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Abstract: - In this paper we develop mathematical model for 2D and 3D hyperbolic heat equation and construct 

an analytical solution of inverse problem for thin L-shape and T-shape samples. Solutions for both direct and 

inverse problems are obtained in closed analytical form as 2
nd
 kind iterative integral equation, which is 

Fredholm integral equation with respect to space coordinate and Volterra integral equation with respect to time. 
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1 Introduction 
This is a continuation of our investigation [6]. In 

some of our previous papers we have considered 

problems of heat conduction for one element of the 

system with rectangular fin. In the papers [2]-[5], 

[7] we have investigated both steady-state problems 

and transient problems. Some ideas from these 

papers are used here for solving a mixed problem 

for an L-form sample. 

Generally, in deriving the heat equation the heat 

flux vector q is assumed to satisfy Fourier’s law 

  Tk∇−=q , (1) 

where the del operator, ∇ , is defined in 3D as 

  kji
zyx ∂
∂

+
∂
∂

+
∂
∂

=∇ , 

x  is an element from real coordinate space, t  is 

time but ),( tT x  denotes the temperature in the body 

being considered, with thermal conductivity k . 

Plugging equation (1) into the law of conservation 

of energy (the 1
st
 law of thermodynamics) 

  q
t

T
c +⋅−∇=

∂
∂

qρ~ , (2) 

where c~  is specific heat capacity, ρ  is density of 
the body and ),( tq x  denotes an internal source or 

volumetric heat generation rate, one gets the well-

known Fourier’s heat conduction equation 

  qTk
t

T
c +∇⋅∇=

∂
∂

)(~ρ . (3) 

This parabolic equation, although suitable in 

many situations, implies infinite thermal speed of 

propagation. One of such physical situations when 

Fourier’s law is no longer valid is, for example, 

Intensive Quenching (IQ). When immersing the 

heated part into a quenchant, the initial heat flux 

tends to infinity but actually is finite ([11]). So 

Fourier’s law at the initial time is no longer suited to 

describe heat propagation. In these situations 

Fourier’s law (1) can be replaced by 

  Tkt ∇−=+ ),( τxq , 0>τ , 

or, by its approximation (see, e.g., [14]) 

  Tk
t

∇−=+
∂
∂

q
q

τ , (4) 

which is called the modified Fourier’s equation or 

Cattaneo’s equation. Here τ  is a relaxation time.τ , 
k , c~  and ρ  are generally dependent on T and on 
the material But in the sequel we shall assume that 

these are constants. 

Combining equation (4) with (2), we obtain 

hyperbolic heat conduction equation, which admits 

a finite speed of propagation for T 

  
ρρ

τ
τ

c

q

t

q

c
Ta

t

T

t

T
~~

22

2

2

+
∂
∂

+∇=
∂
∂

+
∂

∂
 (5) 

or 
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It is also known as Telegrapher’s equation or a 

damped wave equation. Here C  is the speed of heat 

propagation with 
τ

2
2 a

C =  and 
ρc
k

a ~
2 =  is thermal 

diffusivity coefficient. 

 

 

2 Mathematical Formulation of 3D 

Problem 
In this section we are going to use equation (5) to 

describe IQ process and give full mathematical 

statement of 3D problem. 

 

 

2.1 General Mathematical Statement of 3D 

Problem for L-shape Sample 
Let’s imagine an L-shape sample made up from two 

rectangular cuboids that are joined along the surface 

δ=x . We’ll call the vertical part the base. And it 

occupies the domain [ ] [ ] [ ]{ }ωδ ,0,1,0,,0 ∈∈∈ zyx . 

But the horizontal part, where 

[ ] [ ] [ ]{ }ωδδ ,0,,0,, ∈∈+∈ zbylx  and 1<b , will be 

the foot. The sample is heated and then cooled 

rapidly (IQ process) in a suitable fluid, e.g., water or 

brine. As mentioned before, for describing intensive 

steel quenching of the sample we should use 

hyperbolic heat equation, which takes into account 

the finite speed of heat propagation. Since the 

sample consists of two parts, we are able to define 

IQ process for each part separately. 

To state the boundary-value problem, we need to 

derive the equations of the functions describing IQ 

process in the sample, and then establish boundary 

and initial conditions. Let’s assume that 

),,,(0 tzyxV  denotes the temperature distribution in 

the base. Therefore the temperature distribution in 

the foot will be designed by ),,,( tzyxV . The 

equations of heat conduction therefore have the 

following form 

  








∂
∂

+
∂
∂

+
∂
∂

=
∂

∂
+

∂
∂

2

02

2

02

2

02
2

0

2

02

0,
z

V

y

V

x

V
a

t

V

t

V
rτ  

                               ),,,(0 tzyxΨ+ , (6) 

  ( ) ( ) ( ) ( ]Ttzyx ,0,,0,1,0,,0 ∈∈∈∈ ωδ ; 
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∂
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∂
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∂

∂
=

∂
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+
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∂
2

2

2

2

2
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2

2
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z

V
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V

x

V
a

t

V

t

V
rτ  

                           ),,,( tzyxΨ+ , (7) 

  ( ) ( ) ( ) ( ]Ttzbylx ,0,,0,,0,, ∈∈∈+∈ ωδδ , 

where 

  







+

∂

∂
=Ψ ),,,(),,,(~
1

0,0 tzyxqtzyx
t

q

c
rτ

ρ
, 

  







+

∂
∂

=Ψ ),,,(),,,(~
1

tzyxqtzyx
t

q

c
rτ

ρ
. 

When the heat generation is absent, 0,0 =ΨΨ . The 

quantities 2a , k , c~ , ρ , rτ , 0,rτ  have the same 

meaning as in the preceding section. 

On the surface of the sample a heat exchange 

takes place with the surrounding medium the 

temperature of which is ),,,( tzyxΘ , so we have 3
rd
 

type boundary conditions. The boundary conditions 

for the base take the form 

  [ ] [ ]ωββ ,0,1,0,
0

0

0
0

∈∈Θ−=







−

∂
∂

=

=

zyV
x

V
x

x

, (8) 

  [ ] [ ]ωββ
δ

δ

,0,1,,0
0

∈∈Θ=







+

∂
∂

=

=

zbyV
x

V
x

x

, (9) 

  [ ] [ ]ωδββ ,0,,0,
0

0

0
0

∈∈Θ−=







−

∂
∂

=

=

zxV
y

V
y

y

, (10) 

  [ ] [ ]ωδββ ,0,,0,
1

1

0
0

∈∈Θ=







+

∂
∂

=

=

zxV
y

V
y

y

, (11) 

  [ ] [ ]1,0,,0,
0

0

0
0

∈∈Θ−=







−

∂
∂

=

=

yxV
z

V
z

z

δββ , (12) 

  [ ] [ ]1,0,,0,0
0

∈∈Θ=







+

∂
∂

=

=

yxV
z

V
z

z

δββ
ω

ω

, (13) 

where 
k

h
=β , h is heat-transfer coefficient. 

The boundary conditions imposed on the outer sides 

of the foot are of the same type 

  [ ] [ ]ωββ
δ

δ

,0,,0, ∈∈Θ=






 +
∂
∂

+=
+=

zbyV
x

V
lx

lx

, (14) 

  [ ] [ ]ωδδββ ,0,,,
0

0

∈+∈Θ−=







−

∂
∂

=

=

zlxV
y

V
y

y

,(15) 

  [ ] [ ]ωδδββ ,0,,, ∈+∈Θ=







+

∂
∂

=

=

zlxV
y

V
by

by

, (16) 

  [ ] [ ]bylxV
z

V
z

z

,0,,,
0

0

∈+∈Θ−=






 −
∂
∂

=
=

δδββ , (17) 

  [ ] [ ]bylxV
z

V
z

z

,0,,, ∈+∈Θ=






 +
∂
∂

=
=

δδββ
ω

ω

. (18) 

As for the interface between the adjacent sides of 

the cuboids, we present necessary conditions to 
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ensure the continuity of the temperatures and the 

heat fluxes (ideal thermal contact) 

  [ ] [ ]ω
δδ

,0,,0,
00

0 ∈∈=
+=−=

zbyVV
xx

, (19) 

  [ ] [ ]ω
δδ

,0,,0,
00

0

∈∈
∂
∂

=
∂

∂

+=−=

zby
x

V

x

V

xx

. (20) 

The solutions of equations (6) and (7) must also 

satisfy the initial conditions 

  ),,(00
0

0 zyxVV
t

=
=

,  ),,(00
0

0

zyxW
t

V

t

=
∂

∂

=

, (21) 

  ),,(00
zyxVV

t
=

=
,    ),,(0

0

zyxW
t

V

t

=
∂
∂

=

, (22) 

where ),,(00 zyxV , ),,(0 zyxV , ),,(00 zyxW  and 

),,(0 zyxW  are given functions. 

From an experimental point of view conditions 

(21) (22) are unrealistic because the initial heat flux 

densities are not really known. But they must be 

calculated for their comparison with critical heat 

flux densities to predict heat transfer modes at steel 

quenching. During IQ it is required for initial heat 

flux density to be less then the first critical heat flux 

density 1crq  to eliminate film boiling (see [11]). For 

determination of initial heat flux densities, we can 

assume that the temperature distributions and the 

distribution of heat fluxes are given at the end of the 

process 

  ),,(00 zyxVV T
Tt
=

=
, ),,(0

0

zyxW
t

V
T

Tt

=
∂

∂

=

, (23) 

  ),,( zyxVV TTt
=

=
,    ),,( zyxW

t

V
T

Tt

=
∂
∂

=

. (24) 

 

 

2.2 General Mathematical Statement of 3D 

Problem for T-shape Sample 
In this case we have a sample of T-form. It consists 

of two L-shape samples which are each other’s 

mirror image. One of them is the sample described 

in the preceding subsection, and these two are 

joined along the side 0=x . 

The boundary-value problems for determining 

the temperature of this sample are written in the 

same form as in the preceding subsection except the 

boundary condition at the dividing plane. Along this 

plane the insulation (symmetry) condition 

  [ ] [ ]ω,0,1,0,0

0

0

∈∈=
∂

∂

=

zy
x

V

x

 (25) 

must be applied. 

In such situation both L-shape samples have the 

same temperature distribution. 

 

 

3 Direct Problem for L-shape Sample 
Here we find a solution for direct problem and 

briefly explain the idea how we can modify the well 

known Green’s function method to obtain a closed-

form Green’s function for so called regular non-

canonical domain. The main idea is to represent the 

original domain as a finite union of canonical sub-

domains with appropriate boundary conditions 

along the lines (planes) connecting two neighbours. 

In the case of L-shape sample we have already 

divided it into two rectangles (rectangular cuboids). 

 

 

3.1 Direct Problem for 3D L-shape Sample 
We can transform equations (6) and (7) into more 

common form by introducing the well known 

substitutions 

  ),,,(
2

exp),,,( 0

0,

0 tzyxU
t

tzyxV
r











−=

τ
, (26) 

  ),,,(
2

exp),,,( tzyxU
t

tzyxV
r








−=

τ
. (27) 

Plugging these expressions into equations (6) and 

(7) (and in all the conditions as well), we get new 

equations without first time derivatives. These are 

called Klein-Gordon equations 

  0

2

0,

2

02

2

02

2

02
2

0,2

02

4

1
U

z

U

y

U

x

U
a

t

U

rτ
τ +









∂
∂

+
∂
∂

+
∂
∂

=
∂

∂
 

               ),,,(
2

exp
1

0

0,0,

tzyx
t

rr

Ψ









+

ττ
, (28) 

  ( ) ( ) ( ) ( ]Ttzyx ,0,,0,1,0,,0 ∈∈∈∈ ωδ ; 

  U
z

U

y

U

x

U
a

t

U

r

22

2

2

2

2

2
2

2

2

4

1

ττ +








∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

 

             ),,,(
2

exp
1

tzyx
t

rr

Ψ







+

ττ
, (29) 

  ( ) ( ) ( ) ( ]Ttzbylx ,0,,0,,0,, ∈∈∈+∈ ωδδ , 

where 
0,

2
2

0,

r

a
a

ττ = , 
r

a
a

ττ

2
2 = . 

The new boundary conditions for these equations 

can be written as before in (8) – (18) using functions 

0U , U  instead of 0V  and V , and Θ










0,2
exp

r

t

τ
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(for the base) or Θ








r

t

τ2
exp  (for the foot) instead 

of Θ . But the continuity conditions (19), (20) 

transform into a new form that shows discontinuity 

in the temperature field and the heat fluxes at the 

connecting surface δ=x  

  
0

0,
0

0

22
exp

+=−= 









−=

δδ ττ x

rr
x

U
tt

U , (30) 

    [ ] [ ]ω,0,,0 ∈∈ zby , 

  
00,0

0

22
exp

+=−=
∂
∂











−=

∂
∂

δδ
ττ xrrx

x

Utt

x

U
, (31) 

    [ ] [ ]ω,0,,0 ∈∈ zby . 

We have corresponding initial conditions for the 

direct problem 

  
,

2

),,(
),,(

),,,(

0,

0

00

0

0

0

0

0
0

0

rt

t

zyxV
zyxW

t

U

zyxVU

τ
+=

∂
∂

=

=

=

 (32) 

  
,

2

),,(
),,(

),,,(

0

0

0

00

rt

t

zyxV
zyxW

t

U

zyxVU

τ
+=

∂
∂

=

=

=

 (33) 

or additional conditions at final moment for the 

inverse problem 

  ),,(
2

exp 0

0,

0 zyxV
T

U T

r
Tt 










=

= τ
, (34) 

  











+










=

∂
∂

= 0,

0

0

0,

0

2

),,(
),,(

2
exp

r

T

T

rTt

zyxV
zyxW

T

t

U

ττ
, 

  ),,(
2

exp zyxV
T

U T

r

Tt 







=

= τ
, (35) 

  







+








=

∂
∂

= r

T

T

rTt

zyxV
zyxW

T

t

U

ττ 2

),,(
),,(

2
exp . 

We’ll consider the inverse problem later. 

We can find solutions to the original 3D 

problems (6) and (7) by solving the problems for 

equations (28), (29), and using transformations (26), 

(27). Since finding solution of 3D direct problem is 

quite similar as in 2D case, we will consider only 

the latter. 

 

 

3.2 Direct Problem for Thin L-shape Sample 
In this case we have a sample that is thin in the 

−z direction ( l<<ω , b<<ω , δω << ). To obtain 

mathematical formulation for 2D problem from the 

problem considered before, we can introduce 

averaged values in the −z direction of all the 

functions used before. For instance, 

  ∫−=
ω

ω
0

010
),,,(),,( dztzyxUtyxu , (36) 

  ∫−=
ω

ω
0

1
),,,(),,( dztzyxUtyxu . (37) 

By using these approximations and applying the 

boundary conditions which are obtained from (12), 

(13), and (17), (18), two 2D differential equations 

with source terms are obtained 

  =
∂

∂
2

02

t

u
 

    ),,(*0
0

02

02

2

02
2

0, tyxuc
y

u

x

u
a ψτ +−









∂
∂

+
∂
∂

= , (38) 

  ( ) ( ) ( ]Ttyx ,0,1,0,,0 ∈∈∈ δ ; 

  =
∂

∂
2

2

t

u
 

    ),,(*
2

2

2

2
2 tyxcu

y

u

x

u
a ψτ +−









∂

∂
+

∂

∂
= , (39) 

  ( ) ( ) ( ]Ttbylx ,0,,0,, ∈∈+∈ δδ , 

where 

  
2

0,

0
4

12

r

c
τω

β
−= , 

  









+










= ),,(

1
),,(

2

2
exp 0

0,0,

*

0 tyxtyx
t

rr

ψ
τ

θ
ω
β

τ
ψ , 

  
24

12

r

c
τω

β
−= , 

  







+








= ),,(

1
),,(

2

2
exp* tyxtyx

t

rr

ψ
τ

θ
ω
β

τ
ψ . 

It is possible to use more accurate function 

approximation. In that case the new expressions for 

coefficients c, 0c  and functions 
*

0ψ , *ψ  will differ 

from those written above. 

The same type of boundary conditions as in 3D 

case are used here 

  [ ]1,0,
0

*

0

0

0
0

∈−=







−

∂
∂

=
=

yu
x

u
x

x

θβ , (40) 

  [ ]1,,*

0

0
0

byu
x

u
x

x

∈=







+

∂
∂

=
=

δ
δ
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  [ ]δθβ ,0,
0

*

0

0

0
0

∈−=







−

∂
∂

=
=

xu
y

u

y

y

, (42) 
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0
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0
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u

by

by

+∈=







+

∂
∂

=
=

δδθβ ,,* , (46) 

where 
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2

exp),,(
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*
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t

tyx
r

θ
τ
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= , 

  ),,(
2

exp),,(* tyx
t

tyx
r

θ
τ
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= . 

The initial conditions assume the following form 

  ),(00
0

0 yxvu
t

=
=

, ),(00
0

0

yxw
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u
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=
∂
∂

=

, (47) 
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=

=
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0

yxw
t

u
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=
∂
∂

=

, (48) 

where 
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0
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0

0
2
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r
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τ
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r

yxv
yxwyxw

τ2
),(

),(),( 0

00 += . 

All the right hand sides of all these conditions are 

obtained applying the averaging procedure to the 

conditions from 3D problem. 

In order to simplify solutions of these 2D 

problems, we shall confine ourselves to one and the 

same relaxation time 
rτ  (

rr
ττ =

0,
) for both parts of 

the sample. Therefore coefficients 
0
c  and c  used in 

(38), (39) are equal, and the continuity conditions 

for the temperatures and the heat fluxes at the 

boundary between the base and the foot are 

automatically assured 

  ],0[,
00

0 byuu
xx

∈=
+=−= δδ

, (49) 

  ],0[,
00

0

by
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u

x

u

xx

∈
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∂

=
∂
∂

+=−= δδ

. (50) 

Using continuity conditions (49), (50), the boundary 

condition for the right hand side border of the base 

can be written in the form 

  ),(0
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0
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tyFu
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∈

∈

. (51) 

But the boundary condition for the left-hand side 

border of the foot is in the form 

  ),(
0

tyFu
x

u
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∂
∂

+=δ

β , 

    

0

0
0
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−

∂
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=
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β
x

u
x

u
tyF  [ ]by ,0∈ . (52) 

Now when the boundary-value problems are stated 

we can find solution for each part of the sample 

using Green’s function method. 

 

3.2.1 Solution for the Base 

It is well known from the literature that the equation 

(38), satisfying the boundary conditions (40) – (43), 

(51) and the initial conditions (47) has a solution 

(see, e.g., [13]) 
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0 0
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υιυζιυζψζι  (53) 

The Green’s function has a form (see [13]) 
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, λτ . 

The natural number 
i
p  that appears in formula (54) 

can be obtained from the inequalities 

  0, <jif  for 1,1 −= ipj , 

  0, >jif  for ∞= ,ipj . 

The eigenfunctions have the following expressions 
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The eigenvalues are roots of these transcendental 

equations 
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If we have a T-shape sample then condition (40) 

has a form 
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. 

And it follows that 
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As for solution (53), ),,0(* ιυθ  has to be replaced by 

zero in this case. 

 

3.2.2 Solution for the Foot 

The solution for the second rectangle is similar to 

(53) 
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But it’s Green’s function has a form similar to (54) 
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The natural number 
m
q  is given by the following 

inequalities 

  0, <nmg  for 1,1 −= mqn , 

  0, >nmg  for ∞= ,mqn . 

The eigenvalues and the eigenfunctions for the 

Green’s function (56) are given by these expressions 
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3.2.3 Junction of Both Solutions 

If we substitute (53) into formula (52), we get 

  =),( tyF  

    

∫ ∫

∫ ∫

Γ
∂
∂

+

Γ=

δ

δ

υυζδυζζ

υυζδυζζ

0

1

0

00

0

0

1

0

00

0

),,,,(),(

),,,,(),(

dty
t

vd

dtywd

 

    ∫ ∫ −Γ+
t

dtyda
0

1

0

0*2
),,0,,(),,0( υιυδιυθιτ  

    ∫ ∫ −Γ+
t

dtyFda
0

1

0

002
),,,,(),( υιυδδιυιτ  

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Tabita Bobinska, Margarita Buike, Andris Buikis

ISSN: 1790-5044 68 Issue 3, Volume 5, July 2010



    ∫ ∫ −Γ+
t

dtyda
0 0

0*2
),0,,,(),0,(

δ

τ ζιζδιζθι  

    ∫ ∫ −Γ+
t

dtyda
0 0

0*2
),1,,,(),1,(

δ

τ ζιζδιζθι  

    .),,,,(),,(
0 0

1

0

0*∫ ∫ ∫ −Γ+
t

dtydd

δ

υιυζδιυζψζι  (57) 

In a similar way, i.e., combining (55) with (51), we 

obtain representation for the combination of the 

solution for the foot and its derivative at the border 

[ ]by ,0∈  between both parts 
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Now it remains to plug expression (57) into (58) to 

obtain non-homogeneous Volterra-Fredholm 

integral equation of the 2
nd
 kind on the border 

between both parts of the L-shape sample 
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Where ),(0 tyΦ  and ),,,(0 ιυ tyK , the kernel, are 

continuous real-valued functions. 

  ( ) ),,,,(
~

),,,( 0220 ιυδιυ τ tyatyK Γ= , 

where 

  =Γ ),,,,(
~ 0 ιυζ ty  

    ∫ ∫ −Γ−Γ=
t b

dtyd
0 0

0
),,,,(),,,,( ητηδδιτυζηδτ . 
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Finding the function ),(0 tyF  is crucial because 

of the following reasons. If the function ),(0 tyF  is 

obtained, we can fin a solution in the base, including 

the border δ=x  and calculate the function ),( tyF . 

Wherewith, we find a solution in the second part of 

the sample too. 

 

 

3.3 Solution of 3D Problem 
Solution of 3D problem can be sought in the same 

way as for 2D. As a result one obtain an integral 

equation similar to (59) with another integral 

addend with respect to the third spatial coordinate 
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Green’s function for the base in 3D case has a form 
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where 

ckaf hjihji +++= )( 2222
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The eigenfunctions have the following expressions 
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But the eigenvalues can be obtained from these 

transcendental equations 
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4 Inverse Problems for 2D L-shape 

Sample 
As it was mentioned before, in this case the initial 

temperatures and the initial heat fluxes are not 

known. But it is required to determine initial heat 

flux densities for their comparison with critical heat 

flux densities. Instead of initial conditions we have 

the temperature distribution and the heat flux 

densities at the final moment (at the end of the 

process) 

  ),(),,(
2

exp 0
0

00 yxw
t

u
yxv

T
u T

Tt

T

r
Tt

=
∂
∂









=

=
= τ

, (62) 

  ),(),,(
2

exp yxw
t

u
yxv

T
u T

Tt

T

r

Tt
=

∂
∂









=

=
= τ

, (63) 
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As it is important to calculate initial heat fluxes, 

let’s introduce a new time variable 

  tTt −=~ . (64) 

By means of that we can formulate new problems 

for the functions 
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The equations are in the same form as (38), (39) 
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Establishing appropriate conditions, one can find 

solutions to these equations. The boundary and 

conjugation conditions are written as in the direct 

problem but the initial conditions take the form 
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by means of which we obtain a direct problem 

instead of inverse. We look for the solution of this 

boundary-value problem as before in the preceding 

section. Differentiating calculated solutions with 

respect to time and calculating the derivatives at the 

moment Tt =~  
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and 
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we can get heat flux densities 
t

v

∂
∂ 0

, 
t

v

∂
∂
 (or 

t

V

∂
∂ 0

, 

t

V

∂
∂

in 3D case) at the very beginning of the process. 

Solution of the 3D problem can be sought in the 

same way as in 2D case. 

 

 

5 Conclusion 
We have constructed exact solution of hyperbolic 

heat equation for 2D L-shape sample in closed form 

of iterative integral equation of 2
nd
 kind. It is 

Fredholm integral equation with respect to the space 

arguments and Volterra integral equation with 

respect to time. 

The solutions of 2D time reverse problems are 

reduced to direct problem with a view to determine 

the initial heat flux densities. 
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