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Abstract: - The aim of this paper consists in developing a model for realistic calculation, but at the same time not 
a very complicated one, in order to determine the operating parameters of a rocket motor with solid propellant 
(RMSP). The model results will be compared with experimental data and the quality of the model will be 
evaluated. The study of stability RMSP will be made accordingly to Liapunov theory, considering the system of 
parametric equations perturbed around the balance parameters. The methodology dealing with the stability 
problem consists in obtaining the linear equations and the verification of the eigenvalues of the stability matrix. 
The results are analyzed for a functional rocket motor at low pressure, which has the combustion chamber made 
of cardboard, motor used for fire extinguishing rocket. The novelty of the work lies in the technique to tackle the 
stability problem for the operation of rocket motors at low pressure, representing specific applications for civil 
destination. 
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NOMENCLATURE 
λ  - Ratio between velocity in exit plane and velocity 
in throat area;  
ρ - Gas density in burning chamber; 

pρ - Propellant density 
ψ  - Ratio between propellant mass consumed and 
total propellant mass; 
ϕ  - Erosion factor; 
σ - Ratio between instantaneous burning surface and 
initial burning surface;  

Tσ - Ratio between instantaneous propellant cross 
surface and initial propellant cross surface;  
k  - Gas specific heats ratio; 

tA - Throat area; 

eA - Exit area; 
F - Motor thrust; 

spI - Specific impulse; 

ΣI  - Total impulse; 

CQ  -Heat quantity educts by burning reaction of 1 
kilogram propellant; 
q - Amount of heat transferred to the combustion 
chamber in time unit (heat flow); 
D  - Coefficient of variation of burning rate with 
initial propellant temperature; 
l  -Length of the propellant grain; 

pm&  -Propellant consuming mass in time unit; 
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p  - Gas pressure in burning chamber; 

ep  - Gas pressure in exit area; 

Hp -  Atmospheric pressure; 
R  - Gas constant in burning chamber; 
T - Gas temperature in burning chamber; 

NT0 - Normal propellant temperature for burning 
rate; 

inT - Initial propellant temperature; 
u  - Burning rate; 

Nu - Linear burning rate in normal conditions:  
U  - Energy; 
V  - Volume of the burning chamber; 

0V  - Initial volume of the burning chamber; 

pV  - Propellant volume; 

ew   -Gas velocity in exit plane; 

tw  -Gas velocity in throat plane; 
S - Instantaneous burning surface; 

TS - Instantaneous propellant cross surface; 
 
1   Introduction 
Using missiles into civilian area involve a series of 
specific measures for compliance with 
environmental restrictions like a greater degree of 
safety in operation, and persons’ protection.  
An example of such an application is the 
fire-extinguishing rocket, which has a motor made of 
cardboard, ecological, non-hazardous but with low 
operating pressure. This type of technical problem 
causes the need for a scientific approach to support 
the technological effort of achieving such a missile 
motor capable of stable operating at low pressure, 
which is the subject to approach in this work. 
 One of the main challenges in designing rocket 
motor with solid propellant - RMSP are 
determination of the functional its parameters and 
analyzing their stability.  
The problems of stability of combustion can be 
addressed by different ways both experimental and 
theoretical, a series of methods and models being 
shown in the works [4], [5], [6], [7]. Note that the 
paper [4] proposes a different approach of stability 
for linear and non-linear phenomena. Unlike this, in 
our work the approach will be unitary, being focused 
on a particular and difficult case, that of the 
combustion at low pressure. 
In our study we will develop a non linear model for 
calculus of the functional parameters of RMSP, 
followed by the analysis of the evolution of balance 
stability regarded as the basic movement. Stability 
analysis for the perturbed equations of the RMSP 

will be made according to Liapunov theory, by 
placing them in the linear form. 
Remember that Liapunov theory said “If we can 
prove that linear form of the equations system is 
stable then its initial non-linear form is also stable”. 
Resuming, our work has two purposes:    
- Scientific one – to check the possibility of applying 
Liapunov theory [9] to analyze the stability of the 
balance parameters of RMSP at low pressure;   
- Technical one – to design the rocket motor for the 
fire-extinguishing rocket. 
 
 
2   RMSP internal ballistic model 
An important parameter in an internal ballistic model 
for a rocket engine is the burning rate of propellant. In 
the case of a Rocket Motor with Solid Propellant 
(RMSP), the burning rate is called regression rate and 
is given by a relation indicated in paper [1]  

           νϕ= apxu )( ,    (1) 
where the erosion factor has been denoted with )(xϕ   
and the coefficient a  can be expressed by: 
 

 )( Nin TTD
HN epua −ν−=      (2) 

 
where )( Nin TTDe −  shows the influence of the variation 
of the initial propellant temperature and Hp  means 
atmospheric pressure. Exponent D , parameter ν  
and regression rate  Nu  are determined 
experimentally under the normal propellant 
temperature )( NT .  
To assess the erosive phenomenon we use the 
parameter named in [1] "Pobedonosetov" parameter: 

( ) ( )TcamT SSSSx −−= ,    (3) 
which allows us to determine the erosion factor: 
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In order to obtain the surface burning area, we define 
the parameter: 

( ) pVVV /0−=ψ        (5) 
In this case, the quadratic fitting can be used: 
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     (7) 
and burning area and propellant cross-section 
become: 

)()( 0 ψσ=ψ SS ;   (8) 
 )()( 0 ψσ=ψ TTT SS .  (9) 

 
Altogether, by simple geometrical reasoning, the 
volume variation in time is given by: 

mapxSV )()( ϕψ=&  ,      (10) 
relation which represents volume equation. 
 Using the continuity equation, the variation 
of the mass in the burning chamber is the difference 
between the mass produced in time unit by the 
propellant burning and the exits mass from motor 
through the nozzle in time unit: 

( )
outin mm

t
V

&& −=
∂

∂ ρ
,  (11) 

where V  is the volume of the burning chamber, and 
ρ  is gas density inside the burning chamber, inm&  is 
the input mass generated from the propellant 
combustion inside the motor chamber and outm&  is the 
output mass ejected through the nozzle of the rocket 
motor. The input mass per time unit is given by the 
propellant input:  

pin mm && = ,      (12) 
and the output mass in time unit is the mass flow 
through the nozzle: 

ρΛ= pAm tout& ,  (13) 
where tA  is the throat area, p  is the pressure in 
chamber, ρ  is gas density, and: 

( )( )( ) ( )1112 −++=Λ kkkk   (14) 
Taking into account that the propellant consuming 
mass in time unit is:  

Vm pp
&& ρ= ,    (15) 

developing relation (11) we obtain the density 
equation: 

 ( ) ρ
Λ

−ρ−ρ=ρ p
V
A

V
V t

p

&
&  .  (16) 

 Taking into account the equation (10), the density 
equation becames: 

( ) 2/12/111 ρΛ−ϕρ−ρ=ρ −ν− pVApaVS tp&  .    
 (17) 

Beside the volume equation (10) and density 
equation (17), we need the third equation expressing 
the change in temperature or pressure of the 

combustion products. 
 We consider that the input energy for the system is 
the heat quantity CQ  educts by burning reaction of 

pm  solid propellant.  
Also, we take into account that the specific heat at 
constant volume VC  can be obtain from the relation: 

( )1−= kRCV .    (18) 
where k  is  the ratio of specific heats and R  is the 
gas constant in burning chamber. 
To build the temperature equation, we start from the 
following relationship of energy balance: 

4321 ddddd UUUUU +++= ,  (19) 
where the reaction energy of the propellant, given by:  

pC mQU dd =  ,       (20) 
is converted into: 
- internal energy growth due to additional gas 
from the combustion chamber: 

( ) ρ−=ρ= − d1dd 1
1 TVkRTVCU V ; (21) 

- energy in gas from the combustion chamber 
increased due to temperature variation: 

( ) TVkRTVCU V d1dd 1
2 ρ−=ρ= − ;   (22) 

- kinetic energy due to gas flow: 
( ) outmRTkkU d1d 1

3
−−= .   (23) 

- loss of energy due to the disposal of heat 
through the chamber walls: 

tqU dd 4 = ,   (24) 
where q  is the amount of heat transferred to the 
combustion chamber in time unit (heat flow) [ ]sJ / .                    
If we take the derivative of (19) with respect to time 
and then simplify it, we obtain: 

VoutVpC CqmkTTVTVCmQ ++ρ+ρ= &&&& ,     
(25) 

hence we obtain the temperature equation: 

pV
qkp

V
Ak

T
T

V
V

p
Qk tp

C
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Λ
++

ρ
ρ

=
ρ

−
&&&

. 

  (26) 
Taking into account that the state equation can be 
written in form: 

TTpp &&& +ρρ= ,    (27) 
we transform the temperature equation (26) into the 
pressure equation: 
 

 
12/32/11

1

)1(

)1(
−−−

ν−

−−ρΛ−

−ϕρ−=

qVkpVAk

paVSQkp

t

Cp&
.   (28) 

 
 
Having differential equations (17) and (28) solved, 
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for temperature we can use the state relation: 
( )ρ= RpT .     (29) 

Regular paper [6], for the rate between throat area 
tA  and exit area of the nozzle eA  propose the 

relation: 
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e
k
e

k
k

e

t pp
kkA

A 12
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1

~1~
1

2
1

2
,  (30) 

 
with the relative pressure given by: 
 

ppp ee =
~  ,  (31) 

 
where ep  is the gas pressure in exit area. 
If we take into account that the gas velocity in the 
exit plane is: 
 

⎟⎟
⎠

⎞
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⎝

⎛
−

−
=

−
k

k

ee pRT
k

kw
1

~1
1

2  ,  (32) 

and the gas velocity in throat plane is: 
 

RT
k

kwt 1
2

+
=  ,   (33) 

the velocity report becomes:  
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 .   (34) 

From (30) and (34) we can obtain the rate surfaces 
formula indicated in paper [5]: 
 

1
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The relation (35) leads to transcendental equation, 
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e

t

k
kk

A
A −−
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+
−
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21
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1
11
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1

. (36) 

 
Figure 1 shows the left member λ  and the right 
member denoted )(λf  in the previous relation. The 
diagram can be used to estimate a graphic solution 
for equation (36) when k=1.4. Similar 
representations can be easily obtained for other 
values of k. 
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Fig. 1 Graphic representation of the transcendental 

equation 
 
 We can observe that the right member of the relation 
(36), satisfies the inequality: 
 

1
d

)(d
>

λ
λf

,            (37) 

which means that relation (36) considerate like 
iterative, does not converge. In this case, we put this 
relation in Newton-Raphson form: 
 

i

ii
ii f

f

λ

+

λ
λ

−

λ−λ
−λ=λ

d
)(d1
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1 .          (38) 

If we denote: 
 

k
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 we can write: 
 

1)1()( 2
11

abcf λ+=λ ; 
 12

1111
1)1(2)( −λ+λ=λ′ abcbaf , 

 (40) 
and an iterative relation can be obtained: 
 

12
1111

2
11

1 1

1

)1(21
)1(

−+ λ+λ−
λ+−λ

−λ=λ a
ii

a
ii

ii bcba
bc

. (41) 

Because this relation is independent from equations 
system, it can be applied separately, before system 
being solved. The iterative procedure is convergent 
for the initial value close to the final solution. We 
recommend starting from 2=λ . 
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Assuming constant ratio of specific heats throughout the 
expansion process, one finds out the thrust force relation 
indicated in paper [1]: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−λ⎟

⎠
⎞

⎜
⎝
⎛

+
σ=

−
1

1
2 1

1
k

e

t

H
cHe k

k
A
A

p
ppAF    (42) 

where Hp  is atmospheric pressure, and cσ  is 
overall loss of thrust by nozzle. The simplest nozzle 
is the conical one with a divergence cone half angle 
of 10-18 degrees. For such nozzles, part of the force 
of exhaust gases is orientated transversally and thus 
does not produce any thrust at all. In order to correct 
this phenomena one can use a correction factor 
related to the divergence cone half angle. Also other 
loses can appear, all of these can be taken into 
account using coefficient cσ .  
 
 
3   Balance parameters 
The study of stability in operating a RMSP will be 
made accordingly to Liapunov theory, considering 
the system of parametric equations perturbed.  
This means that one has to consider the system of 
parametric equations perturbed around the balance 
parameters. This involves a disturbance applied 
shortly on the evolution of balance, which will 
produce a deviation of the state variables. 
Developing in series the perturbed parametric 
equations in relation to status variables and taking 
into account the first order terms of the detention, we 
will get linear equations which can be used to 
analyze the stability in first approximation, as we 
proceed in most dynamic non linear problems. 
Thus, for defining the evolution of balance, we 
consider: 

0=p&  0=ρ& ; ctSapV == ν&  .   (43) 
Using these, from relations (16) and (28) we obtain: 

( ) 02/12/1 =ρΛ−ρ−ρ pAV tp
& ;   (44)    

0)1()1( 2/32/1 =−−ρΛ−ρ− − qkpAkVQk tCp
& , 

 (45) 
moreover: 

ρ
Λ

−ρ=ρ p
V
At

p &
 ;  (46) 

   ( )
p

qVQ
Ak

kp Cp
t

ρ
−ρ

Λ
−

= &1
 ,    (47) 

from which we obtain: 

p
kp ρ

= 1 ;    ρ−=ρ pkk 32 ,   (48) 

where we denote: 

( )qVQ
Ak

kk Cf
t

−ρ
Λ
−

= &1
1 ; pk ρ=2 ;

V
Ak t
&

Λ
=3 . (49) 

Finally the balance equations become: 
2

1
3 kp=ρ ;    02

2
1

2
13

3 =−+ kkpkkp .   (50) 
The pressure equation can be arranged in 
transcendental form: 

abpp −= −2 ,     (51) 
where  

13kka = ; 2
2

1 kkb =  .  (52) 
This can be solved using iterative Newton-Raphson 
method: 

3

2

1 21 −

−

+ +
+−

−=
i

ii
ii bp

abpppp  .   (53) 

In order to help our analysis we will use 
dimensionless parameter ψ  defined by relation (5). 
 
 
4   Linear equations 
In the context of the balance parameters established 
above, the operating equations (10), (17) and (28) 
can be put in linear form: 

 paVaV p
V

V
V ∆+∆=∆ & ;                       

paaVa pV ∆+ρ∆+∆=ρ∆ ρ
ρ
ρρ& ;            

paaVap p
pp

V
p ∆+ρ∆+∆=∆ ρ&  ,         (54) 

where, neglecting the erosion factor, the coefficients 
of the equations are: 

1−= VVEaV
V

& ;  1−ν= pVa p
V

& ; 

( ) ( )[ ] 22/12/11 −
ρ ρΛ+−ρ−ρ= VpAEVa tp
V &

[ ] 12/12/15.0 −−ρ
ρ ρΛ+−= VpAVa t
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( )[ ] 12/12/11 5.0 −−−
ρ ρΛ−ρ−ρν= VpAVpa tp
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  (55) 
where: 

pp V
V

aa
aa

V
VE

1
2

)(
)(

1
2

2

12

+ψ+ψ
+ψ

=
ψσ
ψσ′

=    

 
Finally we can put the linear system in regular form: 

Axx =& ,         (56) 
where the state vector is: 
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[ ]TpV ρ=x  ,       (57) 
and the stability matrix becomes: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
ρ

ρ
ρ
ρρ

p
pp

V
p

pV

p
V

V
V

aaa
aaa
aa 0

A   ,        (58) 

From the previous relation one can observe that all 
the stability coefficients j

ia  are dependent by 
volume. 
 
 
5 Input data 
For exemplifying the method, we will build a study 
model out of the motor test. 
The rocket engine for the fire-extinguishing rocket is 
presented in figure 2. 

 
 
Fig.2 Rocket motor with solid propellant- RMSP for 

fire-extinguishing rocket 
 
5.1 Propellant geometry 
First we describe the geometry of propellant which is 
a cylinder, with a cylindrical hole inside, no insulated, 
so burning simultaneously on all surfaces (figure 3). 
Denote instantaneous sizes:  
R - Outside radius of the cylinder; r - inside radius of 
the cylinder; l - cylinder length, the burning area, 
terminal area and propellant volume are given by: 

))((2 lrRrRS +−+π= ; ))(( rRrRST −+π= ; 
))(( rRrRlSV T −+π== .        (59) 

If we denote x  the linear burning distance, which at 
the time t  is given by integrating the burning rate: 

∫=
t

tux
0

d ,    (60) 

 
the main geometric quantities are rewritten as it 
follows: 

 
xRR −= 0 ; xrr += 0 ;  xll 20 −= ,          (61) 

 
from which the  combustion areas and volume 
become: 

xrRSS )(4 000 +π−=    (62) 
xrRSS TT )(2 000 +π−=            (63) 

2
00

00000

)(4

])([2

xrR

xlrRSVV T

++

+++−=

π

π
  (64) 

where we denoted with index “ 0 ” the initial values 
for length, surfaces and volumes.  
After processing we obtain: 

0000

21
lrR

x
S
S

+−
−==σ ;  

000

21
rR

x
S
S

T

T
T −

−==σ ;  

000

2

0000 )(
4221

lrR
x

rR
x

l
x

V
V

−
−

−
+=−=ψ   

 (65) 
 

For the application the main geometrical quantities 
are: 

mmR 330 = ; mmr 70 = ;  mml 3190 = . 
In this case, the initial areas are: 
 
  286708 mmS0 = ;     22673 mmST0 = .  
 

 
Fig. 3 Propellant geometry 

 
Developing the relations (65) in a numerical form 
related to the parameter x  results the dependence 
between the no dimensional areas Tσσ,  and the burn 
parameter ψ . By quadratic fitting we obtain:
 

Burning 
chamber 

Propellant 

Throat 
section Igniter 

Nozzles 
system 
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200614672.0069120.0999951.0)( ψ−ψ−≅ψσ ;
20815622.0917169.0999352.0)( ψ−ψ−≅ψσT , 

        (66) 
functions which are represented in figure 4:  
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 Fig. 4 Areas burning diagrams 
 
5.2 Motor geometry 
The motor geometry elements used for the test 
considered are: 
-Combustion chamber cross surface: 

27393 mmAcam = ; 

- Throat area: 2490mmAt = ; 

- Exit plane area: 21206 mmAe = . 
- Burning chamber volume:        

31924555 mmVcam =  
 

5.3 Propellant and process features  
The features for the used propellant are:  
- Propellant mass: kgmp 834.1= ; 

- Propellant density: 3/1790 mKgp =ρ ;   
- Adiabatic gas coefficient of the combustion 
products 1.4   k = ; 
- Gas constant: J/Kg/K     R 336.7= ; 
- Linear burning rate in normal conditions: 

smmuN /6.4= ; 
- Pressure exponent of burning law: 180.ν = ; 
- Coefficient of variation of burning rate with 
temperature: 10038.0 −= KD ; 
- Heat quantity educts by burning reaction of 1 
kilogram propellant: KgJQC /109.4 6×= ; 
- The quantity of heat transferred to the combustion 
chamber in time unit (heat flow) sJq /1000= ; 

- Coefficient overall rate of loss of thrust by nozzle: 
71.0=σc ; 

 
6   Results 
From the computing model considered, we obtain 
numerical values for the rocket engine operating 
parameters. The rocket engine was tested on the “fire 
stand” and the pressure and thrust force versus time 
were measured and will be used as comparative data 
in this study. Figures 5 and 6 present the comparison 
between pressure obtained by relationship (38), 
respective thrust force calculated using (42) and the 
experimental pressure and thrust force of the test 
motor. Figures 7, 8, 9 and 10 show the influence of 
initial propellant temperature for the pressure, thrust 
force, gas density respective for the gas temperature 
in the burning chamber. 

 
Fig. 5 Comparative pressure diagram  

 
 
 

 
Fig. 6 Comparative thrust force diagram  
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 Fig. 7 Influence of initial propellant temperature for 
the pressure 

 

 
Fig. 8 Influence of initial propellant temperature for 

the thrust force 

 
Fig. 9 Influence of initial propellant temperature for 

the gas density 

 
Fig. 10 Influence of initial propellant temperature for 

the gas temperature in burning chamber 
 

Further on we will analyze the balance 
parameters and the dynamic stability of the operating 
RMSP. Thus, in figure 11 and 12 we are showed, for 
the considered application, the balance pressure ratio 
and the balance density ratio as functions of 
propellant mass ratio. 
 

Henceforth, setting the basic trend, we can 
evaluate, using the matrix (58), the parametric 
stability of the operating motor. To do this in figure 
13 there are given the real part of eigenvalues for the 
matrix corresponding to the stable balance 
parameters.  
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Fig. 11 Balance pressure ratio dependency on 

 propellant mass ratio 
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Fig. 12 Balance density ratio dependency on 

 propellant mass ratio 
 

 
Fig. 13 Real part of eigenvalues for stable RMSP 

 
 
 
 
7   Conclusions 
As we resumed in the introductive part, our work 
followed two purposes:   
Scientific one – to check the possibility of applying 
Liapunov theory to analyze the stability of the 
balance parameters of RMSP at low pressure. With 
this reason we obtained: 
- A flexible parametric expression of the 
propellant surface which allows to use different 
propellant geometry without major modification of 
the input data structure; 
- A good concordance between  parametric 
non- linear equations of the RMSP and the  
experimental results  as we can see in figures 5 and 6 
where the comparative pressure diagram and the 
comparative thrust force diagram are shown; 

- An algorithm to define the balance 
parameters and stability matrix; 
- A comfortable method to evaluate the motor 
stability operating a low pressure evaluating 
eigenvalue of the stability matrix, as we show in 
figure 13. 
Technical one – to design the rocket motor for the 
fire-extinguishing rocket that was successfully 
accomplished, as we can see in figure 14. 
 

 
Fig. 14 RMSP for fire-extinguishing rocket 

 
 

The rocket engine functionality was tested also in a 
shooting-range polygon, as you can see in figure 15. 

 
Fig 15  The rocket releases the launching system 
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