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Abstract: - In this article, we establish a blow-up solution and the blow-up set of such a solution of the 
degenerate parabolic problem with a localized nonlinear term: 0t x x( ) ( ( ) ) ( ) ( ( , ))k x u p x u k x f u x t− =

,  k p
 where 

 and f  are given functions and 0x  is a fixed point in the domain of .x  In order to ensure the 
occurrence for blow-up in finite time, the sufficient condition to blow-up in finite time is shown. We 
furthermore study the particular problem of the previous problem: 0( ) ( ( , ))q

t x x
qx u xβu x f u x t+ =

 
 where 

 andq β  are specified constants. Under suitable assumptions on ,f  we obtain the same results as 
before. 
 
 
Key-Words: - Blow-up in finite time, Blow-up set, Complete blow-up, Localized nonlinear terms, Semilinear 
parabolic problems 
 
1 Introduction 

Without loss of generality and for simplicity, we 
take the interval of x  to [0  Let ,1].

(0,1),  (0, )TI Q I T= = × ,   and QTI  be the closure of 
 and TI Q , respectively. We here study the following 

degenerate semilinear parabolic problem with a 
localized nonlinear term: 

( ) 0

0

( ) ( ) ( ) ( ( , )) for ( , ) ,
(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for ,

t x xk x u p x u k x f u x t x t Q
u t u t t T

u x u x x I

⎫− = ∈ T ⎪
= = ∈ ⎬

⎪= ∈ ⎭

                     

                                                                            (1.1) 
where  denotes partial differentiation of u  with 
respect to t and are given functions. 
.In 2010 P. Sawangtong, B. Novaprateep and W. 
Jumpen [14] studied the degenerate parabolic 
problem (1.1). In this article we continuous to study 
the degenerate parabolic problem (1.1) and the 
purpose of this paper is to prove that before blow-up 
occurs, there exists a  such that problem (1.1) 
has a unique nonnegative continuous solution  on 

the time interval for any

tu

0,  ,   and k p f u

1( 0)T >

u

1[0, ]T .x I∈  In addition to 
prove the existence and uniqueness of solution, the 
sufficient condition to blow up in finite and the 
blow-up set of such a solution  are given. A 
solution of problem (1.1) is said to blows up at 

u
u x  

= in finite time  if there exists a sequence ( ,b bt )n nx t  
with n bt t<  such that ( , ) ( , )n n bx t b t→  as  and n →∞

lim ( , )n nn
u x t

→∞
= ∞ . The set of all blow-up points of 

solution  is called the blow-up set. In order to 
obtain our results, throughout this paper, we need 
following assumptions. 

u

(A) 1( ),  (0) 0,  p C I p p∈ = is positive on  and (0,1] p′  
is nonnegative on .I  
(B) ( ),  (0) 0,  k C I k k∈ = is positive on  (0,1].

(C) 2[0, )f C∈ ∞ is convex with (0) 0f =  and  
 for    ( ) 0f s > 0.s >

(D) 2
0 0 0( ),  (0) 0 (1),  u C I u u u∈ = = 0  is nonnegative on  

,I 0 0( ) 0,u x >  and  satisfies for any 0u ,x I∈   

0
0 0 0

( )
( ) ( ) ( ( )) ( ) ( )

du xd p x k x f u x k x u x
dx dx

ς⎛ ⎞ + ≥⎜ ⎟
⎝ ⎠

      (1.2)  
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for some positive constant .ς  By separation of 
variables, we obtain the corresponding singular 
eigenvalue problem to (1.1) defined by 

( )( ) ( ) ( ) 0 on ,

(0) 0 (1).

d d xp x k x x I
dx dx

ϕ λ ϕ

ϕ ϕ

⎫⎛ ⎞ + = ⎪⎜ ⎟
⎝ ⎠ ⎬

⎪= = ⎭

               (1.3) 

We note that conditions (A) and (B) implies that the 
point  is a singular point of problem (1.3). By 
proposition 2.1 [12], condition (C) yields that 

0x =
f  is 

increasing and locally Lipschitz on [0, ).∞  By 
equation (1.3), we have 

( ) ( )( ) ( ) ( ) 0 for .
( ) ( )

p x k xx x x
p x p x

ϕ ϕ λ ϕ
′

′′ ′+ + = x I∈  

Multiplying both sides of above equation by 2 ,x  we 
can rewrite equation (1.3) in a new form: 

2 2( ) ( )( ) ( ) ( ) 0 on ,
( ) ( )

(0) 0 (1).

p x k xx x x x x x x I
p x p x

ϕ ϕ λ ϕ

ϕ ϕ

⎫′⎡ ⎤ ⎡ ⎤′′ ′+ + = ⎪⎢ ⎥ ⎢ ⎥
⎬⎣ ⎦ ⎣ ⎦
⎪= = ⎭

        

                                                                            (1.4) 
We have to add some conditions on 
functions  to make the point  to be 
regular singular point, that is, 

 and p k 0x =

(E) The limit of 
2( ) ( ) and 

( ) ( )
xp x x k x
p x p x
′ are finite as 

 and  0x →
2( ) ( ) and 

( ) ( )
xp x x k x
p x p x
′   are analytic at 0.x =  

We note that theorem 5.7.1 [2] yields that 
eigenfunctions nϕ  and eigenvalues nλ  of a 
corresponding singular eigenvalue problem (1.4) 
exist. Completeness of eigenfunctions nϕ  of 
problem (1.4) follows from next assumption. 

(E) 
1 1

2

0 0

( , ) ( ) ( )H x k x k d dxξ ξ ξ∫ ∫ is finite where H  is the 

corresponding Green’s function to problem (1.4). 
 Previously there are mathematicians who 
studied blow-up problems of parabolic type with a 
localized nonlinear term. In 1992, J. M. Chadam, A. 
Peirce and H. M. Yin [3] investigated the blow-up 
behaviour of solutions to heat equation with a 
localized reaction term: let  be a bounded domain 
in  and 

Ω
nR 0x  a fixed point in ,Ω  

2
0

0

( ( , )) for ( , ) (0, ),
( , ) 0 for ( , ) (0, ),

( ,0) ( ) for ,

tu u f u x t x t T
u x t x t T

u x u x x

⎫−∇ = ∈Ω×
⎪

= ∈∂Ω× ⎬
⎪= ∈Ω ⎭

           (1.5) 

where 0 and f u are given functions and  and ∂Ω Ω  
denote boundary and closure of  respectively. 

They showed that under some conditions the 
solution of problem (1.5) exhibits global blow-up 
and the blow-up set is 

,Ω

u
.Ω  In 2000, C.Y. Chan and J. 

Yang [6] studied the degenerate semilinear 
parabolic problem with a localized nonlinear term: 
let  be a nonnegative constant: q

0

0

( ( , )) for ( , ) ,
(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for ,

q
t xx Tx u u f u x t x t Q
u t u t t T

u x u x x I

⎫− = ∈
⎪

= = ∈ ⎬
⎪= ∈ ⎭

                   (1.6) 

where f and are given functions. They proved 
that under certain hypotheses a nonnegative 
classical solution  of problem (1.6) blows up at all 
points 

0u

u
x I∈  in finite time. Moreover they gave a 

sufficient condition for solution a  u  of problem 
(1.6) to blow-up in finite time. In 2004, Y.P. Chen 
and  C.H. Xie [8] discussed the degenerate parabolic 
equation with the nonlocal term: 

1

0

0

( ) ( ( , ))  for ( , ) ,

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for .

t x x Tu x u f u x t dx x t Q

u t u t t T

u x u x x I

β ⎫
− = ∈ ⎪

⎪⎪= = ∈ ⎬
⎪= ∈ ⎪
⎪⎭

∫
           (1.7) 

They consider the local existence and uniqueness of 
a classical solution. Under appropriate hypotheses, 
the obtained some sufficient conditions for the 
global existence and blow-up of a positive solution 
of problem (1.7).  In 2004, Y.P. Chen, Q. Liu and 
C.H. Xie [7] studied the degenerate nonlinear 
reaction-diffusion equation with nonlocal source: 

1

0

0

( ) ( , )  for ( , ) ,

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for .

q p
t x x Tx u x u u x t dx x t Q

u t u t t T

u x u x x I

β ⎫
− = ∈ ⎪

⎪⎪= = ∈ ⎬
⎪= ∈ ⎪
⎪⎭

∫
           (1.8) 

They established the local existence and uniqueness 
of a classical solution of problem (1.8). Under 
appropriate hypotheses, they also get some 
sufficient conditions for a global existence and 
blow-up of a positive solution. Furthermore, under 
certain conditions, it is proved that the blow-up set 
of the solution of problem (1.8) is the whole 
domain. In 2010, P. Sawangtong and W. Jumpen 
[13] showed, under certain condition, the existence 
of a blow-up solution of the following degenerate 
parabolic problem: 
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0

( ) ( ( , )),  ( , ) ,
(0, ) 0 (1, ),  (0, ),

( ,0) ( ),  ,

q q
t x x Tx u x u x f u x t x t Q

u t u t t T

u x u x x I

β ⎫− = ∈
⎪

= = ∈ ⎬
⎪= ∈ ⎭

              (1.9) 

where  and q β  are given constants and f and  
are suitable functions. Furthermore the sufficient 
condition to blow-up in finite time and the blow-up 
of such a solution of problem (1.9) are shown. 

0u

This paper is organized as follows. In section 2, 
we find corresponding Green’s function to the 
degenerate parabolic problem (1.1). In order to 
obtain the existence and uniqueness of a solution of 
the degenerate parabolic problem (1.1), we 
transform problem (1.1) into the equivalent integral 
equation (2.2). Before blow-up occurs, we prove the 
existence and uniqueness of a solution of the 
equivalent integral problem (2.2) by using the 
Banach fixed point theorem. Furthermore we show 
that the solution of the equivalent integral problem 
(2.2) blows up at the point 0x if blow-up occurs. To 
guarantee occurrence for blow-up in finite time, we 
give the sufficient condition to blow-up in finite 
time in section 3.  In section 4, we establish the 
blow-up set of such a blow-up solution of the 
degenerate parabolic problem (1.1). Finally we 
study the particular problem of  (1.1) in the last 
section. 
 
2 Local existenec and uniqueness 

This section deal with the local existence and 
uniqueness of a nonnegative continuous solution  
of problem (1.1). Referred to [15], we have well-
know properties  of eigenvalues 

u

nλ  and 
eigenfunctions nϕ  of problem (1.4) as the following 
lemma. 
 
Lemma 2.1. 

2.1.1.  
1

0

1 for ,
( ) ( ) ( )

0 for .n m

m m
k x x x dx

m n
ϕ ϕ

=⎧
= ⎨ ≠⎩

∫
2.1.2. All eigenvalues are real and positive. 
2.1.3. Eigenfunctions are complete with the weight 
function  .k
2.1.4. 1 2 3  and lim .nn

λ λ λ λ
→∞

< < < = ∞…  

2.1.5.
.
 

1

0

for ,
( ) ( ) ( )

0 for n m
n

n m

n m
p x x x dx

λ
ϕ ϕ

=⎧′ ′ = ⎨ ≠⎩
∫

2.1.6. For any ,  ( ).nn Cϕ ∞∈ ∈ I  
Let us construct Green’s function ( , , , )G x t ξ τ  
corresponding to problem (1.1). It is determined by 
the following system: for ,  and , (0, ),x I t Tξ τ∈ ∈  

( )1 ( ) ( ) ( ),
( )
(0, , , ) 0 (1, , , ),

( , , , ) 0 for ,

t x x
G p x G x t

k x
G t G t

G x t t

δ ξ δ τ

ξ τ ξ τ
ξ τ τ

⎫− = − ⎪
⎪⎪= = ⎬
⎪= > ⎪
⎪⎭

−

                (2.1) 

where δ  is the Dirac delta function. Let 

                                    (2.2) 
1

( , , , ) ( ) ( )n n
n

G x t a t xξ τ ϕ
∞

=

= ∑
Substituting equation (2.2) into equation (2.1), we 
obtain 

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ).n
n n n

n n

ddk x a t x a t p x x t
dx dx

ϕ
ϕ δ ξ δ τ

∞ ∞

= =

⎛ ⎞′ − = − −⎜ ⎟
⎝ ⎠

∑ ∑
 
Multiplying both sides by nϕ  and then integrating 
both sides with respect to x  over its domain, we 
have 
1 1

1 10 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) n
n n n n n

n n

ddk x x a t x dx x a t p x dx
dx dx

ϕ
ϕ ϕ ϕ

∞ ∞

= =

⎛ ⎞′ − ⎜ ⎟
⎝ ⎠

∑ ∑∫ ∫
1

0

( ) ( ) ( ) .n x x t dxϕ δ ξ δ τ= − −∫  

By the orthonormal property of eigenfunctions nϕ  
and the property of Dirac delta function, we get 

( ) ( ) ( ) ( )n n n na t a t tλ ϕ ξ δ τ′ + = −  
or 

( )( ) ( ) ( ) .n nt t
n n

d e a t t e
dt

λ λϕ ξ δ τ= −  

Integrating both sides from  to  with t 1t 1 ,t τ<  we 
obtain 

( )
1 1

( ) ( ) ( )n n

t t
s s

n n
t t

d e a s t e ds
ds

λ λϕ ξ δ τ= −∫ ∫  

or 
1

1( ) ( ) ( ) .n nt t
n n ne a t e a t e nλ λ λϕ ξ− = τ  

Since ( , , , ) 0 for ,G x t tξ τ τ= <   for all  
We therefore obtain that 

1( ) 0na t = .n
( )( ) ( ) n t

n na t e λ τϕ ξ − −=  for all 
 By equation (2.2), the Green’s function is 

defined by 
.n

( )

1
( , , , ) ( ) ( ) n t

n n
n

G x t x e λ τξ τ ϕ ϕ ξ
∞

− −

=

= ∑  for ,t τ>         (2.3)                    

where and n nϕ λ  are eigenfunctions and eigenvalues 
of the singular eigenvalue problem (2.1), 
respectively. 
By using Green’s second identity, we get the 
integral equation equivalent to problem (1.1) given 
by 

1

0
0

( , ) ( ) ( , , ,0) ( )u x t k G x t u dξ ξ ξ= ∫ ξ  
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1

0
0 0

( ) ( , , , ) ( ( , )) .
t

k G x t f u x d dξ ξ τ τ ξ τ+∫ ∫         (2.4) 

 
The following lemma is due to properties of  .G
 
Lemma 2.2. Let  ( ) for some 1 as .s

n O n s nλ = > →∞

.2.2.1. is continuous forG ,  and 0 <x I t Tξ τ∈ ≤ <  
2.2.2. is positive forG ,  and 0 < .x I t Tξ τ∈ ≤ <  
2.2.3. lim ( ) ( , , , ) ( )

t
k x G x t x

τ
ξ τ δ ξ

+→
= −  

2.2.4. For any ( , , ) (0, ) (0, ),x t I T Tτ ∈ × ×  

 for some  
1

0
0

( ) ( , , , )k G x t d Cξ ξ τ ξ ≤∫ 0 0.C >

Proof. By modifying proof of lemma 4.a and 4.c 
[5], we obtain the proof of 2.2.1 and 2.2.2, 
respectively. For proof of 2.2.3, let us consider the 
following problem: 

( )( ) ( ) 0 for ,  and 0 ,
(0, , , ) 0 (1, , , ) for 0 ,  

lim ( ) ( , , , ) ( ).

t x x

t

k x w p x w x I t T
w t w t t T

k x w x t x
τ

ξ τ
ξ τ ξ τ τ

ξ τ δ ξ
+→

− = ∈ < <
= = < < <

= −

<
 

By equation (2.4), we have that for any ,t τ>  
1

0

1( , , , ) ( ) ( , , , ) ( ) ( , , , ).
( )

w x t k G x t d G x t
k

ξ τ ζ ζ τ δ ζ ξ ζ ξ ζ
ζ

= − =∫
Hence, we obtain the proof of 2.2.3. We next prove 
2.2.4.  
Case 1. For any .t τ<   

Definition for yields that  G
1

0

( ) ( , , , ) 0.k G x t dξ ξ τ ξ =∫  

Case 2. .t τ=   
It follows lemma 2.2.3 and a property of Dirac delta 
function δ  that  

 
1 1

0 0

( ) ( , , , ) ( ) 1.k G x t d x dξ ξ τ ξ δ ξ ξ= − =∫ ∫
Case 3. For any .t τ>  
Let us consider the series 

1
( )

1 0

( ) ( ) ( ) .n t
n n

n

k x e λ τ dξ ϕ ξ ϕ ξ
∞

− −

=
∑∫  

Since  

( )
1 2

( ) ( )

0

( ) ( ) ( ) max ( )n t t
n n nx I

k x e d x e nλ τ λξ ϕ ξ ϕ ξ ϕ− − − −

∈
≤∫ τ  

and the series  ( )

1

n t

n
e λ τ

∞
− −

=
∑  converges, 

1
( )

1 0

( ) ( ) ( ) n t
n n

n

k x e λ τ

 
Next theorem says to local existence of a solution u  
of the equivalent integral equation (2.4). 
 
Theorem 2.1. There exists a  such 
that the equivalent integral equation (2.4) has a 
unique continuous solution  for any 

1 1 with 0T T< < T

u
1

( , ) .Tx t Q∈  
Proof. We will use the fixed point theorem to prove 
existence of a solution  of the equivalent integral 
equation (2.4). Let 

u

0max ( ) 1.
x I

M u x
∈

= +  Locally 

Lipschitz property of  implies that there exists a 
positive constant  depending on 

f
( )L M M  such that 

( ) ( ) ( )f x f y L M x y− ≤ −   for any ,x y∈  with 
x M≤  and .y M≤  We then choose 

1
0 0

1 1min , .
( ) ( )

T
C f M L M C

⎧ ⎫
< ⎨ ⎬

⎩ ⎭
             

Define a set by E

1
1

( , )
( ) such that max ( , ) .

T
T x t Q

E u C Q u x t M
∈

⎧ ⎫= ∈ ≤⎨ ⎬
⎩ ⎭

 

Then  is a Banach space equipped with the norm E

( , )
max ( , ) .

T
E x t Q

u u
∈

= x t  Let 

1

0
0

( , ) ( ) ( , , ,0) ( )u x t k G x t u dξ ξ ξ ξΛ = ∫  

                
1

0
0 0

( ) ( , , , ) ( ( , )) .
t

k G x t f u x d dξ ξ τ τ ξ τ+∫ ∫      (2.5) 

for any .u E∈  We next show that the operator Λ  
defined by (2.5) maps  into itself and that E Λ  is 
contractive. Let ,u v E.∈  We then have that 

1

0
0

( , ) ( ) ( , , ,0) ( )u x t k G x t u dξ ξ ξ ξΛ ≤ ∫  

                 
1

0
0 0

( ) ( , , , ) ( ( , )) .
t

k G x t f u x d dξ ξ τ τ ξ τ+ ∫ ∫   (2.6) 

Let us consider the following auxiliary problem: 
( )

1

1

0

( ) ( ) 0 for ( , ) ,

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for .

t x xk x u p x u x t Q

u t u t t T

u x u x x I

− = ∈
⎪

= = ∈ ⎬
⎪= ∈ ⎭

T ⎫

                 (2.7) 

It follows from (2.4) that a solution  of problem 
(2.7) is given by 

u

1

0
0

( , ) ( ) ( , , ,0) ( )u x t k G x t u dξ ξ ξ ξ= ∫  for 
1

( , ) .Tx t Q∈  

dξ ϕ ξ ϕ ξ
∞

− −

=
∑∫   converges uniformly 

for any ( , , ) (0, ) (0, ).x t I T Tτ ∈ × ×  Hence we get the 
proof of 2.2.4. Therefore, the proof of lemma 2.2 is 
complete. 

Moreover, maximum principle for parabolic type 
implies that 00 ( , ) max ( )

x I
u x t u x

∈
≤ ≤  for any   

1
( , ) .Tx t Q∈  Thus, we obtain that 
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1

0

( ) ( , , ,0) 1.k G x t dξ ξ ξ ≤∫  From (2.6) and lemma 2.2.4., 

1

0
0 0

( , ) max ( ) ( ) ( ) ( , , , ) .
t

x I
u x t u x f M k G x t d dξ ξ τ ξ τ

∈
Λ ≤ + ∫ ∫  

               0 0max ( ) ( ) .
x I

u x f M C T
∈

≤ + 1  

By definition of ,  Since 1T  for any .u E u EΛ ∈ ∈

( , ) ( , )u x t v x tΛ −Λ  
1

0 0
0 0

( ) ( , , , ) ( ( , )) ( ( , )) .
t

k G x t f u x f v x d dξ ξ τ τ τ ξ τ≤ −∫ ∫  

1

0 0
0 0

( ) ( , , , ) ( ( , )) ( ( , ))
t

k G x t f u x f v x d dξ ξ τ τ τ ξ τ≤ −∫ ∫  

1

0 0

( ) ( ) ( , , , )
t

E
L M k G x t d d u vξ ξ τ ξ τ≤ −∫ ∫  

0 1 ( ) ,
E

C T L M u v≤ −                                               (2.8) 
definition of and (2.8) yield that  is contractive. 
The fixed point theorem then implies that there 
exists a unique u  in  satisfying the integral 
equation (2.4). Therefore, the proof is complete. 

1T Λ

E

 
Lemma 2.3. Let be a classical solution of the 
following problem: 

v

( ) 0

0

( ) ( ) ( , ) ( , ) for ( , ) ,
(0, ) 0 (1, ) for (0, ),

( ,0) ( ) 0 for ,

t x xk x v p x v B x t v x t x t Q
v t v t t T

v x u x x I

⎫− ≥ ∈ T ⎪
= = ∈ ⎬

⎪= ≥ ∈ ⎭

 (2.9) 

where  is a nonnegative and bounded function 
on 

( , )B x t

.TQ  Then ( , ) 0 for any ( , ) .Tv x t x t Q≥ ∈  
Proof. In order to prove this lemma we have to add 
a nonnegative continuous function on ( , )z x t TQ  to 
right-hand side of equation (2.9) and then we have 
that 

( ) 0

0

( ) ( ) ( , ) ( , ) ( , ) on ,
(0, ) 0 (1, ) for (0, ),

( ,0) ( ) 0 for .

t x xk x v p x v B x t v x t z x t Q
v t v t t T

v x u x x I

⎫− = + T ⎪
= = ∈ ⎬

⎪= ≥ ∈ ⎭

 

                                                                          (2.10)        
From equation (2.4), we obtain that for ( , ) ,Tx t Q∈  

1

0
0

( , ) ( ) ( , , ,0) ( )v x t k G x t u dξ ξ ξ ξ= ∫  

              
1

0
0 0

( ) ( , , , ) ( , ) ( , )
t

k G x t B v x d dξ ξ τ ξ τ τ ξ τ+∫ ∫  

              
1

0 0

( ) ( , , , ) ( , ) .
t

k G x t z d dξ ξ τ ξ τ ξ τ+∫ ∫             (2.11) 

From (2.11), we have 
1

0 0 0
0

( , ) ( ) ( , , ,0) ( )v x t k G x t u dξ ξ ξ

              
1

0 0
0 0

( ) ( , , , ) ( , ) ( , )
t

k G x t B v x d dξ ξ τ ξ τ τ ξ τ+∫ ∫  

              
1

0
0 0

( ) ( , , , ) ( , ) .
t

k G x t z d dξ ξ τ ξ τ ξ τ+∫ ∫  

Let 
1

0 0 0
0

( ) ( ) ( , , ,0) ( )h t k G x t u dξ ξ ξ ξ= ∫  

                 
1

0
0 0

( ) ( , , , ) ( , ) .
t

k G x t z d dξ ξ τ ξ τ ξ τ+∫ ∫  

Since functions and are nonnegative,  is 
nonnegative. Let Define an 
operator 

, ,k z G 0u 0h

0( , ) ( ) for [0, ].u x t h t t T= ∈

Φ  mapping from  to  by [0, ]C T [0, ]C T
1

0
0 0

( ) ( ) ( , , , ) ( , ) ( ) .
t

h t k G x t B h d dξ ξ τ ξ τ τ ξ τΦ = ∫ ∫  

By corollary 5.2.1. [10], there exists a 2 (T T )< such 
that 

( )
0

0
( , ) ( ) ( )m

m
v x t h t h t

∞

=

= = Φ∑ 0                                 (2.12) 

where  and (0)
0 0( ) ( )h t h tΦ = ( 1) ( )

0 0( ) ( )m mh t h t+ ⎡ ⎤Φ = Φ Φ⎣ ⎦  
for .m∈  Mathematical induction yields that 

( )
0 ( ) 0m h tΦ ≥  for .m∈  Thus, from equation (2.12), 

we obtain that  for any 0( , ) 0v x t ≥ 2[0, ].t T∈  It 
follows from equation (2.11) that   on ( , ) 0v x t ≥

2
.TQ Finally, we can repeat the previous procedure to 

obtain the desired result for ( , ) .Tx t Q∈  
 
Next lemma gives additional properties of a solution 

 of problem (1.1). u
 
Lemma 2.4. Let  be a continuous solution of 
problem (1.1). Then  for 
any 

u

0( , ) ( ) and ( , ) 0tu x t u x u x t≥ ≥

1
( , ) .Tx t Q∈  

Proof. Let 
10( , ) ( , ) ( ) on Q .Tz x t u x t u x= −  Let us 

consider that for any 
1

( , ) ,Tx t Q∈  

( ) 0
0

( )
( ) ( ) ( ) ( ( , )) ( ) .t x x

du xdk x z p x z k x f u x t p x
dx dx

⎛ ⎞− = + ⎜ ⎟
⎝ ⎠

 

Equation (1.2) yields  
0

0 0
( )

( ) ( ) ( ( )) on 
du xd p x k x f u x I

dx dx
⎛ ⎞ ≥ −⎜ ⎟
⎝ ⎠

 and then we 

obtain that for any
1

( , ) ,Tx t Q∈  

( ) 0 0( ) ( ) ( ) ( ( , )) ( ) ( ( ))t x x
k x z p x z k x f u x t k x f u x− = − 0  
                            1 0( ) ( ) ( , )k x f z x tη′≥  
where 1η is between  Moreover, for 
any 

0 0( , ) and ( ).u x t u x0

{ }( , ) 0,1 (0, ) {0},  ( , ) 0.x t T I z x t∈ × ∪ × =  Lemma ξ= ∫  
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2.3 implies that 
1

0 on Tz Q≥  or  
10  on .Tu u Q≥   Let  

be any positive constant less that T  and 
h

1
( , ) ( , ) ( , ) on .Tw x t u x t h u x t Q= + −  Then we have that 

on  
1
,TQ

( ) 0( ) ( ) ( ) ( ( , )) ( ) 0( , ))t x x
k x w p x w k x f u x t h k x x t− = + − (f u
 
                              2 0( ) ( ) ( , ),k x f w x tη′=  
for 2η  between  Furthermore, 

 on and 
0( , ) and ( , ).u x t h u x t+ 0

0w = 1{0,1} (0, )T× 0 on {0}.w I≥ ×  It then 
follows from lemma 2.3 that 

1
0 on .Tw Q≥  This 

shows that 
1

0 on .t Tu Q≥  
 
We note that before blow-up occurs, there exists a 
positive constant M  such that ( , )u x t M≤  for 

all
1

 ( , ) .Tx t Q∈  Locally Lipschitz continuity of f  
yields that there exists a positive constant   
depending on 

( )L M
M  such that 

0 0( ( , )) ( ) ( , )f u x t L M u x t≤   for any   1[0, ].t T∈

 
Lemma 2.5. If 0 0( ( )) ( ),f u x L M′ ≥  then 

 on ( , ) ( ) ( , )tu x t L M u x t≥
1

Q .T  

Proof. Let
1

( , ) ( , ) ( ) ( , ) on .tz x t u x t L M u x t Q= − T  We 
then have that

1
for ( , ) ,Tx t Q∈  

( ) 0 0( ) ( ) ( ) ( ( , )) ( , )t x tx
k x z p x z k x f u x t u x t′− =  
                               0( ) ( ) ( ( , ))k x L M f u x t−

Locally Lipschitz continuity of f implies that 
for

1
( , ) ,Tx t Q∈  

(( ) ( )t )x x
k x z p x z−              
              2

0 0 0( ) ( ( , )) ( , ) ( ) ( ) ( , )tk x f u x t u x t k x L M u x t′≥ −

              2
0 0 0 0( ) ( ( )) ( , ) ( ) ( , )tk x f u x u x t L M u x t′⎡≥ −⎣ ⎤⎦

≥

              0( ) ( ) ( , ).k x L M z x t≥

From lemma 2.4,  and 
 for   If we set 

(0, ) (0, ) 0tz t u t=

(1, ) (1, ) 0tz t u t= ≥ 1(0, ).t T∈ ( ),L Mς =  
then equation (1.2) implies that for any ,x I∈  

00
( ,0) lim ( , ) ( ) ( )tt

z x u x t L M u x
→

= −  

         0
0 0

( )1 ( ) ( ( )) ( ) ( )
( )

du x
p x f u x L M u x

k x dx
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

 

          0.≥
Therefore, by lemma 2.3, the proof is complete. 
 
Lemma 2.6. If  for any 0 0 0( ) ( )u x u x≥ ,x I∈ then  

on 0( , ) ( , )u x t u x t≥
1
.TQ  

Proof. Let
10( , ) ( , ) ( , ) on .Tz x t u x t u x t Q= −  We then 

have that on lemma 2.5 yields that 
1
,TQ

( ) [ ]0 0( ) ( ) ( ) ( , ) ( ( , ))t x tx
k x z p x z k x u x t f u x t− = −  
                            [ ]0 0( ) ( , ) ( ) ( , )tk x u x t L M u x t= −  
                             0.≥
Since 

0 0(0, ) ( , ) ( ) 0,z t u x t u x= ≥ ≥   
for

0 0(1, ) ( , ) ( ) 0z t u x t u x= ≥ ≥

1(0, ),t T∈  and  for 
any

0 0 0( ,0) ( ) ( ) 0z x u x u x= − ≥

,x I∈  by lemma 2.3,  the proof of this lemma is 
complete. 
 
Theorem 2.2. Let  be the supremum of all  
such that the continuous solution u of an equivalent 
integral equation (2.4) exists. If  is finite, then 

 is unbounded as t  tends to  

maxT 1T

maxT

0( , )u x t max .T
Proof. Suppose that  is finite. Let 0 max( , )u x T

0 max( , ) 1.N u x T= +  By theorem 2.1 and a fact that 
is non-decreasing in  there exists a finite time u ,t

max(T T> )   depending on  such that the equivalent 
integral equation (2.4) has a unique continuous 
solution on the time interval 

N

[0, ]T  for any .x I∈  By 
the definition of  we get a contradiction. max ,T
 
A proof  similar to that of theorem 3 of Chan and 
Tian [4] gives the following result. 
 
Theorem 2.3 Such a continuous solution of the 
equivalent integral equation (2.4) is a classical 
solution. 

u

 
3 A sufficient condition to blow-up in 
finite time 

Let 1ϕ  be the first eigenfunction of a singular 
eigenvalue problem (1.3) and let 1λ  be its 
corresponding eigenvalue. Without loss of 
generality we assume 
1

1
0

( ) ( ) 1.k x x dxϕ =∫                                                  (3.1) 

 We then define a function H  by  
1

1
0

( ) ( ) ( ) ( , ) .H t k x x u x t dϕ= ∫ x  

 
Theorem 3.1. Assume that 
3.1.1. attains its maximum at point 0u 0 .x  
3.1.2.  ( )  with 0 and 1.pf b b pξ ξ≥ > >
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3.1.3.
1

1
1(0) .

p
H

b
λ −⎛ ⎞> ⎜ ⎟

⎝ ⎠
 

Then a solution of problem (1.1) blows up in 
finite time. 

u

Proof. Multiplying equation (1.1) by 1ϕ  and 
integrating equation (1.1) with respect to x  over its 
domain yield 

1

1 0
0

( ) ( ) ( ) ( ( , )) ( )dH t
1H t k x f u x t x d

dt
λ ϕ= − + ∫ x .                     

By lemma 2.6 and assumption 3.1.2, we have 
1

1 1
0

( ) ( ) ( ) ( ( , )) ( )dH t H t k x f u x t x d
dt

λ ϕ≥ − + ∫ x  

           
1

1 1
0

( ) ( ) ( , ) ( ) .pH t b k x u x t x dxλ ϕ≥ − + ∫             (3.2) 

Holder inequality implies that 
1

1
0

1 1
1 1

1 1
0 0

( ) ( ) ( , )

( ) ( ) ( ) ( ) ( , ) .

p
p p

p

k x x u x t dx

k x x dx k x x u x t dx

ϕ

ϕ ϕ

−

⎛ ⎞ ⎛
≤ ⎜ ⎟ ⎜
⎝ ⎠ ⎝

∫

∫ ∫
⎞
⎟
⎠

k x x u x t dx k x x u x t dx H tϕ ϕ
⎛ ⎞

≥ =⎜ ⎟
⎝ ⎠

∫ ∫

 

From (3.1), we get 
1 1

1 1
0 0

( ) ( ) ( , ) ( ) ( ) ( , ) ( ).
p

p p                                                                                                                    

                                                                            (3.3) 
Form equation (3.2) and (3.3), we obtain 

1( ) ( ) ( )pH t H t bHλ′ ≥ − + t  
or 

1

1

(1 )1

1 1

1( ) .
(0)

p

p tp

H t
b bH e λ

λ λ

−

− −−

≥
⎡ ⎤

+ −⎢ ⎥
⎣ ⎦

 

It then follows from assumption 3.1.3 that there 
exists a  such that ( 0)T > H  tends to infinity as t  

converges to  By the definition of .T H , we find 
that 

1

1 0
0

( ) ( ) ( ) ( , ) ( , ).0H t k x x dx u x t u xϕ
⎛ ⎞

≤ =⎜ ⎟
⎝ ⎠
∫ t  

Therefore, a solution  of problem (1.1) blows up at 
point 

u

0x  as   tends to  t .T
 

3 The blow-up set 

   In this section, we establish the blow-up set of the 
degenerate parabolic problem (1.1). 
 
Theorem 4.1. The blow-up set of a solution u of 
problem (1.1) is .I  

Proof. From equation (2.4), we have that for 
max(0, ),t T∈  

1

0 0 0
0

( , ) ( ) ( , , ,0) ( )u x t k G x t u dξ ξ ξ ξ= ∫  

              
1

0 0
0 0

( ) ( , , , ) ( ( , ))
t

k G x t f u x d dξ ξ τ τ ξ τ+∫ ∫  

           0 0 0
0

max ( ) ( ( , )) .
t

x I
u x C f u x dτ τ

∈
≤ + ∫                 (4.1) 

By theorem 2.2, we obtain that as t  tends to  max ,T
max

0
0

( ( , )) .
T

f u x dτ τ = ∞∫                                             (4.2) 

On the other hand, by positivity of , we 
get that for any 

0,  ,  and k G u

max
( , ) ,Tx t Q∈   

1

0
0 0

( , ) ( ) ( , , , ) ( ( , )) .
t

u x t k G x t f u x d dξ ξ τ τ ξ τ≥ ∫ ∫  

Since there exists a positive constant such that 1C
1

1
0

( ) ( , , , ) ,k G x t d Cξ ξ τ ξ ≥∫  

we obtain that 

1 0( , ) ( ( , ))
t

u x t C f u x d
0

τ τ≥ ∫   for all  
max

( , ) .Tx t Q∈

Hence, the solution u tends to infinity for all x I∈  
as  approaches to  Furthermore, for t max .T { }0,1 ,x∈  

we can find a sequence ( ){ ,n n }x t  such that 
 Hence, the blow-up set of a 

solution of a degenerate parabolic problem (1.1) is 

lim ( , ) .n nn
u x t

→∞
→∞

.I  Therefore the proof of this theorem is complete. 
 
4 The particular problem 
    In this section, we consider the particular problem 
of the degenerate parabolic problem (1.1): let  and q
β  be some constants with 0,q ≥ 0 1β≤ <  and 

0,q β+ ≠  

0

0

( ) ( ( , )) for ( , ) ,
(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for .

q q
t x x Tx u x u x f u x t x t Q

u t u t t T

u x u x x I

β ⎫− = ∈
⎪

= = ∈ ⎬
⎪= ∈ ⎭

      (5.1) 

By using separation of variables as [9] and [11] on 
the homogenous problem corresponding to problem 
(5.1), we obtain the singular eigenvalue problem, 

( ) 0 for ,

(0) 0 (1).

qd dx x x x I
dx dx

β ϕ λ ϕ

ϕ ϕ

⎫⎛ ⎞
+ = ∈ ⎪⎜ ⎟

⎬⎝ ⎠
⎪

= = ⎭

                    (5.2) 
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Let 
1

2( ) ( ).x x y x
β

ϕ
−

=  Then 

1 1
2 1( ) ( ) ( )

2
2x x y x x y x

β ββϕ
− −−⎛ ⎞′ ′= + ⎜ ⎟

⎝ ⎠

−

                     (5.3) 

and 

1 1
2 2( ) ( ) (1 ) ( )x x y x x y x
β β

ϕ β
− −

′′ ′′ ′= + −
−

 

             
3

21 1 ( ).
2 2

x y x
ββ β − −− − −⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                  (5.4) 

Substituting equations (5.3) and (5.4) into equation 
(5.2), we obtain 

1 1
2 2

31 1( ) (1 ) ( ) ( )
2 2

2x x y x x y x x y x
β β β

β β ββ
− − − − −⎡ ⎤− − −⎛ ⎞⎛ ⎞′′ ′+ − +⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦
 

1 1 1
1 2 2 21( ) ( ) ( ) 0

2
qx x y x x y x x x y x

β β β
β ββ λ

− − − −
− ⎡ ⎤−⎛ ⎞′+ + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
=

 

or 

21 1 1 3
2 2 2 21( ) ( ) ( ) 0.

2
qx y x x y x x x x y x

β β β ββλ
+ − − −⎡ ⎤−⎛ ⎞′′ ′+ + −⎢ ⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
=⎥

                                                                            (5.5) 

Dividing both sides of equation (5.5) by 
1

2 ,x
β+

 we 
get 

2

2

1 1 1( ) ( ) ( ) 0.
2

qy x y x x y x
x x

β βλ −
⎡ ⎤−⎛ ⎞′′ ′+ + − =⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
     (5.6) 

Multiplying both side of equation (5.6) by 2 ,x  the 
singular eigenvalue problem (5.2) becomes 

2
2 2 1( ) ( ) ( ) 0,

2

(0) is bounded and (1) 0.

qx y x xy x x y x

y y

β βλ − +
⎫⎡ ⎤−⎛ ⎞′′ ′+ + − = ⎪⎢ ⎥⎜ ⎟

⎝ ⎠ ⎬⎢ ⎥⎣ ⎦
⎪

= ⎭

   (5.7) 

Again, we set 
2

2 .qx z β− +=  Then 

22( ) ( )
2

q
qqy x z y z

β
ββ −

− +− +⎛ ⎞′ ′= ⎜ ⎟
⎝ ⎠

 

and 

2( )2
22( ) ( )

2

q
qqy x z y z

β
ββ −

− +− +⎛ ⎞′′ ′= ⎜ ⎟
⎝ ⎠

′  

             
2
22 ( ).

2 2

q
qq q z y z

β
ββ β − −

− +− − +⎛ ⎞⎛ ⎞ ′+⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

It follows from equation (5.7) that we have 

4 2(2
2 22 ( )

2

q
q qqz z

β
β ββ −

− + − +
⎡ − +⎛ ⎞ ′′⎢⎜ ⎟
⎝ ⎠⎢⎣

)

y z  

2
22 ( )

2 2

q
qq q z y z

β
ββ β − −

− +
⎤− − +⎛ ⎞⎛ ⎞ ′+ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎥⎦
 

2
22 1( ) ( ) 0

2 2
q zy z z y zβ βλ

⎡ ⎤− + −⎛ ⎞ ⎛ ⎞′+ + − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

or 

( )
( )

22
2

2 2

14( ) ( ) ( ) 0,
( 2) 2

(0) is bounded and z(1) 0.

zz y z zy z y z
q q

z

βλ
β β

⎫⎡ ⎤−
′′ ′+ + − =⎢ ⎥ ⎪⎪

− + ⎬− +⎢ ⎥⎣ ⎦ ⎪
= ⎪⎭

                  

                                                                           (5.8) 

Thus, we see that equation (5.8) is a Bessel 
equation. Its general solution of a Bessel equation 
(5.8) is given by 

( ) ( ) ( )y z AJ z BJ zμ μω ω−= +  

where 1 ,
2q

βμ
β
−

=
− +

1
22 ,

2q
λω
β

=
− +

 A  and  are 

arbitrary constants and 

B

Jμ  denotes the Bessel 
function of the first kind of order ( 0).μ >

0z = 0B
 Turning to 

the boundary condition, at  leads to =  and 
then we obtain 

( ) ( ).y z AJ zμ ω=                                                    (5.9) 

 The boundary condition at  gives the following 
equation, 

1z =

( ) 0.Jμ ω =                                                           (5.10) 
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Then, by equation (5.9), the appropriate 
eigenfunctions nϕ  of the singular eigenvalue 
problem (5.2) are 

1 2
2( ) ( )

q

n nx Ax J x
β β

μϕ ω
− −

= 2
+

                                 (5.11) 

where nω  is the root of equation (5.10). In order 
to obtain the orthonormal property of 
eigenfunctions

thn

nϕ  with the weight function ,qx  

1

0

1 if 
( ) ( ) ,

0 if 
q

n m

n m
x x x dx

n m
ϕ ϕ

=⎧
= ⎨ ≠⎩

∫  we use the 

orthogonality of Bessel functions, that is, 

1 2
1

0

1 ( ) if 
( ) ( ) 2

0 if 

n
n m ,

J n m
xJ x J x dx

n m

μ
μ μ

ω
ω ω +

⎧ =⎪= ⎨
⎪ ≠⎩

∫   

to determine the value of constant .A  To do so, we 
consider 

1 1 2
2 2 1 2 2

1
0 0

( ) ( ) .
q

q q
n nx x dx A x J x dx

β
β

μϕ ω
− +

− +
+=∫ ∫            (5.12) 

Let 
2

2 .
q

y x
β− +

=  Then 22 .
2

qqdy x dx
ββ −− +⎛ ⎞= ⎜ ⎟

⎝ ⎠
 Let us 

consider  the right-hand side of equation (5.12) 

1 12 2
2 1 2 22

1
0 0

2( ) (
2

q
q

n n
A )A x J x dx yJ y d

q

β
β

μ μω ω
β

− +
− +

+ =
− +∫ ∫ y  

                                        
2

2
1( ).

2 n
A J

q μ ω
β +=

− +
   (5.13) 

It follows from (5.12) and (5.13) that 

1 22 2
1

0

( ) ( ).
2

q
n n

Ax x dx J
q μϕ ω

β +=
− +∫   

Since the right-hand side of equation (5.12) must 
equal to 1, the value of constant A  is determined by 

1
2

1

( 2) .
( )n

qA
Jμ

β
ω+

− +
=  Hence, the appropriate 

eigenfunctions nϕ  of the singular eigenvalue 
problem (5.2) are defined by 

1 1 2
2 2 2

1

( 2) (
( ) .

( )

q

n
n

n

q x J x
x

J

β β

μ

μ

β ω
ϕ

ω

− −

+

− +
=

The properties of eigenfunctions nϕ  and eigenvalues 
nλ  of the singular eigenvalue problem (5.2) 

associating to the degenerate parabolic problem 
(5.1) is given in the following lemma. 

Lemma 5.1.  

5.1.1  
1

0

1 for ,
( ) ( )

0 for .
q

n m

n m
x x x dx

n m
ϕ ϕ

=⎧
= ⎨ ≠⎩

∫

5.1.2 All eigenvalues nλ  are real and positive. 

5.1.3 Eigenfunctions nϕ  are complete with respect 
to the weight function  .qx  

5.1.4 2( ) as .n O n nλ = →∞  

5.1.5  
1

0

for ,( ) ( ) ( )
0 for .

n
n m

n mp x x x dx
n m

λϕ ϕ
⎧ =⎪′ ′ = ⎨

≠⎪⎩
∫

5.1.6 For any ,x I∈  
1 1

2 4
2( ) nn x C x

β

ϕ λ
−

≤  for some 

positive constant  2 .C

,

As previous discussion, we establish the Green’s 
function corresponding to the degenerate parabolic 
problem (5.1) by the following system: for x Iξ ∈  
and , (0, ),t Tτ ∈  

( , , , ) ( ( , , , )) ( ) ( ),

(0, , , ) 0 (1, , , ),

( , , , ) 0 for ,

q
t x xx G x t x G x t x t

G t G t

G x t t

βξ τ ξ τ δ ξ δ

ξ τ ξ τ

ξ τ τ

τ+ = − −

= =

= <

      

where δ  is the Dirac delta function and then by the 
eigenfunction expansion the Green’s function G  is 
given by 

( )

1

( , , , ) ( ) ( )  for .n t
n n

n

G x t x e tλ τξ τ ϕ ϕ ξ
∞

− −

=

τ= >∑  

The proofs of next lemma is similar to that of 
lemma 2.2 and then we obtain the following. 

Lemma 5.2.  

5.2.1 G is continuous for ,x Iξ ∈  and 0 .t Tτ≤ < <  

5.2.2 G is positive for ,x Iξ ∈  and 0 .t Tτ≤ < <  
)

+

                 (5.14) 5.2.3 lim ( , , , ) ( )q

t
x G x t x

τ
ξ τ δ ξ

+→
= −  
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5.2.4.  for some  for any 
1

3
0

( , , , )qG x t d Cξ ξ τ ξ ≤∫ 3 0C >

( , , ) (0, ) (0, ),x t I T Tτ ∈ × ×  

It follows from Green’s second identity that the 
equivalent integral equation to the degenerate 
parabolic problem (5.1) is defined by 

1

0
0

( , ) ( , , ,0) ( )qu x t x G x t u dξ ξ ξ= ∫  

             
1

0
0 0

( , , , ) ( ( , )) .
t

qx G x t f u x d dξ τ τ ξ τ+∫ ∫          (5.15) 

It is not necessary to go through much detail since 
the proofs are almost identical.  For the proofs of 
local existence and uniqueness of a blow-up 
solution of the equivalent integral equation (5.15) 
and the blow-up set of such a solution, we can 
demonstrate in exactly the same way as before. 

Theorem 5.3. There exists a such 
that the equivalent integral equation (5.15) has a 
unique continuous solution u  for any 

2 2 with 0T T< < T

2
( , ) .Tx t Q∈  

Let maxT  be the supremum of all  such that the 
continuous solution of the equivalent integral 
equation (5.15) exists. If 

2T
u

maxT  is finite, then  
is unbounded as  tends to 

0( , )u x t

t max .T  

Theorem 5.4. If the solution u  of the degenerate 
parabolic problem (5.1) blows up, then the blow-up 
set of  is u .I  

In order to ensure occurrence of blow-up in finite 
time, we give the sufficient condition for the 
degenerate parabolic problem (5.1) to blow up in 
finite time. 

Theorem 5.5.  Let 
1

1
0

( ) ( , ) ( )qH t x u x t x dϕ= ∫ x  where  

1ϕ  is the first eigenfunction of the singular 
eigenvalue problem (5.2), 1λ  is its corresponding 

eigenvalue and  Suppose that 
1

1
0

( ) 1.qx x dxϕ =∫
5.5.1. attains its maximum at point 0u 0 .x  
5.5.2.  ( )  with 0 and 1.pf b b pξ ξ≥ > >

5.5.3.
1

1
1(0) .

p
H

b
λ −⎛ ⎞> ⎜ ⎟

⎝ ⎠
 

Then a solution u  of the degenerate parabolic 
problem (5.1) blows up in finite time. 
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