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Abstract: - An exact analysis of the natural convection in unsteady Couette flow of a viscous incompressible 
fluid confined between two vertical parallel plates in the presence of thermal radiation is performed. The flow 
is induced by means of Couette motion and free convection currents occurring as a result of application of 
constant heat flux on the wall with a uniform vertical motion in its own plane while constant temperature on the 
stationary wall. The fluid considered here is a gray, absorbing-emitting but non-scattering medium, and the 
Rosseland approximation is used to describe the radiative heat flux in the analysis. The dimensionless 
governing partial differential equations are solved using Laplace transform technique. Numerical results for the 
velocity, the temperature, the skin-friction, the Nusselt number, the volume flow rate and the vertical heat flux 
are shown graphically. The effect of different parameters like thermal radiation parameter, Grashof number, 
Prandtl number and time are discussed. It is observed that the momentum and thermal boundary layer thickness 
decreases owing to an increase in the value of the radiation parameter. An increase in the Grashof number is 
found to increase the velocity of air and water and to decrease the skin-friction at the moving plate. 
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1 Introduction 
The fluid flow between parallel plates by means of 
Couette motion is a classical fluid mechanics 
problem that has applications in magnetohydro- 
dynamic (MHD) power generators and pumps, 
accelerators, aerodynamics heating, electrostatic 
precipitation, polymer technology, petroleum 
industry, purification of crude oil, and also in many 
material processing applications such as extrusion, 
metal forming, continuous casting, wire and glass 
fiber drawing, etc. This problem has received 
considerable attention in the case of horizontal 
parallel plates [1]-[15] than vertical parallel plates. 
An analysis of flow formation in Couette motion 
between vertical parallel plates was presented by 
Schlichting and Gersten [16]. This problem is of 
fundamental importance as it provides the exact 
solution and reveals how the velocity profiles varies 
with time, approaching a linear distribution 
asymptotically, and how the boundary layer spreads 
throughout the flow field. 

Free convection in vertical channels has been 
studied widely in the last few decades under 
different physical effects [17]-[27] due to its 
importance in many engineering applications such 

as cooling of electronic equipments, design of 
passive solar systems for energy conversion, cooling 
of nuclear reactors, design of heat exchangers, 
chemical devices and process equipment, 
geothermal systems, and others. However, very few 
papers deal with free convection in Couette motion 
between vertical parallel plates. Singh [28] studied 
the effect of free convection in Couette motion. He 
has considered the unsteady free-convective flow of 
a viscous incompressible fluid between two vertical 
parallel plates at constant but different temperatures 
and one of which is impulsively started in its own 
plane and the other is kept stationary. This problem 
was further extended for magnetohydrodynamic 
case by Jha [29]. Fully-developed laminar free 
convection Couette flow between two vertical 
parallel plates with transverse sinusoidal injection of 
the fluid at the stationary plate and its corresponding 
removal by constant suction through the plate in 
uniform motion has been analyzed by Jain and 
Gupta [30]. The physical effect of external shear in 
the form of Couette flow of a Bingham fluid in a 
vertical parallel plane channel with constant 
temperature differential across the walls was 
investigated analytically by Barletta and Magyari 
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[31]. Steady fully-developed combined forced and 
free convection Couette flow with viscous 
dissipation in a vertical channel has been 
investigated analytically by Barletta et al. [32]. In 
their study, the moving wall is thermally insulated 
and the wall at rest is kept at a uniform temperature. 

The aim of the present paper is to provide an 
exact analysis of unsteady free convection in 
Couette motion between two vertical parallel plates 
in the presence of thermal radiation, where the 
moving plate is subject to constant heat flux and the 
plate at rest is isothermal. Exact solutions are 
derived for the velocity and temperature fields using 
Laplace transform technique. These solutions are 
useful to gain a deeper knowledge of the underlying 
physical processes and it provides the possibility to 
get a benchmark for numerical solvers with 
reference to basic flow configurations. The 
mathematical analysis and the solution of the 
velocity field for two different cases – one valid for 
fluids with Prandtl numbers different from unity and 
the other for which the Prandtl number is unity – 
have been presented in Section 2, the results are 
discussed in Section 3 and the conclusions are set 
out in Section 4. 
 
 
2 Mathematical Analysis 
Consider the unsteady free-convective Couette flow 
of an incompressible viscous radiating fluid between 
two infinite vertical parallel plates separated by a 
distance h. The x′ - axis is taken along one of the 
plates in the vertically upward direction and the y′ - 
axis is taken normal to the plate. Initially, at time 

0≤′t , the two plates and the fluid are assumed to 
be at the same temperature hT ′  and stationary. At 
time 0>′t , the plate at 0=′y  starts moving in its 
own plane with an impulsive velocity U  and is 
heated by supplying heat at constant rate whereas 
the plate at hy =′  is stationary and maintained at a 
constant temperature hT ′ . It is also assumed that the 
radiative heat flux in the x′ - direction is negligible 
as compared to that in the y′ - direction. As the 
plates are infinite in length, the velocity and 
temperature fields are functions of y′  and t ′  only. 
Then under the usual Boussinesq’s approximation, 
the flow of a radiating fluid is shown to be governed 
by the following system of equations: 
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The initial and boundary conditions are as follows: 
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where g is the acceleration due to gravity, β  the 
volumetric co-efficient of thermal expansion, ν  the 
kinematic viscosity, ρ  the density, k  the thermal 
conductivity, pC  the specific heat at constant 

pressure, q  the constant heat flux, rq  the radiative 
heat flux in y′ - direction, T ′  the fluid temperature, 
and u′  is the fluid velocity. 

The radiative heat flux term is simplified by 
making use of the Rosseland approximation [33] as 
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where σ  is the Stefan-Boltzmann constant and *k  
is the mean absorption coefficient. It should be 
noted that by using the Rosseland approximation we 
limit our analysis to optically thick fluids. If 
temperature differences within the flow are 
sufficiently small such that 4T ′  may be expressed 
as a linear function of the temperature, Then the 
Taylor series for 4T ′  about hT ′ , after neglecting 
higher order terms, is given by 
 

434 34 hh TTTT ′−′′≅′                              (5) 
 
It is emphasized here that equation (5) is widely 
used in computational fluid dynamics involving 
radiation absorption problems [34] in expressing the 
term 4T ′ as a linear function. 
In view of Eqs. (4) and (5), Eq. (2) reduces to 
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In order to solve the governing equations in 
dimensionless form, we introduce the following 
non-dimensional quantities: 
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where Gr  is the thermal Grashof number, Pr  the 
Prandtl number, R  the radiation parameter, t  the 
dimensionless time, u  the dimensionless velocity, 
y  the dimensionless coordinate axis normal to the 

plate, μ  the coefficient of viscosity and θ  is the 
dimensionless temperature. 

Then in view of Eqs. (7), Eqs. (1), (6) and (3) 
reduces to the following non-dimensional form of 
equations: 
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The initial and boundary conditions are 
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The solutions of Eqs. (8) and (9) under the initial 
and boundary conditions (10) by Laplace transform 
technique is given by 
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z  is a dummy variable and 321 ,, fff  are functions 
of dummy variable. 

Using the expression (11), the skin-friction at the 
moving hot plate 0=y  in non-dimensional form is 
given by 
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and the skin-friction at the stationary plate 1=y  is 
given by 
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Using the expression (12), it is also interesting to 
study the rate of heat transfer at the moving hot 
plate 0=y  which is expressed as Nusselt number 
by 
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and the Nusselt number at the stationary plate 1=y  
is given by 
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0τ ′  is the dimensional skin-friction at the plate 

0=y  and 654 ,, fff  are functions of dummy 
variable z . 

Another two important quantities for this 
problem are the non-dimensional volume flow rate 
between the plates and the non-dimensional vertical 
heat flux defined, respectively, by the following 
equations [35]-[37]: 
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2.1 Solution in the absence of radiation 
In the absence of thermal radiation, i.e. in the pure 
convection case which numerically corresponds to 

∞→R , the energy equation in non-dimensional 
form becomes 
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Since Pr=N  as ∞→R , therefore the solution of 
the problem in the absence of radiation can be 
obtained from the equations of (11) and (12) simply 
by replacing N  by Pr . Thus the velocity and 
temperature expressions in the absence of thermal 
radiation are given by 
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where  
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It is clear that the solution for temperature field 
given by Eq. (21) is valid for all values of the Pandtl 
number whereas the solution for velocity field given 
by Eq. (20) is not valid for fluids of Prandtl number 
unity. As the Prandtl number is a measure of the 
relative importance of the viscosity and thermal 
conductivity of the fluid, the case 1Pr =  
corresponds to those fluids whose momentum and 
thermal boundary layer thicknesses are of the same 
order of magnitude. Thus the solution for the 
velocity field has to be re-derived from Eqs. (19) 
and (8) when 1Pr = . It can be shown that 
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3 Results and Discussion 
An exact solution to the problem of natural 
convection in unsteady Couette flow between two 
long vertical parallel plates in the presence of 
constant heat flux and thermal radiation have been 
presented in the preceding section. In order to get 
the physical insight into the problem, the numerical 
values of the temperature field, the velocity field, 
the skin-friction, the Nusselt number, the volume 
flow rate and the vertical heat flux are computed for 
different values of the system parameters such as 
Radiation parameter (R), Grashof number (Gr), 
Prandtl number (Pr) and time (t). Figure 1 presents 
the temperature profiles of air (Pr = 0.71) for 
different values of t and R. It is seen that the 
temperature increases with increasing time in the 
presence of radiation and in the case of pure 
convection (which numerically corresponds to 

∞→R ) i.e. in the absence of radiation. Moreover, 
the temperature is found to decrease due to an 
increase in the radiation parameter. When radiation 
is present, the thermal boundary layer was always 
found to thicken, which may be explained by the 
fact that radiation provides an additional means to 
diffuse energy. For 10=R  the temperature profile is 
found to increase 4.26 % of the pure convection 
case at the moving plate when 4.0=t . The 
thickening of the thermal boundary layer is more 
significant for small values of t and R. Furthermore, 
the temperature profiles attain their maximum value 
near the moving hot wall )0( =y  and decreases 

smoothly to zero at the stationary wall )1( =y  of 
the vertical channel. 
 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

T
em

pe
ra

tu
re

( θ
)

 
 
 
Figure 2 presents the velocity profiles for both air 
and water (Pr = 7.0) in the case of pure convection 

)( ∞→R  for different values of Gr and t. It is seen 
that the velocity of air and water increases with 
increasing Gr and t. At a smaller t, the velocity 
distribution is monotonic, but at a higher time it 
passes through a maximum near the moving plate 
when the buoyancy effect partly suppresses the 
inertial effects of the plate velocity. Moreover, the 
velocity of air is greater than the velocity of water. 
Physically this is possible because fluids with high 
Prandtl number have greater viscosity, which makes 
the fluid thick and hence move slowly. 
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I        0.2      ∞  
II       0.4      ∞  
III      1.0      ∞  
IV      0.2     1.0 
V       0.4     1.0 
VI      1.0     1.0 
VII     0.4     0.1 
VIII    0.4     10 
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Fig. 1 Temperature profiles 
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II     0.4   10
III    1.0   10
IV    0.4    5
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Pr = 7.0 
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Fig. 2 Velocity profiles for different t, Pr and Gr
(Pure convection case)   
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Figure 3 presents the velocity profiles of air for 
different values of t, Gr and R.  It is observed that 
the velocity increases with increasing t and Gr. 
Physically this is possible because as the Grashof 
number or time increases, the contribution from the 
buoyancy force near the moving hot plate become 
more significant and hence a small rise in the fluid 
velocity near the plate is observed. Further, it is 
observed that the fluid velocity decreases with 
increasing value of R. This result may be explained 
by the fact that an increase in the radiation 
parameter )4/( *

hTkkR ′= σ  for fixed k  and hT ′  
means an increase in the Rosseland mean absorption 
coefficient *k . When radiation is present, the 
momentum boundary layer was found to be thicken, 
which is in agreement with the observation made 
earlier with regard to the temperature variations of 
air. For 10=R  the velocity profile is found to 
increase 2.52 % of the pure convection case near the 
moving plate at 3.0=y  when 4.0=t . 
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Figure 4 presents the skin-friction variation with t in 
the pure convection case for different values of Pr 
and Gr at the moving plate. It is observed that the 
skin-friction increases with increasing Pr whereas it 
decreases with increasing Gr and t. A large Prandtl 
number implies more prominent viscous effects 
causing an enhanced frictional force. Figure 5 
presents the skin-friction variation of air flow with 
time in the presence of radiation effects for different 
values of R and Gr at the moving plate. It is 
observed that the skin-friction increases with 
increasing R and it decreases with increasing Gr and 
t. Furthermore, from figures 4 and 5, it is interesting 

to note that for small values of time, skin-friction is 
more affected by Pr, Gr and R while less affected 
for large values of time. The value of the skin-
friction becomes negative after some time, 
indicating that there occurs a reverse type of flow 
near the moving plate. Physically this is possible as 
the motion of the fluid is due to the plate motion in 
the upward direction against the gravitational field. 
Thus it can be expected that large values of Gr may 
cause flow separation even at small values of t. 
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In the case of pure convection, figures 6 and 7 
presents the variation of the skin-friction with time 
for different values of Gr and Pr at the stationary 
plate )1( =y . It is observed that the skin-friction is 
increasing with increasing Gr to a certain value of t 
and it decreases gradually to the steady state value 
as time increases. That is the friction curves assume  

        t     Gr     R 
I     0.2   10    1.0 
II    0.4   10    1.0 
III   1.0   10    1.0 
IV   0.4    5     1.0 
V    0.4   10    0.1 
VI   0.4   10     10 
VII  0.4   10     ∞  

Pr = 0.71 

I

II 

III 

IV 

V 

VI 

VII 

Fig. 3 Velocity profiles of air for different t, 
Gr and R 

R ∞→

Fig. 4 Skin-friction )( 0τ  variation with t  
(Pure convection case) 

Pr = 0.71 

Pr =7.0 

Gr = 5 
Gr = 10 

       Gr     R 
I      10    0.1
II     10    1.0
III    10    10 
IV    10    ∞
V      5     1.0

Pr = 0.71 

Fig. 5 Skin-friction )( 0τ  variation with t

I, II, III, IV, V 
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parabolic shapes with an increase in t. It is also clear 
that the skin-friction is higher for large values of Pr. 
Figure 8 presents the skin-friction variation with 
time for different values of Gr and R at the 
stationary plate. It is noted that the peak values of 
the skin-friction is attained at low time, and the 
behavior of the skin-friction distribution is 
completely oscillatory. 
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Figures 9 and 10 shows the effect of R on the 
variation of the Nusselt number with t for 71.0Pr =  
at the moving and stationary plates respectively, we 
see that the Nusselt number is increasing with 
increasing values of R at small values of t and it is 
decreasing with an increase in time at the moving 
plate. But, the trend is completely opposite at the 
stationary plate. As time increases, the effect of R 
on the Nusselt number is not significant. 

Fig. 6 Skin-friction )( 1τ  variation with t 

R ∞→

Pr = 0.71

Gr = 2 

Gr = 5 

Gr = 10 

Pr = 7 

R ∞→

Gr = 2 

Gr = 5 

Gr = 10 

Fig. 7 Skin-friction )( 1τ  variation with t

Fig. 8 Skin-friction )( 1τ  variation with t 

Pr = 0.71        Gr     R 
I      10    0.1
II     10    0.2
III    10    0.3
IV    10   1.0
V     10    10
VI    10    ∞
V II   5     1.0

I 
II 

III 

IV 

V 

VI 

VII 

Pr = 0.71 

R = 0.1, 1.0, 10, ∞  

Fig. 9 Nusselt number )( 0Nu  variation with t

Fig. 10 Nusselt number )( 1Nu  variation with t 

R = 0.1, 1.0, 10, ∞  

Pr = 0.71
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Figure 11 presents the variation of volume flow rate 
with t for different values of Gr and Pr in the case of 
pure convection. It is observed that the volume flow 
rate increases with increasing Gr and it decreases 
with increasing Pr, which are in agreement with the 
observations made earlier with regard to the velocity 
field. Figure 12 presents the variation of Volume 
flow rate with t for different values of R and Gr. It is 
observed that the volume flow rate is decreasing 
with increasing values of R and these variations are 
significant only for small values of time. The 
volume flow rate increase with increasing values of 
Gr in the presence of radiation. 
Figure 13 shows the effects of Grashof number and 
Prandtl number on vertical heat flux at different 
time in the case of pure convection. We see that at a 
given time, vertical heat flux increases significantly 
with increasing Grashof number and it decreases 
with increasing Prandtl number. The effect of 
Grashof number is relatively small at lower time and 
becomes quite pronounced at higher time. Figure 14 
shows the effects of radiation parameter and 
Grashof number on vertical heat flux at different 
time when 71.0Pr = . We see that the vertical heat 
flux decreases with increasing radiation parameter 
and these variations are significant at lower values 
of time. The vertical heat flux is also increasing with 
increasing values of Grashof number in the presence 
of radiation. 
 
 
4 Conclusion 
An exact solution to the problem of unsteady natural 
convective Couette flow of a viscous incompressible 
fluid in a parallel plane vertical channel in the 
presence of constant heat flux and thermal radiation 
have been derived. The dimensionless governing 

Fig. 11 Volume flow rate variation with t 
(Pure convection case) 

Gr =2 

Gr =5 Gr =10 

R ∞→Pr = 0.71 

Pr =7.0 

       Gr     R 
I      10    0.1
II     10    1.0
III    10    10
IV    10    ∞
V      5     1.0Pr = 0.71 

I, II, III, IV, V 

Fig. 12 Volume flow rate variation with t

Fig. 13 Vertical heat flux variation with t 
(Pure convection case) 

Pr = 0.71 

Pr =7.0 

R ∞→

Gr =2 
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Gr =10 

Fig. 14 Vertical heat flux variation with t
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partial differential equations are solved by the usual 
Laplace transform technique. The effect of different 
parameters such as radiation parameter, Grashof 
number, Prandtl number and time are studied. 
Conclusions of the study are as follows: 
1. The temperature of the fluid increases with 

increasing time whereas it decreases due to an 
increase in the value of radiation parameter. 

2. In the case of pure convection (i.e. in the absence 
of radiation), the velocity of the fluid increases 
with increasing Grashof number and time, but 
falls owing to an increase in the Prandtl number. 

3. The velocity of the fluid increases with increasing 
Grashof number and time but it decreases owing 
to an increase in the value of the radiation 
parameter. 

4. The momentum and thermal boundary layers are 
found to thicken when the radiation is present. 

5. In the pure convection case the skin-friction 
increases with increasing Prandtl number whereas 
it decreases with increasing Grashof number and 
time at the moving plate. 

6. The skin-friction at the moving plate increases 
with increasing values of the radiation parameter 
but it decreases with increasing values of Grashof 
number and time for air flows. 

7. The Nusselt number increases owing to an 
increase in the value of radiation parameter but it 
decreases with an increase in time at the moving 
plate. 

8. The Nusselt number decreases owing to an 
increase in the value of radiation parameter but it 
increases with an increase in time at the stationary 
plate. 

9. In the case of pure convection, the volume flow 
rate and the vertical heat flux are increasing with 
increasing values of Grashof number and time. 
But, these are decreasing with increasing values of 
Prandtl number. 

10. The volume flow rate and the vertical heat flux 
are decreasing with increasing values of 
radiation parameter. 

We may conclude therefore, that the interaction 
between the radiation, buoyancy forces and the 
applied shear induced by a uniform vertical motion 
of the hot wall can affect the configuration of the 
flow field significantly. 
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