WSEAS TRANSACTIONS on HEAT and MASS TRANSFER

Tabita Bobinska, Margarita Buike, Andris Buikis

Hyperbolic Heat Equation as Mathematical Model for
Steel Quenching of L-shape and T-shape Samples,
Direct and Inverse Problems

TABITA BOBINSKA
Faculty of Physics and Mathematics
University of Latvia
Zellu Street 8, LV1002 Riga
LATVIA
tabita.magdalena@gmail.com

MARGARITA BUIKE, ANDRIS BUIKIS

Institute of Mathematics and Computer Science

University of Latvia
Raina Blvd 29, LV1459 Riga
LATVIA
mbuike@]lanet.lv, buikis@latnet.lv
http://ww3.lza.lv/scientists/buikis.htm

Abstract: - In this paper we develop mathematical model for 2D and 3D hyperbolic heat equation and construct
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inverse problems are obtained in closed analytical form as 2™ kind iterative integral equation, which is
Fredholm integral equation with respect to space coordinate and Volterra integral equation with respect to time.
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1 Introduction
This is a continuation of our investigation [6]. In
some of our previous papers we have considered
problems of heat conduction for one element of the
system with rectangular fin. In the papers [2]-[5],
[7] we have investigated both steady-state problems
and transient problems. Some ideas from these
papers are used here for solving a mixed problem
for an L-form sample.

Generally, in deriving the heat equation the heat
flux vector q is assumed to satisfy Fourier’s law

q:_kVTa (1)

where the del operator, V , is defined in 3D as

0 0 0
V=—i+—j+—Kk,

ox Oz
x is an element from real coordinate space, ¢ is
time but 7(x,¢) denotes the temperature in the body
being considered, with thermal conductivity & .
Plugging equation (1) into the law of conservation
of energy (the 1* law of thermodynamics)

- oT
cpS=-V-q+q, @

ot
where ¢ is specific heat capacity, p is density of
the body and ¢(x,¢) denotes an internal source or

volumetric heat generation rate, one gets the well-
known Fourier’s heat conduction equation
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5p2—€=V-(kVT)+q. 3)

This parabolic equation, although suitable in
many situations, implies infinite thermal speed of
propagation. One of such physical situations when
Fourier’s law is no longer valid is, for example,
Intensive Quenching (IQ). When immersing the
heated part into a quenchant, the initial heat flux
tends to infinity but actually is finite ([11]). So
Fourier’s law at the initial time is no longer suited to

describe heat propagation. In these situations
Fourier’s law (1) can be replaced by
q(x,t+7)=—kVT , >0,
or, by its approximation (see, e.g., [14])
oq
T—+q=—kVT, 4
5 4 4)

which is called the modified Fourier’s equation or
Cattaneo’s equation. Here 7 is a relaxation time. 7,
k, ¢ and p are generally dependent on 7T and on

the material But in the sequel we shall assume that
these are constants.
Combining equation (4) with (2), we obtain
hyperbolic heat conduction equation, which admits
a finite speed of propagation for 7'

o°’T oT

+ —=

R v, 4 (5)
t

cpot cp

T

or
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2
Lza Z"+L28_T:V2T+1@+i.
C” ot a” Ot ko k
It is also known as Telegrapher’s equation or a

damped wave equation. Here C is the speed of heat
2

propagation with C> =<~ and a? :Ni is thermal
T cp

diffusivity coefficient.

2 Mathematical Formulation of 3D

Problem
In this section we are going to use equation (5) to
describe 1IQ process and give full mathematical
statement of 3D problem.

2.1 General Mathematical Statement of 3D
Problem for L-shape Sample

Let’s imagine an L-shape sample made up from two
rectangular cuboids that are joined along the surface
x=0. We’ll call the vertical part the base. And it
occupies the domain {x elo,s5] yelo,1]ze]o, a)]}
But the horizontal part, where
{x € [5,5 + Z],y € [O,b],z € [O,a)]} and b<1, will be
the foot. The sample is heated and then cooled
rapidly (IQ process) in a suitable fluid, e.g., water or
brine. As mentioned before, for describing intensive
steel quenching of the sample we should use
hyperbolic heat equation, which takes into account
the finite speed of heat propagation. Since the
sample consists of two parts, we are able to define
1Q process for each part separately.

To state the boundary-value problem, we need to
derive the equations of the functions describing 1Q
process in the sample, and then establish boundary
and initial conditions. Let’s assume that
V°(x,y,z,t) denotes the temperature distribution in

the base. Therefore the temperature distribution in
the foot will be designed by V(x,y,z,t). The

equations of heat conduction therefore have the

following form
o’ o’ (oW o' o°
=a + +
oy’ oz’

Tr,()

+
or’ ot ox?

+1P0(x9yazat), (6)
xe(O,é'),ye(O,l),ze(O,a)),te(O,T];
o’V ov ,(oV oV oW
T, —+—=a + +
ot ot x> oy oz’
+¥(x,y,2,1), (7

xe(5,5+l),ye(0,b),ze(O,a)),te(O,T],
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_(T}‘O%(x’y’zat)—i_q(x’yazat)ja
p\ 7 ot

¥ ZN—(T, a—q(x, V,z,t) + q(x, y, Z,t)j.
cp ot

When the heat generation is absent, ¥),'¥ =0. The

quantities a*, k, ¢, p, 7

,» T,, have the same
meaning as in the preceding section.

On the surface of the sample a heat exchange
takes place with the surrounding medium the
temperature of which is O(x, y,z,t), so we have 3
type boundary conditions. The boundary conditions
for the base take the form

ov° .
- g =-po| .yelo]zelo,o], ®)
x=0
0
aﬁV +pV° | =p0|_,.velbilze[0,0], (9
X .
x=8
0
o —pV° | =-pO| .xe [0,5]z€[0,0].(10)
Ay o
0
aaV +pV° | =p06|_.xel0,6)z€[0,0], (11)
y . ”
ov® .
P .y =-p0|_,.x<l0,5]yel01], (12)
z=0
ov°
—* gt =po_ .xelo,slyelol], (13)
Z

where £ = % , h is heat-transfer coefficient.

The boundary conditions imposed on the outer sides
of the foot are of the same type

(a—h ﬂVj =p0|_, .velo.b]zef0,0], (14)

Ox =5+l
ov
[——ﬁV =—p0| .xe[s,6+1]z€[0,0],(15)
oy =0 "
Ly = 0| ,xel5,6+1)ze[0,0],(16)
oy R o

y=b

[Z_V_IBVJ = —,6’®|Z:0,x € [5,5+lly € [O,b],(17)
z

o

- :,B®|z:w,xe[5,5+llye[O,b]-(lg)
z

=0

As for the interface between the adjacent sides of
the cuboids, we present necessary conditions to

Issue 3, Volume 5, July 2010



WSEAS TRANSACTIONS on HEAT and MASS TRANSFER

ensure the continuity of the temperatures and the
heat fluxes (ideal thermal contact)

VO x=6-0 :Vx:()'JrO’yE[O’b]’ZE[O’a)]a (19)
0
ov :6_V ,yE[O,b],Ze[O,a)]. (20)
Ox x=0-0 Ox x=6+0

The solutions of equations (6) and (7) must also
satisfy the initial conditions

0

=W (x,9,2),

Y =V ,2), @1

t=0
oV

V|, =Vo(x,9.2), = (22)

=W0(x,y,z),

t=0

where V) (x,y,2), V,(x,y,z), W, (x,y,z) and
W,(x,y,z) are given functions.

From an experimental point of view conditions
(21) (22) are unrealistic because the initial heat flux
densities are not really known. But they must be
calculated for their comparison with critical heat
flux densities to predict heat transfer modes at steel
quenching. During IQ it is required for initial heat
flux density to be less then the first critical heat flux
density q,,, to eliminate film boiling (see [11]). For

determination of initial heat flux densities, we can
assume that the temperature distributions and the
distribution of heat fluxes are given at the end of the
process

0 0 aVO 0
Ve, =V, W (xp.5). (23)
t=T 8t r
V., =V (x,p.2), = Wera. 04
t=T

2.2 General Mathematical Statement of 3D
Problem for T-shape Sample

In this case we have a sample of T-form. It consists

of two L-shape samples which are each other’s

mirror image. One of them is the sample described

in the preceding subsection, and these two are

joined along the side x=0.

The boundary-value problems for determining
the temperature of this sample are written in the
same form as in the preceding subsection except the
boundary condition at the dividing plane. Along this
plane the insulation (symmetry) condition

or’
Ox

x=0

=0,yel0,1}ze[0, 0] (25)

must be applied.
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In such situation both L-shape samples have the
same temperature distribution.

3 Direct Problem for L-shape Sample

Here we find a solution for direct problem and
briefly explain the idea how we can modify the well
known Green’s function method to obtain a closed-
form Green’s function for so called regular non-
canonical domain. The main idea is to represent the
original domain as a finite union of canonical sub-
domains with appropriate boundary conditions
along the lines (planes) connecting two neighbours.
In the case of L-shape sample we have already
divided it into two rectangles (rectangular cuboids).

3.1 Direct Problem for 3D L-shape Sample
We can transform equations (6) and (7) into more
common form by introducing the well known
substitutions

t

Ve (x,y,z,t)= exp[— 5 JUO (x,9,2,1), (26)

7,0

V(x,y,z,t)= exp(— %JU(X, V,Z,t). 27
T,

¥

Plugging these expressions into equations (6) and
(7) (and in all the conditions as well), we get new
equations without first time derivatives. These are
called Klein-Gordon equations

o’u®  , (oU° o'U° oU° 1
7 ~ 4o 2 >t T |[r-=U
ot Ox oy 0z 4z,
1 t
+—exp Y, (x,»,z,1), (28)
Tr,O 27}‘,0
xe(0,5),ye(O,l),ze(O,a)),te(O,T];
o’'U  L(oU o'U oU 1
; — 4, Tttt |t U
ot ox~ oy- oz 4z;
1 t
+—exp . Y(x,y,2,10), (29)
r Tr

xe(§,5+l),ye(0,b),ze(O,a)),te(O,T],

2 2

h 2 a 2_ 4
where a;j=—, a; =—.
7.0 T

r

The new boundary conditions for these equations
can be written as before in (8) — (18) using functions

' o
2Tr’0

U°, U instead of V° and V, and exp
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(for the base) or exp{zL

J@ (for the foot) instead
of ®. But the continuity conditions (19), (20)
transform into a new form that shows discontinuity
in the temperature field and the heat fluxes at the

connecting surface x =0

t t
UO x=6-0 - exp( 27;‘,0 - Z]U x=5+0" (30)
ye [O,b],z IS [0, a)] ,
0
ox | s 2t,, 2z, J OX | _s.0

yelo,b]zel0,0].

We have corresponding initial conditions for the
direct problem

UO‘H) = VO0 (x,»,2),

0 VO (32)
aU ZWOO(x,y,Z)+ 0 (x’y’Z),
or |, 27, ,
Ul _, =V,(x,»,2),
vV 33
ou :Wo(x,y,Z)Jr—O(x’y’Z), )
ot |, 27,

or additional conditions at final moment for the
inverse problem

T
UOLT = exp[2 - JVTO (x,3,2), (34)
i r Vi (x,p,
ou = exp[ J{WTO (x,y,z)+—+ (x,,2) ,
at t=T 2Tr,() 21—,’0
T
Ul =exp| 5= 2 (62,2), (35)

ot

T V.(x,y,
:exp RS WT(X,y,Z)+M .
t=T 2Tr 2Tr

We’ll consider the inverse problem later.

We can find solutions to the original 3D
problems (6) and (7) by solving the problems for
equations (28), (29), and using transformations (26),
(27). Since finding solution of 3D direct problem is
quite similar as in 2D case, we will consider only
the latter.

3.2 Direct Problem for Thin L-shape Sample
In this case we have a sample that is thin in the
z —direction (w<</,w<<b,w<<d). To obtain
mathematical formulation for 2D problem from the
problem considered before, we can introduce
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averaged values in the z—direction of all the
functions used before. For instance,

u (0 =0 (U (x,y,2,0dz (36)
0
u(x,y,t)=0" [U(x,y,2,0dz. (37)
0

By using these approximations and applying the
boundary conditions which are obtained from (12),
(13), and (17), (18), two 2D differential equations
with source terms are obtained

o*u’

o’
2.0 2.0
:afy{ﬁ u +—a “ j—couO +y, (5,1, (38)

ox’ oy’
xXe (O,5),ye (O,l),te(O,T];
0’u

o’
,(0°u 0%u
=a +
“lox? oy’
xe(5,6+l),ye(O,b),te(O,T],

]—cuﬂ//*(x,y,t), (39)

where

j(% 0%, yu1) +——yry (x. . t)J ,

@ Tr,O

v = exp[%}(% O(x, y,t) + Tit//(x, y,t)j .

It is possible to use more accurate function
approximation. In that case the new expressions for
coefficients ¢, ¢, and functions vy, v will differ

from those written above.
The same type of boundary conditions as in 3D
case are used here

ou’ .

(;"x ~pu | =-0;] .velod], (40)
x=0

a 0 *

a”x +pu’ | =0, yelp], (41)
x=0

a 0 *

a”y ~pu’ | ==0;| .xelo.5], (42)
y=0
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0
[a” +,6'qu =0, .xef0.5]. (43)
y=1 .
(%+ﬂu =0'| _ .yelo.p], (44)
Ox x=6+1 ot
Ou .
(——,Bu =-0"| .xels.5+1], (45)
oy =0
y=0
ou N
+pu| =0 xels,5+1], (46)
oy b y=b
where
* t
go(x?y’t):ﬂexp( Je(xayat):
2z, ,
0" (x,y,.0)=f eXp[zLJH(x, y,1).
TI”

The initial conditions assume the following form

0

U _
u’| | =vix.p), =W, (x,7), (47)
- ot |,
Y, =vo(xy), — =w,(x), (48)
at t=0
where
_ y? (x,v)
Wy (X, 1) = w) (x, y) + 2=
2Tr,0
— Vo (x,¥)
W, (X, ) = wy(x,¥) +°27 '

I

All the right hand sides of all these conditions are
obtained applying the averaging procedure to the
conditions from 3D problem.

In order to simplify solutions of these 2D
problems, we shall confine ourselves to one and the
same relaxation time 7, (7, , =7, ) for both parts of

the sample. Therefore coefficients ¢, and ¢ used in

(38), (39) are equal, and the continuity conditions
for the temperatures and the heat fluxes at the
boundary between the base and the foot are
automatically assured

' x=56-0 =u x=56+0" ye [O’ b] 5 (49)
auo au
x| "o cYElOPl (50)
x=6-0 x=6+0

Using continuity conditions (49), (50), the boundary
condition for the right hand side border of the base
can be written in the form
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0
ou + pu’ =F'(y,1),
ax x=0-0
0 s ye (b,l]
F’(y,t)= (61,1 ﬁ] (51)
—+ fu
ax =540 yE[O,b]

But the boundary condition for the left-hand side
border of the foot is in the form

o
(a—)’j : ﬂuj _=Fo,
F(y,t):(ag —,b’uoj yel0,5]. (52)
X x=6-0

Now when the boundary-value problems are stated
we can find solution for each part of the sample
using Green’s function method.

3.2.1 Solution for the Base

It is well known from the literature that the equation
(38), satisfying the boundary conditions (40) — (43),
(51) and the initial conditions (47) has a solution
(see, e.g., [13])

uo(x,y,t) =

- ngng)(g,u)G‘)(x,y, ¢,u,t)dv

+ fdgfvg(g,u)%(;o(x,y, & 0,0)dv

N

=

0" (0,0,1)G’(x, y,0,0,t — 1)dv

+
S}

=

O O, O O O O e —

+
)
B

F’(0,0)G’(x,y,8,0,t —1)dv

d

A )

0" (£,0,0G’ (x,v,¢,0,t —1)dS

+
[

di

J’_
{
N

Ol O O O

o’ <. z)GO (x,,¢,1,t —10)dg

+ idlid(iw*(é’,u,z)Go(x,y, S,u,t—0dv. (53)

The Green’s function has a form (see [13])
G’(x,y,{,0,t) =

2 200,06, (0, @ysin( 11|

-3y e
el o ] 1.

~

Issue 3, Volume 5, July 2010



WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Tabita Bobinska, Margarita Buike, Andris Buikis

. t o+l
© = 0(X)p, , (v)sinlt,/ f; . *
(55O, L a o o660 nas
= e H¢/H Vi ! ;1
fi,=al (X +k)+e. + afjdr ja*(g,b,r)c(x,y,g,b,z —1)dé
0 S5
The natural number p, that appears in formula (54) (e b
can be obtained from the inequalities + j.dT J. dfj.'// (8.1, 7)G(x,y,8,1,t — 7)dn. (55)
0 S5 0

fi;<0for j=Lp, ~1, But it’s Green’s function has a form similar to (54)

f;',j>0 for j:pi,OO, G(xay,g,ﬂ,t):
The eigenfunctions have the following expressions v a1 @, ()0, (E), ()8, (1) sinh(t | o j

Z,. =
@, (x)=sin(4,x+d,), d, = arctan(g’j , ; ; lea | 12,17 |gm .
5 ()= sin(k Vee). o= arctan(kj), 5 i 0,0, ()6, ), (sinli 2., ) 6
2 2
||g0 ” ﬂ , ¢ “ . B m=1n=q ”(Pm Emn
2GR PRy o = iy +V) H e
The e;igenvalues are roots of these transcendental The natural number ¢ is given by the following
equations inequalities
2 _B? —
Cot(//iié‘): : IH t(k )— ﬂ . gm,n <0 for nzlﬂqm _17
: 2k, p

gm,n > 0 for n :qm,OO
If we have a T-shape sample then condition (40)

has a form The eigenval}les and the. eigenfunctions for. the
. Green’s function (56) are given by these expressions
Ou
=0,y€l0,1]. 2 _ B2 2 _ B2
ox | 4 [ ] cot(u,1) =M , cot(v,b) = v, =P ,
x=0 Zﬂmﬁ 2Vnﬂ

And it follows that

s _A
||¢,|| 5 W cot(;t,.a)_ﬂ

¢, () =sin[u, (x~8)+d,]. d, = arctan(”—;j :

. v
=sin(v y+e ), e, =arctan| — |,
As for solution (53), 8°(0,v,) has to be replaced by 7.() Wy e ( b j
zero in this case. I 2 b
ol =3+ 2 o =32
My + B 2 v, +p

3.2.2 Solution for the Foot
The solution for the second rectangle is similar to
(53)

u(x,y,t)=

o+l b

- j dé j Wy (£,m)G(x, y,&,m,0)d7

3.2.3 Junction of Both Solutions
If we substitute (53) into formula (52), we get

F(y,t) =

= j dgj (8,08, 7,8 0,0)dv

+ J déjvo(é 77) G626, m,0dn

t b
2

t 1
_ardeIF(ﬂ,T)G(xaya5,ﬂ,f—T)dﬂ +aTzJ.dlj.0*(0,U,l)r0(5,y,0,U,t—l)dU
0 0

+{dg_([vg((,u)%Fo(&,y,g,ujt)du

0 0
t b

+a [dz[67(5+1,7,0)G(x, y,6+1n,t —7)dn

T
0 0

t 1
+afJ-dzJ.Fo(u,z)F°(5,y,§,u,t—1)du
0 0
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t )

+al [di0°(£,0,00°(8,,£.0,t = )d¢
0 0
t 5

+a [dif 0'(¢ LT (S, 3,4 1t —0dS
0 0

+Id’idfiw*(gaval)FO(5,y,§,u,t—z)du. (57)

In a similar way, i.e., combining (55) with (51), we
obtain representation for the combination of the
solution for the foot and its derivative at the border
y €[0,b] between both parts

F'(y,0)=

o+l b

= [ d&[w,(&mT(S,y.¢n,0dn

o+l b

+ [ dEfnEm TG,y 0

t b

—a [dz[F(,000(8,,8,m,t=1)dn

0 0
t b

+al[dz[67(5+1,7,000(3,y,6 + Lyt —7)dn

0 0
t o+l
+a’[dr [07(£0,001(8,y,£.0,t - )dé
0 5
t o+l
+ Clrzde IH*(f,b,z')F(&y,é‘,b,t - T)dg
0 5
t o+l b
+ JdT J déj‘// (ganar)r(éayafanat - f)dﬂ . (58)
0 5 0
Here I’ =(i—ﬂjG°, Fz(i+ﬁjG.
ox ox

Now it remains to plug expression (57) into (58) to
obtain non-homogeneous Volterra-Fredholm
integral equation of the 2™ kind on the border
between both parts of the L-shape sample

F'(y,t)=
=D°(y,1) —jdljFO(u,z)Ko(y,u,t,z)du . (59)

Where ®°(y,t) and K°(y,v,t,1), the kernel, are
continuous real-valued functions.

K'(y,0,6,0= (a2 F T (5,8,0,1,1),

where
f‘o(y,g,u,t,z) =

t b
= [de[T°(8,7,¢,0,7 = D(S, 3, 8,n,t —7)d7.
0 0
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But the non-homogeneous term is in the form

D’ (y,1) =

o+l b

= [ de[w, T,y &m0

o+l

f 0
+ j dfj. Vo (5, U)ar(5a s 5, Uaf)dﬂ

-a? [d[w) (.o (v.¢.0.00)dv

0 0
5 1

—a’ j dgjvg (&, v)dv x

[dr| %r" (6.1,£,0,0)1(8,y,8,m,¢ = 7)dn
0 0

-a?

~(a?)

~(a?)

~—
S

di| 6°(0,v, 1)1:0 (»,0,0,t,1)dv

0" (£,0,00° (»,¢,0,1,0)dl

0 (C L)L (v, & L t,0dl

di

Ol O O C—
=
Oy Y O Y O C—y —

N

Ctmm v St O O

dv|y" (£, 0,00 (p,¢,0,8,0d¢

I

S}

=
ot~
O ),

b
dz[ 0" (8 +1,7,000(8, 7,8 +1,n,t = 1)dn
0
S+l
dz [6"(£,0,0)1(6, y,£,0,t — 1)dé
)
S+l
dr [0"(£.0. 0.y £.b.t - 1)dE
)
t S+l b
+J.dT I dgj.l// (é,ﬂ,r)r(é‘ayagaﬂat _T)d77-
0

0 3

+
[
N

N

+
[

+
[
NN

Finding the function F°(y,#) is crucial because

of the following reasons. If the function F°(y,?) is

obtained, we can fin a solution in the base, including
the border x =6 and calculate the function F(y,?).

Wherewith, we find a solution in the second part of
the sample too.

3.3 Solution of 3D Problem
Solution of 3D problem can be sought in the same
way as for 2D. As a result one obtain an integral
equation similar to (59) with another integral
addend with respect to the third spatial coordinate
F'(p,z,t)=
=0"(y,2,0)
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t w b
- [difda | F* (,@,0K" (y,0,2,@,1,0dv . (60)
0 0 0

Green’s function for the base in 3D case has a form

G'(x,y, ¢, 0,z,m,t) =
o o Pl

=2 Zqol (N)0.(O)8,()8,(L)7,(2)7, (@) x

i=l j=1 h=1
sinh(t | f,.,j,hD
ol Il 7.

£33 6. (0006, ()8, (L)1, ()7, (@) %

=l j=1 h=
sin(t ﬁ, j,h)
2 ’
lo 16 17 7.
where

2,12 2 2
Jia=a. (L +k;+v)+c.

Pij

(61)

The eigenfunctions have the following expressions
A,
Pi (.Xf) = Sin(/lix + di ) ) di = arctan(glj D
¢;(y)=sin(k,y +e;,),

e, =arctan(k ),

v,(z2)=sin(v,z+g,), g, = arctan(ﬁj ,
w

_6. B 1. B
ol =5+t Wl =5t
||7h||2 =5+V:Tﬂﬂz-

But the eigenvalues can be obtained from these
transcendental equations

22— B ki -p?
cot(4,0) =— p ,cot(kj):i,

2, 2k, p

2 2
cot(vha))zu.

v, p

4 Inverse Problems for 2D L-shape
Sample

As it was mentioned before, in this case the initial
temperatures and the initial heat fluxes are not
known. But it is required to determine initial heat
flux densities for their comparison with critical heat
flux densities. Instead of initial conditions we have
the temperature distribution and the heat flux
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densities at the final moment (at the end of the
process)

T ou’ _
u’| = exp[—Jvﬁ (% 2h—] =W (x,),(62)
22—" t=T
T ou _
=¢C -~ s [ = s s 63
u|,:T Xr{ 2 jvT (x,») ol wr(x,y), (63)
where
_ T v, (x,¥)
wr (x,y) =exp| — | wp (x, ) + = |,
27, 27,

wr(x, ) = eXp(%j{wT (x,y)+ M}

As it is important to calculate initial heat fluxes,
let’s introduce a new time variable

f=T-t. (64)
By means of that we can formulate new problems
for the functions

~_ el ~
Eo(x:y:t)zuo(xay:T_t):

~ ~

E(x:yat)Eu(xayaT_t)‘
The equations are in the same form as (38), (39)
62’\'0
Fa
2~0 2~0

=a ( u 6 j—cu +7 (xx,0,1),  (65)
xe(0,6),y<(0 e(0,7];
ou
or’

o’u 0'u
=a’ + —cu + X, y,t 66

f(éxz o J v (1), (66)

xe(5,5+l),ye(O,b),tNE(O,T].

Establishing appropriate conditions, one can find
solutions to these equations. The boundary and
conjugation conditions are written as in the direct
problem but the initial conditions take the form

~0

“ 7=0 :uo‘t:T Ewg(x,y),

o’ ou’ — ~0 (67)
Py = :_Wr(xay)EWra

ot - ot .

Z’7|7=0 :u|z=r =w,(x,),

ou ou ~ (68)
—| == =-w,(x,y)=W,,

o7 - ot . T( V) T
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by means of which we obtain a direct problem
instead of inverse. We look for the solution of this
boundary-value problem as before in the preceding
section. Differentiating calculated solutions with
respect to time and calculating the derivatives at the

moment 7 =T

ou’ (x,y,1)

a .,
J‘dgj. (é/aU)iGo(x,y,é/,U,’f)N dv
+Id¢f¥<¢v) ~QG<xym) v

+a’[67(0,0,T)G"(x,1.,0,0,0)dv

1
+al[dif0° (0,0, z)% G’ (x,1,0,0,7 —1)

0

dv

7=T

+a 0, TG’ (x,y,5,0,0)dv

2
T

Y

dv

=T

1
+al[di F' (v, z)—G (x,,6,0,T —1)
0

P

+a (£,0,T)G’(x,,£,0,0)dS

5

dlI

0

(LG (x,,£.10)dS

+

a

(.0, z)i~ GO (e, 0.7 — 1)

+a

s

va [0 (€106 g LT -0

0

dg

t=T

I
|
17
|
1o
|
1o
|

) 1

+ [d¢[7 (£,0,1)G (x,y,¢,0,0)dv

0 0
T 5 1 1/7*(4/,U,I)X

+J'dzj'd§J-88G(xy,§Ut_l) . (69)

dv

=T

and

0l (x,,7)
or |,
o+l

- jd@fW (MG, )

S+l

| dffw s G aal

d77

dn

=T
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b

—a’ [F(n,1)G(x,,8,7,0)dn
0
T b

~ 0 -
—a’|dr| F(n,7)—=G(x,y,0,n,f —
a}[dz| 7,7y 5= G (%, 3, 0,17, 1 = 7)

0 0

b

+a’[6°(5+1n.T)G(x, y,8+1,7.0)dn

dn

=T

o+l

+a? jé (£,0,1)G(x, y,£,0,0)dE

T O+l

+a fdrje (£,0,7) NG(xy,é‘Ot 1)dé&

o+l

+a? [0°(£,b,1)G(x,,&,b,T —1)dé
50 (Eb,T)x
+afj

5+l

| déj 7 (. TG (x,y,€.m.0)dn

;[iG(x v,&,b, r -7) d¢&

=T

T S+l b‘;;*(é::ﬂaf)x
i . (0)
I I I G(xyfn,t—r) dn
=T
0 0
we can get heat flux densities aL » (or o ,
ot ot ot

%—V in 3D case) at the very beginning of the process.
t

Solution of the 3D problem can be sought in the
same way as in 2D case.

5 Conclusion

We have constructed exact solution of hyperbolic
heat equation for 2D L-shape sample in closed form
of iterative integral equation of 2™ kind. It is
Fredholm integral equation with respect to the space
arguments and Volterra integral equation with
respect to time.

The solutions of 2D time reverse problems are
reduced to direct problem with a view to determine
the initial heat flux densities.
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