24 shows that the seasonal 
component probably only persists in the MA part 
and Q=1. This is also consistent with the behavior 
of the PACF that has dips at lags that are multiples 
of the seasonal period 24. The correlation plot also 
suggests that the order of the regular AR part is 
small or zero. Because sample ACF cuts off after 4 
lag, order of the regular MA part can achieve the 
value of 4. Based on these observations, it is 
possible to consider the models with P=0, Q=1 and 
p≤1, q≤4.  
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4.1 Information criteria for order selection 
The order of model is usually difficult to determine 
on the basis of the ACF and PACF. This method of 
identification requires a lot of experience in building 
up models. From this point of view it is more 
suitable to use the objective methods for the tests of 
the model order. A number of procedures and 
methods exist for testing the model order [18]. 
These methods are based on the comparison of the 
residuals of various models by means of special 
statistics so-called information criteria. The idea is 
to balance the risks of underfitting (selecting orders 
smaller than the true orders) and overfitting 
(selecting orders larger than the true orders). The 
order is chosen by minimizing a penalty function. 
The Time series package in Wolfram Mathematica 
use the two commonly functions. Formula (7) is 
called Akaike's information criterion (AIC) and the 
second function (8) is called Bayesian information 
criterion (BIC). 

 
Here 2σ̂  is an estimate of the residual variance and n 
is a number of residuals. To get the AIC or BIC 
value of an estimated model in Time series package 
it is possible simply to use the functions 
AIC[model,n] or BIC[model,n]. Since the 
calculation of these values requires estimated 
residual variance, the use of these functions will be 
demonstrated later. 
 
 
5 Estimation of model parameters 
After selecting a model (model identification), 
parameter estimation of the selected model has to be 
looked for. It is necessary to say that selecting a 
model, parameter estimation and checking the 
validity of the estimated model (diagnostic 
checking) are closely related and interdependent 
steps in modeling a time series. For example, some 
order selection criteria use the estimated noise 
variance obtained in the step of parameter 
estimation, and to estimate model parameters we 
must first know the model. Other parameter 
estimation methods combine the order selection and 
parameter estimation. Often we may need to first 
choose a preliminary model, and then estimate the 
parameters and do some diagnostic checks to see if 
the selected model is in fact appropriate. If not, the 
model has to be modified and the whole procedure 

repeated. We may need to iterate a few times to 
obtain a satisfactory model. None of the criteria and 
procedures are guaranteed to lead to the "correct" 
model for finite data sets. Experience and judgment 
form necessary ingredients in the recipe for time 
series modeling.  
The Time series package includes different 
commonly used methods of estimating the 
parameters of the ARMA types of models. Each 
method has its own advantages and limitations. 
Apart from the theoretical properties of the 
estimators (e.g., consistency, efficiency, etc.), 
practical issues like the speed of computation and 
the size of the data must also be taken into account 
in choosing an appropriate method for a given 
problem. Often, we may want to use one method in 
conjunction with others to obtain the best result. The 
maximum likelihood method and the conditional 
maximum likelihood method are used for estimating 
the parameters of our selected model. 
The maximum likelihood method of estimating 
model parameters is often favored because it has the 
advantage among others that its estimators are more 
efficient (i.e., have smaller variance) and many 
large-sample properties are known under rather 
general conditions. The function 
MLEstimate[data,model,{φ1,{φ11,φ12}},…] fits 
selected model to data using the maximum 
likelihood method. The parameters to be estimated 
are given in symbolic form as the arguments to 
model, and two initial numerical values for each 
parameter are required. The exact maximum 
likelihood estimate can be very time consuming 
especially for large n or large number of parameters. 
Therefore, an approximate likelihood function is 
used in order to speed up the calculation. The 
likelihood function so obtained is called the 
conditional likelihood function  
The Time series package use the function 
ConditionalMLEstimate[data,model] to fit 
model to data using the conditional maximum 
likelihood estimate. It numerically searches for the 
maximum of the conditional logarithm of the 
likelihood function using the Levenberg-Marquardt 
algorithm with initial values of the parameters to be 
estimated given as the arguments of model. 
Estimation of the parameters of the models of 
differenced series of heat demand is presented here. 
On the base of conclusions in section 4 we consider 
nine models of time series of heat demand in the 
form SARIMA(p,1,q)×(0,1,1)24. That means 
SARIMA(p,0,q)×(0,0,1)24 model for differenced 
series of heat demand. We use the result from the 
Hannan-Rissanen estimate (function 

nqp2qpAIC 2 /)(ˆ),( ++= σln  (7)

nnqpqpBIC 2 /)(ˆ),( ln  ln ++= σ  (8)
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HannanRissanenEstimate) as our initial values of 
AR(p) and MA(q) processes. In addition to that this 
result was considered by selection of models. The 
initial value of Θ1 is determined from our sample 
partial correlation function as 450rr 24244848 ./ ,, −≅− . 
After definition of models the conditional maximum 
likelihood estimate of considered models is 
obtained. Then we use the exact maximum 
likelihood method to get better estimates for the 
parameters of models. For comparison of selected 
model AIC and BIC information criterion are used. 
The results of estimation are presented in the Tab. 3. 
Adequacy of these models may be examined by 
means of Portmanteau test. 
 
Table 3: Evaluation of selected models for 
differenced series of heat demand 

Type of model 
SARIMA (p,d,q)×(P,D,Q)s 

Information 
criterions 

Portmanteau 
statistic 

Q20 
 

Quantile of 
Chi-Square 
distribution 

2
1 αχ − (K-p-q-Q)AIC BIC 

SARIMA(0,0,1)×(0,0,1)24 3.2716 3.2988 43.01 28.8693 

SARIMA(1,0,0)×(0,0,1)24 3.2717 3.2988 43.02 28.8693 

SARIMA(1,0,1)×(0,0,1)24 3.1791 3.2199 35.77 27.5871 

SARIMA(0,0,2)×(0,0,1)24 3.2595 3.3003 57.35 27.5871 

SARIMA(0,0,3)×(0,0,1)24 3.1917 3.2460 36.21 26.2962 

SARIMA(0,0,4)×(0,0,1)24 3.1308 3.1987 20.88 24.9958 

SARIMA(1,0,4)×(0,0,1)24 3.1320 3.2135 19.33 23.6848 

SARIMA(0,0,5)×(0,0,1)24 3.1280 3.2095 19.59 23.6848 

SARIMA(0,0,6)×(0,0,1)24 3.1297 3.2248 21.47 22.3620 

 
 
5.1 Diagnostic checking - Portmanteau test 
After fitting, a model is usually examined to see if it 
is indeed an appropriate model. There are various 
ways of checking if a model is satisfactory. The 
commonly used approach to diagnostic checking is 
to examine the residuals. If the model is appropriate, 
then the residual sample autocorrelation function 
should not differ significantly from zero for all lags 
greater than one. We may obtain an indication of 
whether the first K residual autocorrelation 
considered together indicate adequacy of the model. 
This indication may be obtained by means of 
Portmanteau test. The Portmanteau test is based on 
the statistic in the form (9), which has an asymptotic 
chi-square distribution with K-p-q degrees of 
freedom.  

 
Where n is a number of residuals, ( )ε̂2

kr  is value of 
sample ACF of residual at lag k. 
 

If the model is inadequate, the calculated value of 
QK will be too large. Thus we should reject the 
hypothesis of model adequacy at level α if QK 
exceeds an appropriately small upper tail point of 
the chi-square distribution with K-p-q degrees of 
freedom (10). 

 
The Mathematica (Time series package) function 
PortmanteauStatistic[residual,K] gives the 
value of QK. The values of Portmanteau statistic 
using the residuals given the considered models and 
observed data are displayed in the Tab. 3. These 
values are compared with 5 percent value chi-square 
variable with K-p-q-Q degrees of freedom. (we 
consider K=20 and α=0.95). Based on these results 
we would conclude that the first 5 models are not 
satisfactory whereas there is no strong evidence to 
reject the next 4 models. 
 
 
6 Forecasting 
After estimation the parameters of an appropriately 
chosen model we can turn to one of the main 
purposes of time series analysis, forecasting or 
predicting the future values of heat demand. In this 
section we discuss forecasting methods used in 
Mathematica environment especially Time series 
package. 
Suppose that the stationary time series model that is 
fitted to the data {z1, z2, …, zn} is known and we 
would like to predict the future values of the series 
{Zn+1, Zn+2, …, Zn+h} based on the realization of the 
time series up to time n. The time n is called the 
origin of the forecast and h the lead time. A linear 
predictor is a linear combination of {z1, z2, …, zn} for 
predicting future values; the best linear predictor is 
defined to be the linear predictor with the minimum 
mean square error. 
In Time series package forecast of time series is 
possible to realize by means of the function 
BestLinearPredictor[data,model,h]. 
This function gives the best linear prediction and its 
mean square error up to h time steps ahead based on 
the finite sample data and given model. It uses the 
innovations algorithm to calculate the forecasts and 
their errors. The above forecast function can be 
generalized to the special nonstationary case of an 
ARIMA process or seasonal SARIMA models. An 
ARIMA(p,d,q) process after differencing d times is 
an ARMA(p,q) process, and if it is stationary, we 
can use the function outlined above to forecast 
future values and then transform back ("integrate") 
to get the forecast for the ARIMA model. For 

∑
= −

⋅+=
K

1k

2
k

K kn
r2nnQ )ˆ()( ε  (9)

( )qpKQ 2
1K −−> −αχ  (10)
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SARIMA models, we can expand its seasonal and 
ordinary polynomials and write it as an ordinary 
ARIMA model, and the prediction methods above 
can be used similarly. In this case we use also the 
function IntegratedPredictor. 
Now example of heat demand forecast for specific 
locality is presented. We used one of the selected 
models for differenced series of heat demand from 
the Tab. 3. The SARIMA(0,0,5)×(0,0,1)24 model was 
chosen. Because the original values of heat demand 
is used to forecast, the model in the form 
SARIMA(0,1,5)×(0,1,1)24 is supposed. The model 
was tested on data from the locality Most-
Komořany from 13 following days (3.2.2009 – 
15.2.2009). 24 hours-ahead forecast were made 
twice a day at 6.00 AM and 6.00 PM. Accuracy of 
the forecast is analyzed and summarized by means 
of Mean Absolute Percent Error (MAPE) in the 
form (11).  

 
where: ei is the difference between the original value 
of time series zi  and the forecast value, n is the 
number of forecasted values 
The accuracy of results of 24 hour-ahead forecast 
are presented in the Tab.4.  
 
Table 4: Accuracy of forecast  

Date, Time MAPE 
[%] 

Date, Time MAPE 
[%] 

3.2.2009, 6:00 4.604 9.2.2009, 18:00 5.937 
3.2.2009, 18:00 5.212 10.2.2009, 6:00 7.209 

4.2.2009, 6:00 5.521 10.2.2009, 18:00 5.865 
4.2.2009, 18:00 5.242 11.2.2009, 6:00 8.079 

5.2.2009, 6:00 5.076 11.2.2009, 18:00 6.003 
5.2.2009, 18:00 5.809 12.2.2009, 6:00 5.576 

6.2.2009, 6:00 5.043 12.2.2009, 18:00 5.831 
6.2.2009, 18:00 8.429 13.2.2009, 6:00 6.058 

7.2.2009, 6:00 9.071 13.2.2009, 18:00 3.371 
7.2.2009, 18:00 7.647 14.2.2009, 6:00 3.988 

8.2.2009, 6:00 12.483 14.2.2009, 18:00 4.056 
8.2.2009, 18:00 14.268 15.2.2009, 6:00 4.494 

9.2.2009, 6:00 11.249 15.2.2009, 18:00 5.595 
Average value 6.605 

 
The sample of the graphic output of the forecast at 
6.00 AM on 6.2.2009 is shown in the Fig. 8. 
From the results, we conclude that the prediction 
model for the locality Most-Komořany satisfactory 
results. MAPE for the test period is mostly less than 
10 percent. Average value of MAPE in the test 
period is approximately 6.6%.  

 
Fig. 8: The sample PACF of data after regular and 

seasonal differencing with period 24 
 

 
7 Conclusion 
This paper presents possibility of model design of 
time series of heat demand in Mathematica 
environment – Time series package. The results of 
this paper confirm supposition that this package is 
applicability to analysis of time series of heat 
demand. Some models were proposed and the 
adequacy of these models was tested by means of 
Portmanteau statistic. The proposed model is 
possible to use for prediction of heat demand in the 
concrete locality. Accuracy of forecast is possible to 
increase by means of inclusion of outdoor 
temperature in calculation of prediction. This 
prediction of heat demand plays an important role in 
power system operation and planning. It is 
necessary for the control in the Centralized Heat 
Supply System (CHSS), especially for the 
qualitative-quantitative control method of hot-water 
piping heat output – the Balátě System.  
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