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Abstract: — Three-dimensional mathematical model of the automotive fuse is considered in this paper. Initially,
partial differential equations of the transient heat conduction are given to describe heat-up process in the fuse.
Conservative averaging method is used to obtain analytical approximation of these equations by the system of
three ordinary differential equations. Finite difference scheme is given if conservative averaging procedure is
stopped one step before, i.e., after 1D problem of partial differential equations is obtained.

Key-Words: — Heat conduction, Quasi-linear, Transient process, Three-dimensional, Analytical reduction,
Conservative averaging, Finite difference scheme.

1 Introduction

Usually, mathematical modeling of the fuse is
implemented by making one dimensional
assumptions [1]-[4]. In this paper, we use original
method of conservative averaging to transform
initial 3D statement of the problem to the statement
of new type that consists of three ordinary
differential equations. Approximate analytical 3D
solution is obtainable from the solution of the
transformed problem. Conservative averaging Fig.2
method is theoretically well founded for linear

partial differential equations [6]-[12]. Here (as in

[13], [14]) we investigate quasi-linear problem.

2 Geometry of the Model )\ x

We start with geometric assumptions of the typical
car fuse (Fig.1 and Fig.2). Fig.3
Because of the symmetry, it is enough to use only
the shaded part of the model (Fig.4 and Fig.5)
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0 1 2 3 4
Fig.1. Example of automotive fuse with
and without plastic shell

We seemingly straighten out the fuse and use
geometry of the model as shown in Fig.3.

Fig.4

ISSN: 1790-5044 111 Issue 1, Volume 3, January 2008



WSEAS TRANSACTIONS on HEAT and MASS TRANSFER

Fig.5

We give brief description of the method in the next
chapter, further follow mathematical statement of
this problem and usage of the conservative
averaging.

3 Short Description of Conservative
Averaging Method

Conservative averaging method was developed as
approximate analytical and numerical method for
solving partial differential equations with piecewise
continuous coefficients. The usage of this method
for separate relatively thin sub-domain or for sub-
domain with large heat conduction coefficient leads
to reduction of the domain in which the solution
must be found. Method can be applied for several
sub-domains simultaneously.

To apply this method for all sub-domains of the
layered media, a special type of the spline is
constructed:  the integral averaged values
interpolating parabolic spline. Usage of this spline
allows diminishing the dimensions of initial
problem per one. It is important that the original
R™ problem with discontinuous coefficients
transforms to problem with continuous coefficients
inR" in all cases. More detailed description of the
method is given in papers [6]-[13]. Built on concrete
steady-state heat conduction example, main idea of
the method is given here.

Let us assume that we have domain D that consists
of two sub-domains (rectangles) G, and G, (Fig.6).

y

Go G1

0 I L
Fig.6

G, ={(x,¥)Ixe(0,1),y e (0,h)},
G, ={(x,y)Ixe(l,L),ye(0,h),
D=G, UG, u{(x,y)|x=1ye(0,h)}.
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Objective is to find function U (X, y) (continuous
in domain G, ) and function U,(X,y) (continuous

in domain Gl) that fulfills following equations:
a) differential equations:

ox % ax ) oy
i(klaUlj+£ K S Re =0 @
OX OX oy oy
b) conjugation conditions at x =1 :
U0|x:l :U1|x:l (3)
R @
aX x=l-0 GX x=1+0
¢) boundary conditions:
oy, 0. )
X |,
oy, 0. ©)
OX |y,
il Zo, i-0a ™
OX |yg
ouU.
k—-h (U —-© =0 8
[.ax , (U )l_h (8)

We require that all derivates of the equations (1), (2)
are continuous in corresponding sub-domains.
Solution of this mathematical problem can be
treated as temperature in two layer media for heat
transfer process. We assume that all coefficients are
constant here. Temperature dependant coefficients
are considered in the next chapter where
conservative averaging is applied for the model of
the fuse.

Let us assume that domain G; is thin in x-direction

or it is made by material that has relatively better
heat conductivity than the other one (or both
conditions take place). We can obviously assume
that temperature is almost constant in x-direction
then. If this assumption is not the case, we can
assume that distribution of the temperature differs
from some other curve only slightly, i.e.,
polynomial or function of the exponential behavior.
Therefore, the first thing is to understand in which
domain and in which direction the behavior of the
unknown function is predictable.

Before we choose specific representation, we
introduce integral averaged value function over

chosen interval. If we take domain G, and interval
x €[0,1] then the definition of this function is
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(5) = [Ua 0 Y)ax. ©

In our case, function u, represents averaged

temperature in interval X €[0,1] on given liney.

Next, we select function that will approximate our
unknown function in chosen domain and segment. It
should describe particular physical situation. It
means, better view of the situation we have, more
appropriate function we can choose. For example,
let us use exponential approximation in x-direction.

General form of the function U, then is

Uo(x,y) =a(y) +b(y)e" +c(y)e™.
Representation of the function U,

unknown functions a(y), b(y), c(y). They are

obtained in such way that they fulfill conditions on
the boundaries x =0, x=1I and integral equality
(9).

Practically hyperbolic functions could be used
instead of exponent. In our case, better form of the
exponential approximation is

U,(x, y) =a(y) + b(y)(cosh Gj —sinh(l)} +
(11)

(10)
contains

+c(y) (sinh (Iij —cosh() +1j
Taking into account derivative of this function
U, :Eb(y)sinh(§)+}c(y) cosh (ij (12)

ox | I I I

and boundary condition on the border x=0 (5), we
obtain that c(y) =0. If we apply integral (9) to the
formula (11), we obtain:
a(y) =uy(y).
Conjugation condition (4) on the second boundary
X =1 of the domain G, gives unknown function b :

b(y) = T
sinh(l) ox |,
After unknown functions are found, we can rewrite
approximation of the function U, in following
form:
Uo (X, y) =, (y) +
+ _Ikl [cosh (Ej—sinh(l)J U,
sinh(1) I OX |,y
The next step of the conservative averaging method

is integration of the main differential equation (1)
over the interval x €[0,1]:

(13)
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1¢l o, aU,) o(, au, B
I—E[|:&(k0 o j+5(koa_y]+ FO(X, y):|dX—O

Let us take a look at the first addend:

|
lji(k()%jdx:
I+ OX OX
_ke Uy kU _k oU, 0
I ox |, | ox|_ | oX|g

We used conditions (4), (5) on the borders of the
domain G, to make analytical transformations here.

On the other hand we can use representation (13)
and it also leads to the same result.

Order of the integration and derivation is swapped
for the other derivatives in the integral. Integral
formula (9) is used after that:

|
1Jg(koaﬂdx:
oy~ oy
|
:ikoiﬂ'uodx=i kO%
oy oyl dy( ~ dy

Consequently, differential equation for the unknown
averaged value function u,(Yy) is

dyl " dy ) |
where  f(y)
function:
1I
F(y)=7 [ Rox y)d
0

We have transformed initial problem to the new
one. Differential equation for the function U, (X, y)

+(y)=0

is averaged value of the source

(14)

in the domain G, remains the same (2). The second
differential equation (14) is for the averaged value
function u,(y) ininterval y [0, h].

y

Gy

0 I L

Fig.7
If we take into account representation of the
averaged function (13), the conjugation condition
(3) gives condition between functions u, and U, :
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oU,
OX

This equation together with the equation (14) could
be considered as non-classical boundary conditions

for the border x =1 in domainG, .
Boundary conditions when y =0 and y =h for the
function u, are similar as for the function U, :

U, =U,| , +1k (1—tanh(1)) (15)

x=I

du,

y=0

du
(ko d—yo+ hy (UO —®)j

To be accurate, these equalities are obtained after
integral is applied to boundary conditions (7), (8).
Transformations are similar to those that were done
for the main differential equation (1).

Boundary conditions (6), (7), (8) remain the same

for the function U, (X, y) of the domainG, .

We have transformed original problem and reduced
dimension of one domain. Usually, it is impossible
to find analytical solution. The only choice is to
solve it numerically. It takes less computer power to
calculate such mathematical problem because of
reduced dimension.

It is possible to reconstruct temperature distribution

U,(x,y) in domain G, from the representation

(13) after functions u,(y) and U,(x,Yy)are

calculated. Note that it is possible to get value at any
point of all interval - not only in some discrete
points as it would be after applying finite difference
method to initial problem.

Mathematical problem is reduced by one dimension
for whole system if conservative averaging method

is applied for the domain G, in x-direction over

interval x e[l,L]. Averaging procedure can be

applied continuously in several directions, reducing
dimensions of the problem one by one. Numerical
calculations are also reduced by order.

Let us look back to the original problem (1)-(8). For
both domains, conservative averaging could be
applied in y-direction at first (Fig.8).

=0

y=h

(17)

X

LI

Fig.8
Boundary conditionsat y =0 and y = h transfer to

the new differential equations then. If constant
approximation in y-direction is used

Uo (X, Y) =Uy(y), Uy (X y)=u,(y)
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then differential equations for thin wire with
convection is obtained:

d du )y h,
&(kia]—r(ui @)— fi
f.(x)=F(xy), i=01

Remaining boundary and conjugation conditions
actually stay the same:

(18)

dx x=0 , dx x=L ,
du du
u0|x=l = u1|x=l y kO d—XO | = kld_xl ” (20)
x=1-0 x=1+

We gave main steps of the conservative averaging
method as a summary of this section. First, choose
function of the approximation. Second, integrate
main differential equation. Third, use boundary and
conjugation conditions.

4 Original Problem and its
Approximation by Conservative
Averaging Method

4.1 Mathematical Statement of the Initial
Problem

We continue with accurate formulation of the three-

dimensional mathematical model of the transient
heat conduction problem for fuse.

=

I+L x
Fig.9

Let us treat main domain (Fig.9) as two connected
sub-domains G, and G;:

G, ={(x,y,z)|xe[0,1],y €[0,b], z €[0, h]},

G, ={(xy.z)|xe[l,l+L],ye[0,b],z€[0,H]}.
If temperature in domain G, is denoted as function
U,(x,Y,z,t), then differential equation for the heat

transfer is
:i[k%j_'_i k% +
ox\  OX oy\ oy

0

a(7ui)
o(. au,

G

(x,y,2)eG,, t>0, i=0,1

(21)
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Source function F (heat produced by electrical
current) can be approximated with linear function:

F(xy,z,tU)=B(1+a(U,-U,)), (22)
,Oreflz prefI2
where B, = g = H2p?

Parameter p,, is resistivity of the material at the

reference temperature U,, o« is temperature
coefficient at the same reference temperature; | —
electrical current. Heat conductivity k and heat
capacity (per volume) » depend on temperature.

Besides main equations (21), we add symmetry
conditions:

oy, _0, ou, _0, ou, ~0, (23)
8X x=0 ay y=0 az z=0
oy, _0, oy, _0, ouU, ~0  (29)
ax x=l+L 8y y=0 82 z=0
and heat exchange conditions on outer surfaces
k%-i-hy(uo—@) -0,
oy v
(25)
ouU
k 1+hy(U1—®)j =0,
y=b
kaU°+hZ(UO—®) =0,
0z h
(26)
(k aUl+hZ (U1—®) =0,
0z z=H
(—k Y, +h, (Ul—G))j =0, (27)
8X x=I+0,ze[h,H]

where ® = O(t) is temperature of the environment,
but h, ,h

y''z
surfaces in corresponding direction that also depend
on temperature.
We also add conjugation conditions, i.e. continuity
of the temperature and heat fluxes between both
parts of the fuse:

are heat convection coefficients for

B oU,| _au,|
UO|X=I70 _U1|X=I+0 ’ 8X |x=|—0 - 6)( |><:I+0, (28)
y €[0,b], z€<[O0,h].
Finally we add initial conditions:
Ug|_, =U,|_, =U° =const. (29)

4.2 Conservative Averaging in y-direction
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We introduce the integral average value of the
functions U, (X, Y, z,t) in the y-direction:

b
Vi(x,z,t):%jui(x, y,z,t)dy . (30)
0

In praxis, firstly, the thickness b is very small in

comparison with the width of the fuse. Secondly,
material of the fuse (metal) has high heat
conductivity coefficient. These features allow us to
use the simplest form of the conservative averaging
method — approximation by the constant. Detailed
procedure of the analytical transformations is given
in previous section. Shortly, we integrate main
equation (21) over the segment y €[0,b] and then
we use boundary conditions (25) and linear

representation of the source function (22). Finally,
we take into account integral equality (30) and

obtain:

d A ANCIOEAN
5(7\/‘):&@5}&@ 62) (31)
—%Y(Vi—®)+Bi(l+a(Vi—Ur)), i=0,1

Because of the linearity, the additional boundary
conditions (BC) of new problem are the same as in
the statement of the original problem (21)-(29):

% :% =0 % =0, i=0,1 (32
aX x=0 ax x=l+L ' aZ z=0 ’ ,
( %mz (vo_@)j -0,

7

= (33)

( %mz(vl—@)j =0,

oz z=H
(—k%+ h, (V, —@)) =0, (34)

aX x=I+0,ze[h,H]

We also add conjugation conditions at z [0, h]:
A A

Voleio =Vil o , (35)
O|X_I ° 1|X_I ° 8X |x:l—0 aX |x:l+0

and initial conditions:

Vo|_, =Vi|._, =U° =const. (36)

4.3 Conservative Averaging in x-direction
As the next step, we will make conservative
averaging in the x-direction. We define one

averaged value function over domain G; and two
separate functions for the domain G, — the first for

interval z€(0,h) and the second for interval
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ze(h,H) because of different conditions on the
line x=1:

Wo(z,t)=%j'vo(x,z,t)dx, 2 (0,h),

I+L

W, (z,t) :% jvl(x, z,t)dx, ze(0,h), (37)
|

I+L

Wz(z,t):% [Vix z.t)dx, ze(h,H).

In this case, we use exponential approximation in
the following form:
Vo (X, 2,t) =W, (z,t) + p,(z,t) x

x _cosh (Iij —sinh (1)} , (38)
V, (X, z_,t) =W, (z,t)+ p;(z,t)x
x cosh(x_l_Lj—sinh(l)}, i=12 (39)

Equalities (38), (39) are chosen in such way that
they fulfill integral equalities (37) (conservation of
the heat energy) and BC (32) at x=0
and X =1+ L. We use conjugation conditions (35)

to find unknown functions p,, p, and afterwards
obtain functions V,, V;:
Vo (X, Z,t) =W, (z,t) — Col (W, (2, 1) =W, (z,t)) x

_cosh (1) —sinh (1)} C, = i,
L I I+L
V, (X, Z,t) =W, (z,t) + CyL (W, (z,t) =W, (z,t))

_cosh( L]—sinh(l)}, z<(0,h)

We find function p, and representation of function

(40)

X

(41)

X—1—
X

V, ininterval z e (h,H) from expression (39) by
means of BC (34):
Vi (X, z,t) =W, (z,t) - C, (W, (z,t) - O(t) ) x

{cosh( Lj—sinh(l)] ze(hH)

=

(42)

X—1—

2eLh,
k(e*~1)+2Lh,
Discontinuity for the temperature field could appear
on the line z="h. This kind of discontinuities was
considered in papers [13], [14].
We integrate differential equations (31) on the first

step of averaging in order to obtain equations for the
second step. We use representations (40), (41), (42)
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of the functions V,, V, and integral equalities (37)
to make approximate analytical reduction of 2D

system to 1D system of partial differential
equations.
0 o[, oW D
2w = 2k ]+ B w,)-
(43)

_%’(WO -0)+B, (1+a(W,-U,)),

0 = o(, dW,) D
oWy Lk L B ow W) =
&)= 2k 2o, w)
h (44)
_FV(W1—®)+81(1+0¢(W1—U,)),
0 (s 0(, W, o
6t(7W2)_62(k azj D (W; -6)
h (45)
_FV(W2—®)+Bl(l+a(W2—Ur)),
D, = C,ksinh(l), Dlzw.

As we mentioned in the introduction, we consider
the quasi-linear problem here. This problem
significantly differs from the problem considered in
our papers [10], [11]. We have made the averaging
procedure over the sub-domain with linear
differential equation in the earlier statement of the
problem. Therefore we will explain deeper the
averaging procedure for the left hand side of the
equation (43) (procedure for the equations (44), (45)
can be realized in the same way). In this paper, we
use enthalpy form of the heat equation (see, e.g. [5],
chapter 7). This form is substantially more suitable
for the use of the mean value theorem:

110 ol 1t
F!E[VNO)Vo]dZ = 5{70/0)3!\/&2} =

0

:a[ywo]’ 77:7(\70)1 \Z):Vo(i’z’t)-

It is possible to choose the mean value more or less
freely. We propose to use the corresponding middle
point, i.e

.X=1/2, X=X=L/2, or averaged temperature:
y=rWp), 7 =r(W), 7 =rW,).

Again, boundary and initial conditions are the same
as in the original problem because of the linearity:

oW, ~0 oW, ~0
oz, = 0l

(46)

Issue 1, Volume 3, January 2008



WSEAS TRANSACTIONS on HEAT and MASS TRANSFER

[kaWo +h, (W, —@)j =0,
0z .

oW 47
k—=2+h,(W,-0 =0,

( oz N, ( 2 )j -

WO |t:0 :W1|t:0 :W2 |t:0 =U°=const . (48)

We also ask for continuity of the averaged
temperature and fluxes on the line z = h . That gives
additional conjugation conditions:

oW, oW
W1|z:h—0 :W2|z:h+0 ! 821 h - 822
z=h-0

(49)

z=h+0

4.4 Conservative Averaging in z-direction
Finally, we will make conservative averaging
procedure in the z-direction. We introduce three new
functions for this purpose:

U, (t) :%jlwo(z,t)dz,

h
u, (t) =% jwl(z,t)dz, (50)
0

1 H
u,(t) =——— | W,(z,t)dz.
=" j ,(2,1)
We use exponential approximation in the form

W, (2,t) = U, (t) + g (t)[cosh Gj —sinh (1)} ,
W, (z,t) = u, (t) + ql(t)[cosh (%)-sinh (1)} . (51)
W, (2,1) = u, (t) + 6, (t) {cosh (%)—sinh (1)}

. [ z-=h
+0, (1) {smh (mj —cosh(1) +1} :

We fulfill the integral equalities (conservation of the
heat energy (50)) and the symmetry conditions (46)
at z =0 by this representation. Using BC (47) and

conjugation conditions (49) we can find four
unknown parameters in the representation (51). This
gives:

W, (z,t) =, +6, (U, —®){cosh (ﬁj—sinh (1)} ,
W(z. )=y +

j{el(u1 ~u,)+6,(u, —®)]{cosh(8—sinh(l)},

(52)
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W,(z,t)=u,+
z-h

+[es(ta—uz)+e4(uz—®)]{cosh[ﬂj—sinh(1)}

z-h

+ e (U —u,) +e (U, —@)]{sinh(ﬂj—cosh(l)ﬂ},

Up =Ug(t), U =uy(t), u,=U,(t),
where constants ei are:
e, - 2—2ehhZ |
k(e —1)+2hh,

e, =—eh(k(e” —1)+2h,(H -h)) /e,
e, = 2ehh (H —h)(e’ —2e-1) /e, ,
&, =(H-h)(€* -1)(k(e* +1)+2h,(e-1)(H -h)) /2e7
e, =—h,(H —h)(2eh+(e* ~1)(e~1)*(H —h)) /e,
e, =—(H —h)(e* ~1)(k(e* +1)+ 2, (e~ 1)) /2e,
e, = h,(H —h)?(e* —1)(e’ —2e-1) /e,
e, =k(e*-1)(2H -h) +

+h,(H —h)(2h-(e* ~1)(e—-3)(e~1)(H —h))

After integration of equations (43)-(45), we finally
obtain system of ordinary differential equations:

d, . D
a(?”uo):To(ul_uo)_Eo(uo_®)+

+B, (1+a(u,-U,)),

(53)

dzy=Pogy —uy)-Dogu -

a(?”ul)— L(uo u) b(ul ©)+
+E e (u-u,)+e,(u,-0)]+ (54)
+B,(1+a(u-U,)),

d -
a(7u2) =-E, (ul_UZ)_

h
—{Ee + Dﬁﬁ}(uz -0)+

+B, (1+a(u,-U,)),

Here, constants E, E, E,, E, and coefficients y :

(55)

E, :&+&(1+e—°j,
b h e
E - ksi:zh(l)’
£ _ k (e, sinh(1) +e,(cosh(1) -1))
. (H-h) |
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_ k (e, sinh() + e, (cosh(1) —1))

E3 2

(H=h)
7=7(Wo(Z,1), 7=7 (W,(2,1), 7=7(W,(2,1))
7=h/2, i=(H+h)/2

or 7=7(u (1), 7=7(u®), 7=7(u,®),
This system of three ordinary differential equations
must be supplemented with initial conditions:

U |t=0 =4 |t=0 =U°. (56)

4.5 Simplified Averaged System of Ordinary
Differential Equations
The main goal of this mathematical model is to
predict time before melting of the material in the
thinnest sub-domain G, caused by inadmissible
strong current. According to expression (22),
density of the electrical current is H?/ h? times
bigger in this sub-domain. This reason allows
us to propose another model besides the first
one. As the second step of the averaging, we use
the simplest approximation in the z-direction —
approximation by constant.
We introduce averaged values:

h
W, (x,t) = %IVO (x,z,t)dz,
1°H (57)
w, (x,t) = WE[VAX' z,t)dz.
We assume that temperature is constant in

z-direction because it changes only slightly in
comparison with x-direction:

w, (X, 1) =V, (X, z,t),
w, (x,t) =V,(x, z,1).
Integration of the differential equations (11)

immediately gives system of two 1D partial
differential equations:

(58)

0 0 oW, _

E(ﬂwo)wo) :&(kgj
_(h_by+%j(wo—®)+BO(1+05(WO—Ur)),

p o (. ow 9
£ (rtmm) =224

_(%Jr%](wl—@yr B, (1+a(w -U,)).

Boundary conditions remain the same:
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oW,

Mo _ o) (60)
8x x=0 aX x=1+L

The second conjugation condition changes

substantially because of convective heat losses over
the surface {x=1,ze[h,h+H]}:

W0|x:l—0 - W1|x:l+0 ! (61)
ik :[Hk%—hz(H—h)(wl—@)}

OX x=1-0 OX x=1+0
Integration of the boundary condition and

conjugation conditions was made to obtain previous
equation. By the way, such type of the second
conjugation condition was used in paper [4]. The
initial conditions remain the same:

Wo |t=0 = W1|t=0 =UO' (62)
As the last step, we will apply the conservative
averaging method in x-direction. We will use
exponential approximation as the form used earlier:

W, (%,t) = Uy (t) + p, (t) {cosh (TX] —sinh (1)} ,
(63)
W (xt) = (t)+ p,(t) {cosh( I'j—sinh (1)}

We have introduced the average integral values
again:

X—I|—

U, (t) = % [ w, (x, t)dx,
| (64)

I+L

0, 1) =% [ ()

We obtain parameters p,(t), p,(t) of the repre-

sentations (63) from the conjugation conditions
(61):

pl(t) = e[uo (t) - U, (t)] + P ®),

P ('[) —e gl(ul_uo)_gz(uo _®)
0 g )

i.e.,

pl(t) —e Jo (Uo _ul)_gz(ul _®).

0,
Here

gy =k (1), g, =k (e 1),

9,=2h,(H-h), 0,=0,+0+0,
Finally, we integrate partial differential equations

(59) and obtain system of ordinary differential
equations:
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) =50 0,) (- u)- 0, (1 -0)]-
—(%+%j(uo—®)+80(l+a( -U,)), (65)
%(7”1):%[900’]0_ul)_QZ(ul_®):|_ (66)
—[Z—er%J(ul—@)JrBl(1+a(u1—Ur)).
Here
7=r(W(X,1) or 7=y(u,(t), x=1/2,
y=r(wX0) or 7 =y(u) x=1/2,
k(e*-1)
G_
29,

It remains to add the initial conditions for the
completeness of the full statement of the 0-D
problem:

=U°. (67)

Uy |t:0 =4 |t:0

5 Finite Difference Method for 1D

Problem
To improve the accuracy of the conservative
averaging method, we can use the finite
difference  method for the numerical
approximation of the system of two 1D heat
equations (59).

5.1 The Statement of the 1D Problem
The system of two quasi-linear 1D heat equations
has the form:

2 (1)) =

0 oW
— | k—2 |+ f (x,t,W.),
ax( axj St w,)

0 o, ow (68)
—(r(wW)w, ) =—| k—= |+ f. (x,t,w,).
8'[(]/( 1) 1) 8X[ an 1( 1)
Here, source functions f (x,t,w), 1=0,1 can

play the role of the heat sources or heat sinks
depending on values of the first or the second term
in expressions (69):

fo(X,t, o) = By (L+a (W, —U, ) -

-(%+%](wo-@),

ROt w) =By (L+a(w -U,))-
hy hz
_(F-Fﬁ](wl —@)
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Boundary conditions are taken as the generalization
of the homogeneous boundary conditions (40):

Mol _ap, B —q).

x=0 aX x=l+L

(70)

OX
Conjugation conditions differ from the ideal thermal
contact conditions as well as from non-ideal thermal
contact conditions:

W0|x:l—0 = W1|x:l+0 !
M| (71)
8X x=1-0
oW,
Hk—X—h (H-h)(w,—-©
[ OX { )(w )}XHO
Initial conditions are non-homogeneous:
Wo |t:0 =W |t:0 =U° (%) (72)

From mathematical point of view, important is a

fact that the functions f (X,t,w) (as well as

function y(w;)) fulfill following estimations:

of, (x,t,w;) oy
oW, i

These constraints guarantee the uniqueness of the

solution of the problem (68)-(72).

<M, j=01, <M.

5.2 The Construction of the Finite Difference
Scheme

The finite difference method for heat transfer

problems are well explained in literature, e.g. [18].

The finite difference solution of the 1D problem will

be denoted as v{; = w, (x;,t,) . We will use uniform

time step: t, =nz, n=0, N ; the space step will be
piece-wise constant:

=iAx,, i=0,ij, i ,
0 0 0 Xo

. . L-1
X, =1+ —=ip)Ax, i=i,l, I=i +A—

We approximate heat conductivity term in the
following way (temporarily we will omit the
notation of the time-level):

Av; =[a(x,V)ve ], 1#0,iy, 1. (73)
Here we have used traditional notations, e.g. [18]:

v =Vi _Vi—l, v, =Vi+1_vi ,
' AX ' AX
where
AX=AXy, 0<i<iy;AX =Ax, I, <i<l.

For coefficient a(x,v) in (73), several equivalent
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expressions in the sense of the order of
approximation O(h?) can be applied, e.g.
AX V, +V,_
a(x,v), =kl x. ——, 74
(x,v); ( > J (74)
or
K(x —AX V., )+k(X,V
a(X,V)i — ( i |—1) ( i |). (75)

2

Now, we can propose two-step predictor-corrector-
type finite difference scheme for the differential
equations (68) (it is important to show the time level
here, but notation j of the sub-segment may be
omitted):

~N+1 n

v

)Y fa VT + F (V)T
-

n+1 n

-y Vi VY
7 (V") =
T

[a(x, V" Vi), + f (Gt )M,
0<i<iy, ig<i<l (i#0,iziyi=l).
Now we will pay special attention to obtain

approximation of the boundary conditions (70) and
conjugations conditions (71), (72) with the same
order of approximation O(Ax?) as the finite
difference equations (76). To guaranty the second
order of the approximation, we employ the idea of
use of main differential equation on the border [19].
We start with Taylor series expansions for the

(76)

functions vi; as differentiable functions  of
arguments Xx,t:
kI I+1
i
2
—ka— +0O(AXY).
2 axi

We draw the reader’s attention to following nuance:
the heat conductivity coefficient k is taken in the

fixed point X = X;. This assumption allows us to
rewrite the last formula in the form:

KV, =KV, iAxki@ +
OX;
Ax" o, 0 ()
X" k Y ro@x).
2 ox\ ' ox :
Next two equalities follow from (77):
P E A PR TS
OX|; AX 2 OX\ ox)|
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ov

Tk Via —Vi _&i k@
"ox, ' Ax 2 ox\ ox
The assumption that functions v(x,t) fulfill

differential equations (68) gives following
expressions for the first derivatives:

(&
OX|;
AX| 0
—| —(yv)- f(x,t,V
: [at ()~ 1( )}
K
OX|;
AX| 0
—| =(yv)-f(x,t,v
2 201
It remains to use boundary conditions (69), and, in
accordance with difference scheme (76), we obtain
second order finite difference approximation of both
boundary conditions. We have following difference
equations for the predictor step:

~n+1 n

— 7 (Vo) ——— et

+0(AX?).

—k R L
Ax

+0(AX?),

i
\'A \'A

i+1 Vi

AX

=k —

+0(AX?).

n+l

—a(x Vo 1)(Voo -

Ax
2" fo (X,t,v5)p — Qo (t,),

~n+1 n

-V,
Lt a(X1V1n,| )(vln;rl)* =

(77)

Axi y() 2

A "
=7"1 £ (66 V,)! + 0, ().

The difference equations for the corrector step are:

AX n+1 N
To ~(r)1’4(-)1 0,0 0,0 —a(X Vgl-l)(vml
AX s
20 fo (X0, o, Vg 1) Ao (ts0)s
(78)
AX1 ~N+1 f:—l -Vy ~n+1 n+1
_7(V1| ) ——— +a(x Vi )(Vll )x =
_A g
SR T 0 ()

We make similar construction of the second order
approximation on the border between both parts (in
the point i =1,). Here we need to be carefully with
notation and use different indexes for differences to
the left (and right) from the border point.

The second conjugation condition (71) can be
rewritten in following equivalent form:
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Zk% [k%—hzﬂ(wl—(a)} ,
aX X x=I+0 (79)
_ho,_(H=h)
TR TR

We approximate the left hand side flux of equation
(79) for the predictor stage as follow:

AX vn-f—l _Vn_
17{ (V) —— = fo(XJ,Vo)F}f
T
2a(X,Vg )57 ) = J
We obtain similar expression for the right hand side:
a(X )(~n+1) _h /»L(~n+1 @)_

~n+1 n

A% {y(vl.)—v“— f1<x,t,vl>r} =
2 T

Taking into account the first conjugation condition
(71) (continuity: Vii, :Vo,io)v finally we have at the

border:

‘JO,iO = ‘]1,i0

or such equation for the predictor stage:
AX \7n+l Vni ;

Z?TPWm%__;L_%u$%%}

T

+xa(x Vo )(Tg; )x = a(x, V) (%), (50)

—h ﬂ,( n+l )_

A ~n+1 Vni )
X1|: (Vll)—L_ fl(X’t1V1)i j|
2 T

We have following equation for the corrector stage:
Vn+1 Vn
{ A e (xi%)”ﬂ}

+Za(X n+l)(vn+l)7 _ a(X ~n+1)( n+l)

h /1( n+1_®)_

A . n+1 Vn
_7)(1{ (V1n|+l) ll _ f (X t v )n+l}
The difference equations (77)-(81) together with self
evident initial conditions
Vo =U°(x),0<i<ly,

=U°(x),i, <i<|I

are complete difference scheme of the second order
of approximation.

(81)

(82)

6 Numerical Examples — 50A Fuse
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Automotive fuse of the nominal current 50A
(Fig.10) is taken as a sample.

o l‘.,l.‘ b Rl R
! it :

gt bl F"li" l‘“'l".

|
S,

Fig.10. 50A Fuse without shell

I

Geometry is transferred to our mathematical model
(Fig.9). One eighth of the fuse is considered because
of the symmetry. Notations of the dimensions are as
in paragraphs 4 and 5. |=13mm, L=27mm,
b=0.2mm, h=1.9mm, H =8mm. Dimensions
are obtained by measuring the fuse.
Fuse is made of zinc. Properties of the material
depend on temperature. Values are known at some
reference temperatures. Spline is constructed from
them. It is satisfactory to use linear spline (Fig.11,
Fig.12).

112

114

w2 1o
108

100

100 200 300 400
T[]
Fig.11. Heat conductivity of zinc

3.2 % 100
3.1 = 100
] 3 = 10°
2.9 % 100
2,3 = 108

0 100 200 300 400
T[C]
Fig.12. Heat capacity of zinc (per volume)

H

m R

Next figures show other parameters. Fig.13 shows
heat convection coefficient h, and h, . Solid line is

for the thinnest part of the fuse x e (0,1); dash line
is for the interval x e (I,L).
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00 200 00 400
]

Fig.13. Heat convection to the air

Next figures show heat produced by electrical
current in the thinner part of the fuse F, and in the

blades F, at different current values.

Raimonds Vilums, Andris Buikis

% of Rated Current Min. Max.
600 % 0.04s 1s
350 % 0.2s 7s
200 % 2s 60 s
135 % 60 s 1800 s
Table 1

Maximal temperature is reached in the middle of the

0w IDIU y -
2> 10M 4 i
T = IDIU = e .---3[“:'A l:ﬁljl:l%)
6 x 100 - :
e T 1010 e e E
e ] 4 101'3__/
3% IDIU__
2% 10% T752 (2509)
1 %10 100 (200,
0= 7 T T TE3AAH%)
100 200 300 A00
'C]
Fig.14. Heat produced by electrical current Fy
s
3 % 107 e
et 3004 (500%)
B -
a_| e
i e s
m3 1
1= IDQ_
1754 (350%)
' 1004 (200%).
Lo R B 6754 (15%)
100 200 300 A0
[*C]

Fig.15. Heat produced by electrical current F;

It is visible from the figures that heat production in
the thinner part is more than 10 times larger than in
the other part of the fuse.

Numerical calculations are done in 3 different ways.
First, solution is obtained from the system of 3
ODE-s (53)-(55). Second, calculations are done
from the system of 2 ODE-s (65)-(66). Third, 1D
mathematical problem that consists of PDE-s (68)
and additional conditions (70)-(72) is solved by
applying difference scheme from the section 5.
Results are compared altogether and with standard
DIN 72581-3 that define time interval of the burn-
out of the fuses (Table 1).

ISSN: 1790-5044

fuse. Time to reach melting temperature is
calculated and compared among all three
mathematical models (Table 2, Fig.00).
% of 1D PDE-s | 30ODE-s | 2 ODE-s
Rating [s] [s] [s]
600 % 0.25 0.24 0.24
350 % 0.78 0.74 0.76
200 % 3.4 2.9 3.7
135 % 19 11.6 23
Table 2
600
500
o 4n|:|-_
300 4
200
100 1 . ! : .
0,1 1 10 100 1000
titre (2]

Fig.16. 50A Fuse time-current curve

Dash lines are time limits from the DIN standard.
Numerical results are appropriate if current is
greater then 200% of the rating. Heat given away by
radiation and conduction over blades plays greater
role, if the current is close to nominal value, and real
fuse breaking time is larger. This is not considered
in this particular model, but could be added to
original 3D mathematical model. Conservative
averaging could be applied in the same manner.

For example, if we take into account radiation,
additional term should be added to the boundary
conditions (25)-(27):

(k%+hy (U, —®)+80'(Ui4—®4)J =0, (83)
oy -,
(k a(;JZO+hZ(UO—®)+50'(U§—®4) =0,

oU Ty
(k azl+hZ(Ul—®)+ga(Uf—®4) » =0,
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Y
OX
+eo (Ui4 -0 )
x=1+0,ze[h,H]

3D temperature distribution could be reconstructed
whomever averaging is choused. It is enough to
show temperature only in (x,z) plane because we

have assumption about constant temperature
distribution over y-dimension. Fig.17 shows
temperature reconstruction after system of 2 ODE-s
is solved in case of 100A (200%) current is applied
to the fuse.

+h, (U, - @)J

x=1+0,ze[h,H]

(85)

3804

[001280-

1807

Similar graphic (Fig.18) could be obtained for the
solution of 3 ODE-s by formulas (40)-(42), (51).

400
[*C]
200
1]
oo
0,02
g 0
¥ [m] 0,04
Fig.18

Solution is discontinuous because discontinuous
approximation function V,(X, z,t) were used ((41)-

(42)) although averaged values w,(x,t) are more

precise than in previous case.

Solution of 1D PDE-s should be used if temperature
distribution in the fuse is also important and not
only fuse breaking time. Fig.19 shows temperature
on the line x [0, L].
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400 1
3004
[*C] ]
200
1004, : . : )
oo oot ooz 003 004
x [1u]
Fig.19
Next figure (Fig.20) contains temperature
distribution on the line Xxe[0,L] for all
approximations used.
400 +
300 4 S
€] o e
[T 00 i
o Y
10019t=37s : e —
000 00t 002 003 004
% [mm]
——— IDPDE = = = 2 ODE-§ =ssseees: 3 ODE-s
Fig.20

It takes about one minute on modern desktop
computer to calculate particular example at given
current. Calculation of ODE-s is even quicker. It is
more efficient to calculate averaged mathematical
problems rather then full 3D problems.

7 Conclusions

We have approximated 3D problem and reduced its
solution to the solution of the time-dependent non-
linear system of two or three ordinary differential
equations. Reduction was realized in two different
ways by different assumptions. Both systems have
similar structure, but different coefficients. The
systems of ordinary differential equations are
solvable with standard techniques. Approximate
analytical 3D solution could be easily obtained from
the solution of the transformed problem afterwards.
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