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Abstract: - In this paper, we use a numerical technique to analyze the onset of Marangoni convection in a 
horizontal layer of electrically-conducting fluid heated from below and cooled from above in the presence of a 
uniform vertical magnetic field. The top surface of a fluid is deformable free and the bottom boundary is rigid 
and free-slip. The critical values of the Marangoni numbers for the onset of Marangoni convection are 
calculated and later it is found to be critically dependent on the Hartmann, Crispation and Bond numbers. We 
found that the presence of Magnetic field always has a stabilizing effect of increasing the critical Marangoni 
number when the free surface is non-deformable. If the free surface is deformable, then there is a range where 
the critical Marangoni number will have unstable modes no matter how large magnetic field becomes. 
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1 Introduction 
Local variation in density produced by temperature 
gradients will create a “buoyancy” effect in the 
present of the gravity. There is a wealth of literature 
and study concerning the phenomena and with it, 
the ability to predict onset of flow or instability 
under many circumstances. Several investigations 
have been carried out to understand the buoyancy 
effect (Bacharoudis et al [1], Braescu and Duffar 
[6], Chen and Chen [9] and Hossain et al [14]).  
Convection in a plane horizontal fluid layer heated 
from below, initially at rest and subject to an 
adverse temperature gradient, may be produced 
either by buoyancy forces or surface tension forces. 
These convective instability problems are known as 
the Rayleigh-Benard convection and Marangoni 
convection, respectively.  The copious literature on 
this problem and its extensions has been reviewed 
many times, notably by Chandrasekhar [8], Segel 
[24], Berg, Acrivos and Boudart [3], Brindley [7], 
Spiegel [26], Schechter and Velarde [21] and 
Koshmieder [15]. The determination of the criterion 
for the onset of convection and the mechanism to 
control has been a subject of interest because of its 
applications in the heat and momentum transfer 
research.  

Thermal convection in fluid layers heated from 
below is a problem of great importance to many 
industrial applications (Mill and Keene [16] and 
Schwabe [22]). In many practical applications (such 
as crystal growth in microgravity environment) the 

onset of convection is undesirable, and as a 
consequence there has been considerable interest in 
understanding various additional physical 
mechanisms for delaying, or possibly eliminating 
altogether, the onset of convection. The 
technological need for instability postponement, 
turbulence suppression, and flow control in material 
processing technologies are currently leading to an 
increased interest in the interaction between 
thermocapillary flows in electrically conducting 
fluids and magnetic fields. 

Rayleigh [19] was the first to solve the problem 
of the onset of thermal convection in a horizontal 
layer of fluid heated from below. His linear analysis 
showed that Benard convection occurs when the 
Rayleigh number exceeds a critical value. This 
parameter is a Rayleigh number (thermal or solutal) 
when the convection is induced by buoyancy effects 
due to variations in density and is a Marangoni 
number when surface-tension variations induce the 
convection.  

It is well-known fact that the onset of 
convection in Benard’s [2] experiment is produced 
not simply by buoyancy forces but primarily by 
variations of the surface tension with the 
temperature. The latter effect is generally referred to 
in the literature under the name of thermocapillary 
or Marangoni instability. Although these flows were 
studied by Benard in 1900, it was almost sixty years 
before the critical experiment by Block [4] and the 
elegant linear stability analysis of Pearson [18] 
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firmly established that Benard cells were a 
manifestation of the surface tension variations at the 
free surface (by Ginde et al [10]).  

Theoretical analysis of Marangoni convection 
was started with the linear analysis by Pearson [18] 
who assumed an infinite fluid layer, a 
nondeformable case and zero gravity in the case of 
no-slip boundary conditions at the bottom. He 
showed that thermocapillary forces can cause 
convection when the Marangoni number exceeds a 
critical value in the absence of buoyancy forces. 
Pearson [18] obtained the critical Marangoni 
number, Mc = 79.607 and the critical wave number 
ac = 1.9929. Linear stability analysis of Marangoni 
convection with free-slip boundary conditions at the 
bottom was first investigated by Boeck and Thess 
[5]. For free-slip case, Boeck and Thess [5] obtained 
the critical Marangoni number, Mc = 57.598 and the 
critical wave number ac = 1.7003. Takashima 
[27,28] subsequently extended the stability analysis 
of Pearson [18] to study the effect of surface 
deformation on the steady and oscillatory 
Marangoni convection.  

The determination of the criterion for the onset 
of convection and the mechanism to control 
convective flow patterns is important in both 
technology and fundamental Science. The problem 
of suppressing cellular convection in the Marangoni 
convection problem has attracted some interest in 
the literature. The effect of a body force due to an 
externally-imposed magnetic field on the onset of 
convection has been studied theoretically and 
numerically. The effect of magnetic field on the 
onset of steady buoyancy-driven convection was 
treated by Chandrasekhar [8] who showed that the 
effect of magnetic field is to increase the critical 
value of Rayleigh number and hence to have a 
stabilising effect on the layer.  

The effect of a magnetic field on the onset  of 
steady buoyancy  and thermocapillary-driven 
(Benard-Marangoni) convection in a fluid layer with 
a non-deformable free surface was first analyzed by 
Nield [17]. He found that the critical Marangoni 
number monotonically increased as the strength of 
vertical magnetic field increased. This indicates that 
Lorentz force suppressed Marangoni convection. 
Later, the effect of a magnetic field on the onset of 
steady Marangoni convection in a horizontal layer 
of fluid has been discussed in a series of paper by 
Wilson [30, 31, 32]. The influence of a uniform 
vertical magnetic field on the onset of oscillatory 
Marangoni convection was treated by Hashim and 
Wilson [12] and Hashim and Arifin [11].  

Wilson [30] investigated the effect of a 
magnetic field on the onset of steady Benard-

Marangoni convection in a horizontal layer of fluid 
with free surface deformation and concluded that 
the presence of a magnetic field always has a 
stabilizing effect on the layer. The existence of 
long-wave instability modes in Marangoni 
convection was predicted theoretically by Scriven 
and Sterling [23] and Smith [25] who showed that 
the onset of steady Marangoni convection can be as 
either a long-wave or a short-wave mode, and 
verified experimentally by VanHook et al [29]. The 
linear growth rates for both the long- and short-
wave modes for the pure Marangoni problem near 
the onset of convection was investigated by Reigner 
and Lebon [20].  

Wilson and Thess [33] studied the linear growth 
rates of long-wave modes without the restriction of 
near critical conditions for the coupled Benard-
Marangoni problem. The effect of a vertical 
magnetic field on the linear growth rates of 
Marangoni convection in a fluid layer was 
investigated by Hashim and Wilson [13] who 
derived the explicit analytical expressions for the 
linear growth rates for both long- and short-wave 
instability modes. Hashim and Wilson [13] also 
showed that the effect of increasing the magnetic 
field strength is always to stabilize the layer by 
decreasing the growth rates of the unstable modes.  
    The above investigators pertain their analyses to 
Marangoni convection in the presence of magnetic 
field with no-slip lower boundary condition. In this 
study, we consider the onset of steady Marangoni 
convective instability in a horizontal fluid layer of 
electrically-conducting fluid with a deformable 
upper free surface and a free-slip lower surface, 
subject to a uniform magnetic field. To the author’s 
best knowledge this problem has not been reported 
in the literature. The linear stability theory is applied 
and the resulting eigenvalue problem is solved 
numerically. The effects of the Hartmann number 
and a free surface deformation on the onset of 
steady Marangoni convection are studied. 
 
 
2 Problem Formulation 
Consider a horizontal fluids layer of depth d heated 
from below subject to a uniform vertical magnetic 
field and a uniform vertical temperature gradient. 
The fluid layer is bounded below by a horizontal 
solid boundary at constant temperature 1T  and the 
above by a free surface at constant temperature 

2T which is in contact with passive gas at pressure 

oP  and constant temperature T∞ . 
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Fig. 1 Geometry of the unperturbed state   
 

Our theoretical model involves the following 
basic assumptions : (i) zero buoyancy force, (ii) 
free-slip boundary conditions at the bottom. 

The first assumption (i) is made to study the 
effects of purely thermocapillary forcing. 
The neglect of buoyancy is justified if the ratio of 
Rayleigh to the Marangoni number MaRa , 
measuring the relative strength of buoyancy and 
surface tension forces, is small. From 

2gdMaRa ∝ , where g denotes the acceleration 
due to gravity and d is the layer thickness, it follows 
that buoyancy effects can be reduced by working 
with sufficiently shallow layers or even completely 
suppressed in an experiment in a microgravity 
environment. Under terrestrial conditions the ratio 

MaRa is approximately 0.04 for a layer of liquid 
tin of 1 mm depth (See Ginde et al [10]).  

Our reasons for working with assumption (ii) 
become apparent in the light of preliminary 
computations performed with the no-slip boundary 
condition at the bottom. For this case the transition 
from weak to inertial convection is found to occur 
only after a time-dependent (travelling wave) 
regime has been established, and inertial convection 
exhibits complex time dependence upon increasing 
the Marangoni number. With a free-slip bottom the 
generation of secondary vorticity is suppressed. The 
resulting behaviour is much simpler and provides 
the basis for an understanding of the more complex 
phenomena in the no-slip case (Boeck and Thess 
[5]).  

We used cartesian coordinates with two 
horizontal x- and y- axis are located at the lower 
solid boundary and a positive z-axis is directed 
toward the free surface. The surface tension, τ  is 
assumed to be a linear function of the temperature 

 
           ( )o oT Tτ τ γ= − −              (1) 
 
where oτ  is the value of τ  at temperature oT  and 
the constant γ is positive for most fluids. The 
density of the fluids is given by  

 
         {1 ( )}o oT Tρ ρ σ= − −                          (2) 
where σ  is the positive coefficient of the thermal 
liquid expansion and oρ  is the value at the 
reference temperature oT . 
    Subject to the Boussinesq approximation, the 
governing equations for an incompressible, 
electrically conducting fluid in the presence of a 
magnetic field are expressed as follows: 
 
Continuity equation: 
 

. =0∇ U     (3) 
Momentum equation: 
 

( ).
1 2= - .

4t
μ

ν
ρ πρ

∂⎛ ⎞+ ∇⎜ ⎟
∂⎝ ⎠

∇Π + ∇ + ∇U U U H H   (4) 

  
Energy equation: 

. 2= T
t

T κ∂⎛ ⎞+ ∇⎜ ⎟
∂⎝ ⎠

∇U                                 (5) 

 
Magnetic field equations: 
 

. =0∇H                 (6) 
 

( ). 2= .
t

η∂⎛ ⎞+ ∇⎜ ⎟
∂⎝ ⎠

∇ ∇U H U +H H   (7) 

 
where U ( , , )u v w=  is the fluid velocity, H is the 
magnetic field, T is the temperature, ν  is the 
kinematic viscosity, κ  is the thermal diffusivity, η  

is the electrical resistivity and 
2 / 8p μ πΠ = + H  

is the magnetic pressure, where p is the fluid 
pressure and μ  is the magnetic permeability. The 
free surface is deformably free with its position 

( , , )z d x y tδ= + . The boundary conditions 
 

u v w
t x y
δ δ δ∂ ∂ ∂
+ + =

∂ ∂ ∂
   (8) 

 
 0T n hTα∇ ⋅ + =    (9) 

 2 ntD T t
T
γμ ∂

= ∇ ⋅
∂

             (10) 

( ) 2 nnaP P D nμ γ− + = ∇ ⋅             (11)
  

where α  and h  are the thermal conductivity and 
the heat transfer coefficient of the fluid layer, 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Norihan MD. Arifin and Haliza Rosali

ISSN: 1790-5044 91 Issue 4, Volume 2, October 2007



respectively. { }ijD  is the rate of strain tensor in the 

fluid, t  and n  are the tangential and the outward 
normal unit vectors, respectively, at the free surface. 
At the lower rigid boundary the usual no-slip 
conditions requires continuity of velocity between 
the solid and the fluid. 
    To simplify the analysis, it is convenient to write 
the governing equations and boundary conditions in 
a dimensionless form. In the dimensionless 
formulation, scales for length, time, velocity, 
temperature and magnetic field have been taken to 
be 2, / , / , /d d d dν ν β ν κ  and ημ /H respectively 

where H  is the initial magnetic field strength. 
Furthermore, six dimensionless groups appearing in 
the problem are the Marangoni number 

2 /M dγβ ρνκ= , the Hartmann number (the 
square root of the Chandrasekhar number) 

1 2( / )H Hdμ σ ρν= , the Biot number 
/B hd k=i , the Bond number 2 /o oB gdρ τ= , the 

Prandtl number 1P ν κ= , the magnetic Prandtl 
number ην=2P and the Crispation number, 

0rC dρνκ τ= . 
 
 
3 Linearized Problem  
The linear stability of the basic state is analysed in 
the usual by seeking a solution for any physical 
quantity ( , , , )x y z tΦ  in normal mode form 

( )
0( , , , ) ( , , ) ( ) x yia x ia y stx y z t x y z z eφ + +Φ = Φ +  (12)  

 
where 0Φ  is the value of Φ in the basic state, φ  is 
the amplitude of the perturbation, and 

2 2 1/ 2( )x ya a a= +  is the total horizontal wave 

number of the disturbance. The temporal s is 
complex with a real part representing the growth 
rate of the instability and an imaginary part 
representing its frequency. 

Substituting into governing equations and 
boundary conditions, we obtain the linearised 
equations for the onset of Marangoni convection in 
an initially quiescent horizontal fluid layer bounded 
above by a deformable free surface and bounded 
below by a thermally conducting planar boundary 
subject to a uniform vertical magnetic field, 
 

2 2( ) 0D a T w− + =              (13) 
2 2 2 2 2( ) 0D a H D w⎡ ⎤− − =⎣ ⎦             (14) 

subject to  
0w =                                (15) 

( )2 2 2 2 2
1 rC 3 ( ) 0oP D a H s Dw a a B f⎡ ⎤− − − − + =⎣ ⎦

 (16) 

        2 2 2
1 1( ) ( ) 0P D a w a M PT f+ + − =              (17) 

                0zh =                                     (18) 
                 1 1( ) 0iPDT B PT f+ − =                       (19) 

evaluated on the undisturbed position of the upper 
free surface 1z = , and  

0w =                               (20) 
   2 0D w =               (21) 

0zh =                (22) 
0T =                        (23) 

 
on 0z =  where the condition of free-slip 
corresponds to Eq. (21).  

The operator dD
dz

=  denotes differentiation 

with respect to the vertical coordinate z . The 
variables , , zw T h  and f denote respectively the 
vertical variation of the z-velocity, temperature, 
magnetic field and the magnitude of the free surface 
deflection of the linear perturbation to the basic state 
with total wave number a in the horizontal x-y plane 
and complex growth rate s. 
 
 
4 Solution of the Linearized Problem 
In the general case s = 0, we follow the solution 
approach of Hashim and Wilson [3] and seek 
asymptotic solutions for ,w T  in the forms 
 

( ) zw z ACeξ= ,  ( ) zT z Ceξ=              (24) 
 

where the exponent ξ  and the complex constants A 
and C are to be determined. Substituting these forms 
into the Eqs. (13) and (14) and eliminating A and C 
we obtain a sixth-order algebraic equation for ξ , 
namely 
    2 2 2 2 2 2 2( ) ( ) 0a a s Hξ ξ ξ⎡ ⎤− − − − =⎣ ⎦     (25) 

 
with six distinct roots, which we denote by 

1 6,...,ξ ξ . Where the values of 1 4,...,ξ ξ  are 
solutions of the fourth-order algebraic equation 
 

2 2 2 2 2( ) 0a s Hξ ξ− − − =               (26) 
 
while 5 aξ =  and 6 aξ = − .  
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Denoting the values of A and C corresponding to ξ  
for 1,...,6i =  by iA  and iC , respectively, we can 
use Eq. (14) to determine iA . We can use Eq. (16) 
to eliminate the free  surface deflection 
 

2 2 2
1

2 2
( 3 )

( )
r

o

PC D a H Dwf
a a B
− −

=
+

                (27) 

 
evaluated on 1=z , leaving the six boundary 
conditions, to determine the six unknowns 61 ,...CC , 
and the general solution to the stability problem 
therefore  
 

   
6

1

( ) j z
j j

j

w z A C eξ
=

=∑ , 
6

1

( ) j z
j

j

T z C eξ
=

=∑              (28) 

 
The dispersion relation between 2, , , ,r oM a C H B  
and iB  is determined by substituting these solutions 
into boundary conditions and evaluating the 
resulting 6 6×  real determinants of the coefficients 
of the unknowns, which can be written in the form 

1 2M D D= − , where the two 66×  real 
determinants 1D  and 2D  are independent of M. 
    After some simplification the elements of the 
determinant 1 ijD d=  are given by 

 
ieAd ii
ξ=1             (29) 

2
2

i
i i id A eξξ=             (30) 

   3 ( ) i
i i id B eξξ= +            (31) 

4i id A=             (32) 
2

5i i id Aξ=             (33) 

6 1id =              (34) 
 

for 1,...,6i = . The coefficients of the determinant 

2D are the same as those of 1D  apart from the terms 
 

2 2 2
2

2 2 2
( 3 )1

( )
ir i i i

i
o

C a H Ad a e
a a B

ξξ ξ⎡ ⎤− −
= −⎢ ⎥

+⎣ ⎦
           (35)

  ied ii
ξξ 2

3 =             (36) 
 
for 6,...,1=i . Notice that 1D  is independent of 

rC and oB and that 2D is independent of iB . We 
could express 1D  and 2D , and hence M, explicitly 
in terms of hyperbolic functions, but since its value 

must then be evaluated numerically we gain little 
over direct numerical evaluation. 
 
 
5 Numerical Results 
The effect of a magnetic field on the onset of 
Marangoni convection in a fluid layer with free-slip 
bottom in the case of a deformable free surface 
( 0)rC ≠  is investigated numerically. The marginal 
stability curves in the ( , )a M  plane are obtained 
numerically where M is a function of the parameters 
a , iB , oB , rC  and H. For a given set of 
parameters, the critical Marangoni number for the 
onset of convection defined as the minimum of the 
global minima of marginal curve. We denote this 
critical value by cM  and the corresponding critical 
wave number, ca . Before presenting the numerical 
results, it is helpful to specify the range for 
parameters oi BB ,  and rC  which are respectively 

given by 1313 1010,1010 −−−− ≤≤≤≤ oi BB  and 
26 1010 −− ≤≤ rC for most fluids layers of depths 

ranging from 0.01 cm to 0.1 cm and are in contact 
with air.  

The problem has been solved to obtain a detail 
description of the marginal stability curves for the 
onset of Marangoni convection when the free 
surface is perfectly insulated ( 0iB = ).  The 
crispation number rC , associated with the inverse 
effect of the surface tension, represents the degree 
of the free surface deformability and the behaviour 
of the marginal stability curves depends on whether 

0oB =  or 0oB ≠ . When rC  becomes large 
(corresponding to weak surface tension), the 
marginal curve has global minimum at zero 
wavenumber. In contrast, for small values of rC , 
the marginal curve has global minimum at nonzero 
wavenumber. At some transition value of rC , the 
marginal curve has two local minima that is one at 
zero wave number and the other at nonzero wave 
number.  

Fig. 2 and 3 shows the numerically-calculated 
steady marginal stability curves plotted for different 
values crispation number  rC  in the case 0=H , 

0oB =  and 0.1oB =  respectively. An inspection 
of the Fig. 2 reveals that the marginal stability 
curves attain their minimum value of zero at 0a =  
so that 0cM =  and 0ca = . Hence for all values of 

0M >  disturbances with sufficiently small wave 
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number will be unstable modes regardless of the 
value of M. The transition value of rC  for the case 
shown in Fig. 3 is 0001764.0≈rC . For rC  
greater than 0.0001764, the wave number at 
marginal stability suddenly drop from nonzero 
number to zero. Similar competition between 
different modes was identified by Hashim and 
Arifin [11] in the case no-slip condition. 

 
 

 
 

Fig. 2 Numerically-calculated Marangoni number, 
M as a function of the wavenumber, a, for various 
values of Crispation numbers, rC  in the case   

0=H , 0iB =  and 0oB = .          

 

 

                             

Fig. 3 Numerically-calculated Marangoni number, 
M as a function of the wavenumber, a, for various 
values of Crispation numbers, rC  in the case 

0=H , 0iB =  and 0 1.oB = . 
 
When the free surface is nondeformable, 0rC = , 

the marginal stability curves are always have a 

single global minimum at a nonzero value of wave 
number, a.  Fig. 4 shows the numerically calculated 
Marangoni number, M as a function of the 
wavenumber, a  for different values of the 
Hartmann number, H in the case 0=rC .  From 
Fig. 4 it is seen that the critical Marangoni number 
increase with an increase of the Hartmann number. 
Thus, the magnetic always has a stabilizing effect 
on the flow. In the absence of magnetic field, 

0H = , the present calculation reproduce closely 
the stability curve obtained by Boeck and Thess [5]. 

 Before presenting the detail of the effect of 
magnetic field for the onset of convection in the 
case 0rC ≠ , we presented a situation in which two 
steady modes compete at the onset of convection. 
Numerically calculated Marangoni number, M as a 
function of the wave number, a for different values 
of the 0≠rC in the case 1002 =H are shown in 
Fig. 5. The figure shows parts of the marginal 
stability curves in the case 00037115.0=rC  and 

1002 =H  in which zero mode (infinite 
wavelength) and nonzero mode (finite wavelength) 
occur simultaneously at the onset of convection. 

 

 

 

 

 

 
 
 
 
 
Fig. 4 Numerically-calculated Marangoni number, 
M as a function of the wavenumber, a, for various 
values of Hartmann numbers, H in the case 0rC = , 

0iB =  and 0 1oB = . . 
 

Fig. 6 shows the numerically calculated 
Marangoni number, M as a function of the wave 
number, a for different values of the Hartmann 
number, H in the case 0 001rC = . . In this case, the 
marginal stability curve have a global minimum at 
the nonzero value of a without a magnetic field. 
But, the marginal stability curves always have a 
global minimum at zero value in the limit of large 
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magnetic field. We also found two steady modes 
occur simultaneously at the onset of convection 
when 102 =H . 

 

 

Fig. 5 Numerically-calculated Marangoni number, 
M as a function of the wavenumber, a, for various 
values of Crispation numbers, rC  in the case 

2 100H = , 0iB =  and 0 1.oB = . 
  
In the case 0rC ≠  and 0oB = , the critical 

Marangoni number at the onset of convection is zero 
at  wave number, 0a =  as   shown  in  Fig. 7. The 
magnetic field is not effective at the wave number 

0a = . When 0rC ≠  and 0oB ≠ , the situation is 
significantly different.  

 
 

 
 
Fig. 6 Numerically calculated Marangoni number, 
M as a function of the wavenumber, a, for various 
values of Hartmann numbers, H in the case 

0 001rC = . , 0iB =  and 0 1.oB =  
 

Numerically calculated   Marangoni  number,  M as  
a  function of the wave number, a for different 
values of the 0≠rC in the case 1oB = and 

2 10H =  are  plotted in Fig. 8. It can been seen that 
the marginal stability curves also have two local 
minimum and the critical Marangoni number, cM  
may occur either at 0ca =  or 0ca ≠ . 

Fig. 9 shows numerically calculated the critical 
Marangoni number, cM  and the critical wave 
number, ca  as a function of the Hartmann number 
for different values of rC . From Fig. 9(a), it is seen 
that the critical Marangoni number, cM  increases 
monotonically as Hartmann number is increased 
from zero and that if 0≠rC  then situations with 
sufficiently large Marangoni number will always 
have unstable modes. In Fig. 9(b), it can be seen that 
the critical wave number, ca  increases 
monotonically and suddenly drop to zero as 
Hartmann number, H, is increased from zero. 
 Fig. 10 shows numerically-calculated the critical  
Marangoni number, cM  and   the   critical wave 
number, ca  as a function of the rC  for different  
values of  Hartmann number in the case 1oB = . As 
shown in Fig. 10, both the critical Marangoni 
numbers, cM  and the critical wave numbers, ca  
decrease monotonically as rC  is increased from 
zero and hence the effect of the surface deformation 
is always to destabilize the layer.  

 
                  

 
 
Fig. 7 Numerically-calculated Marangoni number, 
M as a function of the wavenumber, a, for various 
values of Crispation numbers, rC  in the case 

2 10H = , 0iB =  and 0oB = . 
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Fig. 8 Numerically-calculated Marangoni number, 
M as a function of the wavenumber, a, for various 
values of Crispation numbers, rC  in the case 

2 10H = , 0iB =  and 1oB = . 
 
(a) 

 
 
 
(b) 

 
 
 
Fig. 9 Numerically-calculated critical Marangoni 
number, M as a function of Hartmann numbers in 

the case 1oB =  and 0iB =  for a range of values of  

rC  (a) cM  and (b) ca  
 
 
(a) 

 
 
(b) 

 
 
Fig. 10 Numerically-calculated critical Marangoni 
number, M as a function of rC  in the case 1oB =  
and 0iB =  for a range of values of Hartmann 
numbers (a) cM  and (b) ca . 
 
 
6 Conclusions 
The effect of magnetic field on the onset of steady 
Marangoni convection in a horizontal layer of 
electrically conducting fluid which is free above and 
rigid below with free-slip condition has been 
studied. The problem has been solved numerically 
to   obtain   a   detail   description   the   marginal 
stability curves for the perfectly insulated free 
surface. The effects of the Hartmann number on the 
onset of steady Marangoni convection are more 
pronounced, especially for the non-deformable free 
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surface. The system becomes more stable as the 
Hartmann number increases.   

Deformation of the upper surface, associated 
with the Crispation number, plays a significant role 
on the onset of steady modes of the Marangoni 
convective instability. The critical Marangoni 
number decreases with an increase in the Crispation 
number. If Bond number is zero, then all   situations 
have unstable   modes.  The    situation   is     
significantly different if Bond number is not zero 
where the marginal stability curves have two local 
minima and the critical Marangoni number may 
occur at zero or nonzero wave number.  

In physical situation, however, the free surface 
is deformed due to the fluid motion, the convection 
may appear as an oscillatory instability. Oscillatory 
instabilities are found when the fluid is heated from 
below and for a positive Marangoni number with 
magnetic field in the case no-slip at the lower 
boundary (Hashim and Wilson [12] and Hashim and 
Arifin [11]). Therefore, it is necessary to consider 
the onset of oscillatory Marangoni convection in the 
presence of a magnetic field with free-slip at the 
bottom for future study. 
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