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Abstract: - The paper presents a mathematical model of calculation of electrodynamic parameters in the 
constructions of three-phase heavy-current lines (power busducts). Particular attention has been paid to 
determining temperatures of the system. For purpose of electrodynamic analysis the method of integral 
equations has been used. The presented calculation model was used in the process of optimization of the 
designs of heavy-current busducts, aimed at minimization of the investment and operational costs of these 
devices. Genetic algorithms were used for the optimization purpose. Thermal calculation was carried out for a 
definite physical system. The effect of predefined electrodynamic parameters on the optimization results has 
been analyzed. 
 
 
Key-Words: - thermal calculation, electrodynamical parameters, heavy current lines, optimization, genetic 
algorithms, power busducts 
 
1 Introduction 
While designing and constructing modern technical 
equipment the optimization process is very 
significant. Among the most important optimization 
criteria there are minimization of raw material 
(construction material) consumption, minimization 
of energy loss during operation of the devices, and 
ecological aspects (interaction of the device with the 
environment). Possibilities of the construction 
optimization are delimited by some functional 
parameters of the considered objects. Among the 
most important technological aspects of most of the 
devices there are thermal parameters of their 
particular parts. The thermal calculation is usually 
of highly complex nature, as it depends (often 
randomly) on many varying factors, like the 
condition and colour of the surface, varying 
convection, random ventilation phenomena, etc. 

The work deals with the equipment designed for 
electric power transmission, i.e. three-phase heavy-
current lines (power busducts). A mathematical 
model is proposed for electrodynamic calculation of 
the busducts with particular consideration of the 
thermal aspect. Transmission capacity of these 
devices is affected by thermal phenomena which 
belong to the most important parameters 
determining operational properties of the busducts. 
The electrodynamic calculation presented here is 

used in practice in the optimization process of 
heavy-current busducts. 

The present paper provides the results of thermal 
calculation carried out for a concrete physical 
system. Dependence of obtained results of the 
optimization process on variation of some 
electrodynamic parameters has been analyzed. It has 
been considered which of the factors affects the 
optimization to the greatest degree. Such an analysis 
enables improving the optimization computation 
model. The optimization performed correctly allows 
for significant savings of raw material necessary for 
busduct manufacturing and for reduction of power 
loss during their operation. Such an undertaking 
provides definite financial savings in manufacturing 
and operational costs of the considered heavy-
current busducts. 
 
 
2 Description of the Analyzed System 
The consideration presented in the paper pertains to 
three-phase heavy-current busducts being one of the 
elements of electric power supply systems. They are 
used in almost all locations of a power system, in 
the range of medium voltage, for purposes of power 
transmission up to 200 MVA. Examples of their use 
may be as follows:  
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• connection of a generator to the unit transformers 
in power plants, and transformers to the medium-
voltage switchgears; 

• connections between the switchgear sections,  
• heavy duty power outlets operating under 

particularly difficult conditions, frequently 
occurring e.g. in underground hydro-electric 
power stations; 

• power transmission to the mines, steel works, 
large industrial plants, city centres; 

• as the supplying elements of production bays 
provided with welders, industrial automats, 
electro-thermal (e.g. arc) furnaces; 

• in large buildings – connections of the supply 
networks to the building transformers, etc. 
The paper presents analysis of a three-phase 

shielded heavy-current busduct in which air is an 
insulation medium (Fig. 1). The phase conductors in 
the form of oval-section pipes of the dimensions:         
a – the large diagonal, b – the small diagonal, and          
g – thickness of oval wall are distributed each 120º 
inside the cylindrical shield of inside Rs and outside 
Ro radii. The height of conductor suspensions 
amounts to h. 
 

 
 

Fig. 1. Geometry of the considered system 
 

For the considered devices the electrodynamical 
parameters should be calculated (as, for example, 
temperatures of the conductors and the shield, 
power losses of the system, voltage gradients, and 
electrodynamical forces) that, in consequence, are to 
be used for purposes of the optimization process of 
the considered heavy-current busducts. 
 
 
3 Description of Mathematical Model 
of Electrodynamic Calculation 
Alternating current flowing through electric power 
devices gives rise to many effects of 

electromagnetic, thermal, and electrodynamic nature 
as, e.g. real power loss, heating of the system 
structure and the environment, the forces arising 
between the system parts [1]. Among such devices 
the heavy-current busducts may be mentioned as 
well. The dynamical and thermal phenomena 
occurring in them may be analyzed based on the 
information on electrodynamic field distribution and 
real power loss. For example, knowledge of the 
power loss caused by eddy currents induced therein 
is necessary, particularly if the losses make 
significant part of total real power loss of the 
considered structure. Total power loss transformed 
into heat in the systems and ability of carrying it 
away determine the working temperature of the 
device, being one of basic structural parameters. 

In order to describe the electromagnetic field the 
method of integral equations has been used in the 
paper. The integral equation of current density 
distribution of a single working conductor has been 
formulated with consideration of geometry of the 
system. In the kernel of the equation such 
phenomena have been considered as the skin effect 
of phase conductors, their approach, and the effect 
of eddy current induced in the shield. Such a 
procedure enabled finding the solution that allowed 
for analyzing the electromagnetic phenomena 
arising in the current busducts and their 
surrounding, considering only a definite part of the 
analyzed area (in this case the surface area of one of 
the working conductors). 

Knowledge of approximate distribution of the 
current density vector enables determining the 
values of real power loss in the conductors and the 
shield. Information on the power loss emitted from 
the system allows to define the thermal conditions 
of the conductors and the shield.  Moreover, the 
electrodynamic forces acting between the 
conductors and the electrical strength of the system 
are determined, that is more comprehensively 
described in [1,2]. 
 
 
3.1 Determining the distribution of current 
density and power loss of the system 
In the considered system the magnetic vectorial 
potential A(r,ϕ,z) has only one component in the 
direction of z-axis and depends only on the (r,ϕ),  
coordinates, i.e. A(r,ϕ,z) = 1z A(r,ϕ), meeting the 
following relationships in particular domains 
(Fig. 2) [1]: 
- in the I domain (inside the shield), i.e. 0 ≤ r ≤ RS: 
 

A A AI r,  )( (ϕ ϕ ϕ= 1 2r, ) + (r, )  (1) 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Karol Bednarek

ISSN: 1790-5044 12 Issue 1, Volume 4, January 2009



 

 
 

Fig. 2. Analyzed system with marked particular 
areas for calculations 

 
In the above relationship the potential A1(r,ϕ) is 

due to the currents flowing in the phase conductors 
and may be expressed by the formula: 

(2) 

[ ] 'ddr'r'
i
x)'i( cosb+)'i(sin  a)',J(r'

4
3=

=)(r,

CS

i

1 = i
iiO ϕϕϕϕϕϕμ

π

ϕ

∫ ∑
∞

−−

1A

 
The potential A2(r,ϕ) is generated by the currents 

induced in the shield and, in consequence, satisfies 
the Laplace equation [1,3,4]: 
 

0),r(2 =∇ ϕ2A    (3) 
 
- in the II domain (the shield material), i.e. for 
RS ≤ r ≤ RO: 
 

)r,   j =  )r, SSO ϕγμμωϕ ((2
IIII AA∇     (4) 

 
- in the III domain (outside the shield), i.e. for 
r ≥ RO: 
 

0 = )r,ϕ(2
IIIA∇   (5) 

 
In the above relationships: Sc – is the cross-

section area of a single phase conductor, J – current 
density in the L1 phase, ω – pulsation (ω=2πf),          
μO – magnetic permeability of vacuum; μS – relative 
magnetic permeability of the shield material,                  
γs – electrical conductivity of the shield material. 

The coefficients of the formulae are presented in the 
papers [1,2,4]. 

Moreover, the following boundary conditions 
should be met at the boundaries of particular areas: 
- for  r = RS: 

(6) 
AI (r,ϕ)  =  AII (r,ϕ) 

HIϕ (r,ϕ)  =  HIIϕ (r,ϕ) 
 
-for  r = RO: 

(7) 
AII (r,ϕ)  =  AIII (r,ϕ) 

H IIϕ  (r,ϕ)  =  HIIIϕ (r,ϕ) 
 

Proper transformations lead to the integral 
Fredholm equation of current density J(r,φ) in the 
phase currents and the shield [1-7]: 

(8) 
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where:  (rO,ϕO) is a reference point,  γc electrical 
conductivity of the conductor;  K(r',ϕ',r,ϕ) – a 
kernel of the integral equation determined by the 
relationship [1,4,6]: 

(10) 
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The method of moments being a variant of the 

Ritz method, allows for converting the integral 
equations into a system of algebraic equations [1,5]. 
Solution of the system defines distribution of 
current density in the conductors and the shield. 

Knowledge of approximate distribution of the 
current density vector enables determining the 
amount of real power loss PC and PS of the 
conductors and their shield, respectively, that is 
presented by the following relationships (in a 
descretized form) [1,4,6]: 

 

 S   ),(rJ  
 
3  P m

N

1 = m

2
mmm

C
C Δϕ

γ
= ∑  (11) 

and 

 ΔS   ),(rJ  
 γ
1  P m

N

1 = m

2
mmS

S
S m∑ ϕ=  (12) 

 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Karol Bednarek

ISSN: 1790-5044 13 Issue 1, Volume 4, January 2009



 
3.2 Determination of temperature 
distribution of the shield 
Taking into account that busduct length many times 
exceeds its cross dimensions the entire thermal 
power emitted in the phase conductors propagates in 
radial direction. Based on temperature 
measurements it may be assumed that it flows 
uniformly. Such a thermal flux is additionally 
complemented by the thermal power emitted in the 
shield. The power density however, remains non 
uniform, taking into account inhomogeneous 
character of the current density induced in the 
shield. This in turn gives evidence that the 
temperature distribution may also be 
inhomogeneous. 

Total thermal power emitted from the considered 
system is carried to the environment by convection 
and radiation. Mathematical description of the 
exchange is made, among others, in terms of 
empirical coefficients, taking into account the 
physical and geometrical parameters of the 
considered system. Values of the coefficients may 
be accurately determined only on empirical way. 
Values of the coefficients assumed for the 
calculation allow for estimating the temperature of 
the working conductor and the shield. 

Distribution of the power density released from 
the shield is expressed by the relationship [1,2,4,6]: 
 

ρ ϕ
ϕ

γ
 (r, )  

 J (r, ) 
 S

S

=
2

     (13) 
 

Results of many computations carried out for 
aluminum shields of 3 mm thickness have shown 
that ρ(r,ϕ) is a function which depends strongly on 
the variable ϕ, of symmetrical properties each 120º. 
On the other hand, ρ depends on the r variable only 
to small degree. The total power emitted from the 
phase conductors propagates radially and only 
approximately uniformly. At the inner shield surface 
the following boundary condition is met [2,4,6]: 
 

 R =r for              
r
T

  
R 2 
 P

SS 
S

C

∂
∂

λ−=
π

   (14) 

 
Temperature inside the shield meets the Poisson 

equation: 
 

∇ = −2 T(r, )   (r, )  
 S

ϕ ρ ϕ
λ        (15) 

 

The thermal power is transferred from the outer 
shield surface to the environment by convection and 
radiation [1,2,6]: 

(16) 
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∂
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with:                    αCR = αC + αR            (17) 

 
αC - surface film conductance for convection: 
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αR - surface film conductance for radiation: 
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GR - Grashof number: 
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In the above formulas [1,6,8,9,10]: PC – is the active 
power loss (per unit length) of a phase conductor;   
PR – is the Prandtl number (read from tables);                
TO –  temperature of the environment; ε – emissivity 
factor of the shield material (the factor, similarly as 
the other material data, should be each time 
experimentally determined for a given material),          
λS – thermal conductivity of the shield material,             
ν – air kinematic viscosity (read from tables). 

The shield temperature may be considered as a 
sum of two excitations [1,6]: 
 

 )(r,T  (r)T  T  )T(r, SCSO ϕϕ Δ+Δ+=    (21) 
 
where ΔTCS(r) – the increase of temperature caused 
by real power released in the phase conductors 
(being a function of only r variable, due to radial 
propagation of thermal power); ΔTS(r,ϕ) – the 
increase of temperature caused by real power 
released in the shield (being a function of both r and 
ϕ variables since the distribution of the real power 
released in the shield depends on both these 
variables). 

The increase of temperature ΔTCS(r)  meets the 
Laplace equation [1,2,4,8,9]: 
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Solution of the equation (22) with consideration 

of (14) and (16) boundary conditions gives [1,2,6]: 
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As it was mentioned above, the density of the 

power released from the shield is a symmetrical 
function repeated each 120º. The assumption that 
the whole power ΔPS released from a shield sector is 
concentrated to circular sectors of r = Rx and the 
angle 2β, enables stating that power surface density 
amounts to: 
 

 dl Rd ),(r  
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Δ
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where: RX = (RS+RO)/2;  ρ(rK,ϕK) = ρK – volumetric 
density of the power emitted from the k-th shield 
sector. 

The surface density may be presented as a series: 
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taking into account [1]: 
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In such approach the stationary temperature field 

is described by a system of Laplace equations 
[1,4,5,6]: 
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where T1, T2 – temperatures of inner and outer 
shield surface, respectively. 

In result of the transformations finally, for r = RO 
one obtains [1,6]: 
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The coefficients occurring in the equations are 
determined in [1,2,4,6].  Temperature of the inner 
shield wall (for r = RS) may be similarly determined. 
 
 
3.3 Determination of conductor temperature 
distribution 
Solution of the system of integral equations 
provides distribution of current density Jj and, at the 
same time, real power values are attributed to 
particular j-th points of the conductor cross-
section [4,6]: 
 

P   1    J  S  j
C

j
2

j=
γ

Δ
  (29) 

 
Thickness of the conductor wall is relatively 

small, while the thermal conductivity of the material 
is rather high. Hence, it might be assumed that 
under stationary condition the temperature along the 
cross-section wall thickness is constant, varying 
only along its length. Taking into account such an 
assumption the thermal model of the conductor 
cross-section may be presented in the form of a set 
of l1,l2,...,lm,...lM lines corresponding to definite 
layers of the conductor cross-section. The beginning 
and the end of the branch lm is defined by the points 
lmp and lmk, respectively. Then, to particular points 
of the lm1,lm2,...,lmn  line may be assigned the values 
Pj  of real power emitted in the discretized elements 
of the phase conductor cross-section (Fig. 3 and 
Fig. 4). 
 

l 5

l 6

l 2 l 3

l 4

l 7

l 8

l 1

 
 
Fig. 3. Cross-section of the phase conductor and its 

division into subdomains 
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l

lmp lm3lm2

g

 
Fig. 4. Discretization of the conductor cross-section 

subdomain 
 

In case of such a formulation of the system the 
temperature growth above the environment 
temperature in the branch lm meets the Poisson 
equation [1,4,6]: 
 

λ ∂
∂C

2

2  T(l)
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  p(l) = −
  (30) 

 
where: 
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is a difference between the branch power emitted 
from n inside sources and the power carried to the 
environment with a constant α coefficient. On the 
other hand, the function δ(l-lmj) is the Dirac delta. 

Based on the Poisson equation a differential 
equation is obtained that describes stationary 
distribution of temperature increment along the lm 
branch: 

(32) 
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The transformations give finally [1,6]: 
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The constants C1m and C2m are determined based 
on the boundary conditions of elementary conductor 
sectors. The continuity condition of heat flux for the 
elementary sectors may be presented in the form: 
 

ipjk l=ll=l
 

l 
T(l)        

l 
T(l)  

∂
∂λ

∂
∂λ =  (34) 

 

for the li and lj values corresponding to the points of 
conductor sector contact. Moreover, in all the 
contact nodes the temperature continuity condition 
must be met: 
 

   T(l)        T(l)
ipjk l=ll=l

=        (35) 

 
The above relationships formulated for all the 

nodes provide a system of algebraic equations in 
terms of C1m and C2m unknowns. Solution of the 
system gives constant values C1 and C2 for all the 
elements of the considered system [1,2,6]. 
Distribution of temperature increments of particular 
elements is obtained from the equation (33). To the 
temperatures obtained this way the shield 
temperature should be added (obtained on the 
grounds of previous calculation) that is here 
considered as the environment temperature of the 
phase conductors. 
 
 
3.4 Consideration of coupling between 
electromagnetic and temperature fields 
The calculation model used here makes allowance 
for coupling between the electromagnetic and 
thermal fields. The coupling occurs on the 
conductance of the conductors and shield. The 
temperature changes cause the changes in 
conductivity of the shield and conductors and in 
result power losses, and vice versa. These 
dependencies may be expressed as [4]: 
 

T = f (ρ,γ,λ)      and     ρ = f (T,γ) (36) 
 

The calculations must be carried out with 
iterative methods. Before the calculations an 
assumption must be made about temperature of the 
conductors and the shield. The assumption must be 
checked at the end of the calculations. Once the 
error exceeds 0.5 K a new assumption must be made 
and the calculation repeated. 
 
 
3.5 Analysis of electric interactions of the 
system 
Analysis of electric field distribution of three-phase 
shielded heavy-current busducts and, on the basis of 
the above, determination of the locations of critical 
stress occurrence, is very important from the point 
of view of the use of these devices, being, at the 
same time, one of optimization elements of their 
designing. 
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Determination of electric strength against 
breakdown is a highly difficult task, as the strength 
depends on many factors, like pressure, humidity, 
temperature, possible dust and dirt occurrence inside 
the system, etc. On the other hand, possible changes 
in electric critical stress may be related to micro-
spears in the system that may arise during the 
technological process. 

For purposes of accurate analysis of the electric 
interactions the method of integral equations may be 
used. 

Taking into account the linear charge τ(α,β) the 
potential may be expressed by the relationship [11]: 
 

 dL  
r
1ln   ),(  

   2 
1  y)v(x,

L
∫= βατ

επ
   (37) 

 
where: r = |AB|,  A(x,y) – the point in which the 
potential is calculated;  B(α,β) – any point located at 
the L line,  τ – linear density of the charge,  ε – 
permittivity. 

A system of three very long phase conductors 
located in an earthed shield may be replaced with 
linearly distributed charges. It is assumed that the 
integration line L is approximated by a broken 
curve, the segments of which are described by the 
equations of the type y = cx + d. The curvilinear 
integral (37) may be then replaced with an iterated 
integral: 
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where: α1, α2 – are x-coordinates of the beginning 
and end of the line segment, respectively. 

In order to determine linear density of the charge 
τ the line L is divided into N elementary segments, 
with the assumption that linear charge density of an 
elementary segment remains constant and equal to 
τi. The equation (38) takes then a form: 
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with: αi, αi+1 – being x-coordinates of the beginning 
and end of the elementary segment, respectively;          

( αi', βi' ) – the coordinates of middle point of the              
i-th segment. 

Every segment of the current busducts has a 
potential V(x,y) = Vj The presented relationships 
allow, upon appropriate transformations, to obtain a 
system of algebraic equations [1,2,11]: 
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while for the element describing its own interaction 
with itself (i = j): 
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Solution of the system of equations (40) provides 

the linear density of the charge τi in the elementary 
busduct segments. The potential in any point of the 
considered region is determined from the equation 
(39) for a known linear charge distribution at the 
conductors surface. On the other hand, the Ex and Ey 
components of electric field intensity are determined 
from the relationship [11]: 
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Full analysis of the electric field was necessary 

in case of former designs of the heavy-current 
busducts in which sharp edges of the phase 
conductor cross-section occurred (in such a case 
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geometry of the busduct has been imposed by the 
electric strength conditions). In case of oval cross-
section phase conductors the cross-section geometry 
of the heavy-current busduct is determined chiefly 
by thermal conditions of the system, while the 
electric strength is obtained by analysis of electric 
stresses in the system weak points [1,2,4,11]. Under 
such a condition the analytical expressions for 
electric field intensity may be used that are related 
to geometrically definite parts of the system. Many 
research and computation trials carried out for the 
considered system have clearly shown that critical 
points of the analyzed geometry are (Fig. 5 and 
Fig. 6): 
a) E1 – maximal electric field intensity between the 

phase conductors: 
 

E1    U cos  

 2d sin   ln ctg 
2

 
 

r
2

=
ψ

ε ψ ψ
 (45) 

 
b) E2 – maximal electric field intensity between the 

conductor and the shield at the shorter oval axis: 
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c) E3 – maximal electric field intensity between the 

conductor and the shield at the longer oval axis: 
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In the above formulas: ψ – half of the apex angle of 
the phase conductor cross-section;  d – distance 
between the phase conductors;  R3 – internal radius 
of the shield;  hiz – insulator height;  a – large 
diameter of the conductor;  b – small diameter of the 
conductor;  x – the distance between the centre of 
symmetry of the shield along the large diameter of 
the conductor; εr – specific inductive capacity;               
U – peak value of withstood proof surge voltage 
in kV (determined based on standards). 
 

E1

E2

E3

 
 

Fig. 5. Locations of system critical stresses 
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Fig. 6. Geometric dimensions characterizing the 
system from the point of view of critical stress 

calculation 
 
 
4 Optimization problems 
The optimization is aimed at saving the raw 
materials and the power at the stages of 
manufacturing and operating of the three-phase 
heavy-current busducts. 

As an optimization criterion of heavy-current 
busducts the minimal cost of the consumed 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Karol Bednarek

ISSN: 1790-5044 18 Issue 1, Volume 4, January 2009



construction material (i.e. the investment cost), and 
unit cost of real power loss within the duration of 
the use of the device (i.e. the operational cost ke) 
have been adopted. Therefore, the objective function 
SK is a sum of variable construction and operational 
costs of the considered busducts, depending on 
geometrical dimensions of the system [1,2,4]: 
 

( )seiK R h,g,b,a,fkkS =+=  (48) 
 

The constraints Zi of the optimization process 
include allowable electrodynamic parameters of the 
system (temperatures of the conductors and shield, 
electrodynamic forces, and electric strength) and 
real (technologically justified) ranges of their 
geometrical dimensions. In order to check the 
optimization problem with these constraints the 
criterial function Sz has been used for unconditional 
optimization purposes, with the penalty factor Pi, 
resulting in precluding the solutions for which the 
constraints are not met [1,2]: 
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Consideration of greater number of the factors in 

the analysis of the system and the use of more 
sophisticated mathematical apparatus for 
computation of the object parameters (the 
determination of which is required in order to cope 
with all the optimization conditions) provide the 
criterial functions in an inexplicit form, having 
many local optimal points. In such cases an 
appropriate choice of optimization method (in 
accordance with the considered technological 
problem) becomes an important element. 

In the optimization of a simple (unimodal) 
function the deterministic methods (among them the 
Gauss-Seidel method presenting a classical 
deterministc approach, the method of maximum 
slope, i.e. a gradient method with minimization of 
the direction, and the method of coupled directions 
– with varying metric) are very effective. On the 
other hand, in case of multimodal functions the 
deterministic methods usually stall in one of many 
local optimal points (reaching no real optimal 
point) [1,2,12,13,14]. 

The optimum in the global sense may be found 
only with the help of indeterministic methods (as 

Monte Carlo or the genetic algorithms – the 
evolutionary method). Another worth considering 
solution may consist in combination of the 
indeterministic methods (in order to find the starting 
point) with the deterministic ones (for finding the 
accurate optimal point). 

In the present paper in order to reach the global 
optimal point of multimodal criterial function the 
indeterministic method of the genetic algorithms is 
used [1,2,12,14]. 

Simplicity of the genetic algorithms consists in 
the use of several simple operations performed on 
code series. It consists in converting the objective 
function parameters (i.e the decisive variables) into 
a binary form and processing the information in a 
random manner. Operation of the method is based 
on a general “Darwin Principle” saying that a 
stronger (better adapted) individual survives while 
the weaker one “dies”. In case of the genetic 
algorithms the better adaptation concerns the code 
series having higher values of the objective function 
called the adaptation function. Better adapted 
individuals have better chance for introduction of 
their representatives to the next population. This is 
conducive to the fact that the next population 
includes the code series distinguished by the best 
adaptation, in result of a simultaneously random and 
deterministic procedure [14]. Mathematical 
formulation of the above mentioned rule has a form: 
 

(51) 
p)m(H,c)(1f)/fcf(p)m(H,1)pm(H, ⋅+=+⋅=+  

 
where: 
m(H,p) – expected number of the representatives of 
the H scheme in the p population, 
m(H,p+1) – expected number of the representatives 
of the H scheme in the p+1 population, 
c – an experimental constant, 

nf
n

j
j∑

=

=
1

/f  – average adaptation of the whole 

population, 
fj – adaptation of the j-th individual, 
n – the number of the individuals belonging to the 
population. 

Since in the genetic algorithms the best 
individuals are selected, the criterial function 
(consisting in the functional minimization) should 
be transformed into the adaptation function 
(requiring maximization). The methods of these 
transformations are presented in [14]. 

The foundations of every genetic algorithm are 
based on several elementary operations, i.e. 
reproduction, crossing, and mutation. The 
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reproduction operation consists in copying the code 
series into the next population based on the value of 
the adaptation function. On the other hand, the 
crossing operation consists in random mating of the 
code series of one population into pairs that 
represent a single decisive variable and, afterwards, 
random exchanging of a definite number of bits 
between them. The random exchange of the definite 
number (defined based on the assumed probability 
level) of bits is called mutation (in particular cases 
such a process may disturb the algorithm thus 
leading to the lack of convergence). 

The genetic algorithm in its elementary version 
includes the following operations: selection 
according to the roulette rule, simple crossing with 
random mating, and simple mutation. The selection 
according to the roulette rule is a process 
distinguished by large variation, hence, the eventual 
number of copies is significantly dispersed around 
its expected value (thus resulting in poor 
convergence of the computation). The paper 
presents a modification of the selection operation 
based on the De Jong Expected Value Model and 
Brindle’s random selection without repetitions. In 
order to prevent losing the best individual such an 
individual, representing the best among the current 
solutions, is “always” transferred into a randomly 
selected place. Another modification consists in 
scaling of the adaptation. In the present algorithm 
the linear scaling is used [1,2]. 

The crossing and mutation probabilities were 
constant, amounting to 0.8 and 0.005, respectively. 
A constant population size of 16 individuals was 
kept. The optimization process was carried out with 
80 generations. 
 
 
5 Results of the calculation performed 
The calculation has been performed for a three-
phase shielded heavy-current busduct. Aluminum is 
used as structural material of the conductors and the 
shield. The system is located in still air, screened 
from solar radiation. For purposes of the calculation 
the following data are assumed: rated voltage 
U = 12 kV, rated current I = 4 kA, the frequency 
f = 50 Hz, the environment temperature TO = 308 K, 
allowable shield temperature TS = 338 K, allowable 
conductor temperature TC = 378 K, conductivity of 
conductor and shield material γ = 34.6 · 106 S/m, 
emissivity coefficient of the conductor and shield 
materials 0.5. 

Conductor and shield temperature distribution 
has been calculated for a busduct of the parameters: 
diagonal of the conductor oval – the large one 
a = 148 mm and the small one b = 125 mm, 

conductor wall thickness g = 14 mm, height of 
conductor suspension h = 178 mm, internal shield 
radius RS = 547 mm, external shield radius 
RO = 550 mm, surface film conductance 
α = 4.5 W/(m2 · K), thermal conductivity of 
conductor and shield heat λ = 220 W/(m · K). 
Results of the calculation are presented in Fig. 7. 
Calculated temperature distributions are presented 
with the accuracy to two decimal places, only in 
order to depict the scale of temperature differences 
of particular points of the system. Under real 
temperature computation such accuracy is useless, 
since the temperatures determined this way depend 
on many factors, as condition of the conductor and 
shield surface (and, in consequence the surface film 
conductance), arrangement of the busduct (even 
slight deviation from horizontal position may affect 
the convection conditions) or environmental 
conditions (random air motion around the busduct 
or consideration of the insolation in case of location 
in an open area). 
 
 

 
 

Fig. 7. Results of temperature distribution T[K] 
calculation of the conductors and shield 

 
For the same system the temperatures of the 

conductors and the shield have been calculated with 
respect to: 
a) the current in the range 1÷4 kA. Changes in 

current load capacity of the busducts of definite 
geometry are conducive to intensive temperature 
changes, both of the conductors and the shield 
(Fig. 8). Temperature difference between the 
conductors corresponding to the current variation 
range specified above amounts to 34 K, while in 
case of the shield – to 8.5 K. 
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Fig.8. Changes in conductor and shield temperature 
with regard to current variations 

 
b) electrical conductivity of the conductor material 

in the range 28÷36 · 106 S/m. Temperature 
difference between the conductors corresponding 
to the range of conductivity of the conductor 
material specified above amounts to 8.5K, while in 
case of the shield – to 4K (Fig. 9). 
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Fig.9. Changes in conductor and shield temperature 
with regard to varying conductivity of the conductor 

material 
 
c) electrical conductivity of the shield material in 

the range 28÷36 · 106 S/m. The difference in 
calculation results of the shield temperature for the 
range of conductivity of the conductor material 
specified above was lower than 0.5 K. 
Temperature of the conductors remained 
unchanged (the difference below 0.1 K). Due to 
insignificant temperature changes no plots of the 
results are drawn up. 

Moreover, optimization calculation has been 
carried out for the heavy-current busducts. 
Dependence of optimal total cross-section area of 
the S profile and the power loss P versus varying 
electrical conductivity of the conductor material γC 
is shown in Fig. 10. 
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Fig. 10. Dependence of optimization results of 
heavy-current busducts versus varying conductivity 

of the conductor material 
 

Fig. 11 and Fig. 12 show the relationships 
between optimal total cross section area S and 
power loss P versus the current intensity and voltage 
of the busduct, respectively. 
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Fig. 11. Relationship between the results of heavy-
current busduct optimization and current variation 
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Fig. 12. Relationship between the results of heavy-
current busduct optimization and voltage variation 
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6 Conclusion 
On the grounds of the multi-variant computation 
carried out for the heavy-current busducts and its 
comparison to measurements made in physical 
systems [1,2,4,6] it was found that the calculation 
error is less than 1 percent. Accuracy of the thermal 
calculation depends on many factors, among which 
the following might be mentioned: correctness of 
the assumed mathematical model, proper 
consideration of the environment conditions (e.g. 
random air motion, consideration of solar radiation 
or the effect of other heat sources existing in the 
vicinity), and exactness in assuming the coefficients 
defining the kind of the material and condition of 
the surface of particular elements (e.g. changes in 
colour or roughness caused by external factors). 

Conductor and shield temperature is significantly 
affected by the variations of electrical conductivity 
of the conductors and the shield. It means, in 
consequence, that it is worth making the phase 
conductors of a material of high conductivity, while 
the use of high conductivity aluminum in case of the 
shield is unprofitable. Similar conclusions may be 
drawn based on the optimization results of the 
present paper and former publications of the author. 

Multi-variant calculations (carried out in other 
author’s papers too) give evidence that the results of 
optimization of the considered busducts are chiefly 
determined by thermal factors (the effect of 
electrodynamic forces and electrical strength is 
much smaller). Therefore, appropriate thermal 
calculation of the system is of high importance for 
the optimization process. 
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