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Abstract: Presented in this paper is an analytic approximation to the thermal-fluid problem involving mixed and
forced convective heat transfer from a rotating isothermal cylinder placed in a non-uniform stream shear-flow. The
approximation is obtained using a series expansion of the scaled boundary layer equations in terms of a boundary
layer variable which is directly proportional to the time variable and inversely proportional to the Reynolds number.
Therefore, the resulting approximation is valid both for small time and for moderate and large times for which the
Reynolds number of the flow is sufficiently large.
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1 Introduction

The steady and unsteady heat transfer problems in-
volving fluid flows past a circular cylinder have been
extensively studied numerically, and theoretically as
well as experimentally (for a comprehensive list of
references, see [1,2]). In addition to their direct appli-
cations in science and engineering, such flows exhibit
the main characteristics commonly observed in most
industrial problems and therefore can serve as proto-
types for simulating many fundamental fluid dynam-
ics problems [3-8]. However, most studies have fo-
cussed on heat transfer problems associated with uni-
form stream flows including, the numerical and ana-
lytic investigations of natural convection heat transfer
[9-13], free convection heat transfer [14-16], forced
convection heat transfer [17-23], and mixed convec-
tion heat transfer [24-28]. There are also many ex-
perimental investigations of heat transfer problems in-
volving uniform stream flows including the 1953 work
of Seban and Drake [29] and others [30-33].

In the present study, the thermal-fluid flow problem
involving forced and mixed convective heat transfer
from a rotating circular cylinder placed in a non-
uniform stream of shear flow is considered. There
are numerous previous theoretical [34-36], numeri-
cal [37-44] and experimental [45-49] studies on shear
flow past a cylinder. While the focus of the previ-
ous investigations involving shear flows past a cylin-

der has been on the flow characteristics such as vor-
tex shedding, boundary-layer separation and hydro-
dynamic forces, the focus of the present study is on
the convective heat transfer processes. This problem
has a direct relevance in a wide range of scientific
and engineering applications including atmospheric
flows, heat exchanger systems, and energy conserva-
tion [50,51].

This study is a direct extension of the recent work
of Abdella and Nalitolela [52] which investigated the
two-dimensional forced convective heat transfer prob-
lem of the unsteady shear flow of a viscous incom-
pressible fluid past a rotating circular cylinder. The
heat transfer process is investigated using an analyt-
ical approximation obtained using a series expansion
of the flow variable in terms of a boundary layer vari-

able λ =

√
8t

Pe
where t measures time and Pe repre-

sents the Peclet number. The analytic approximations
are therefore valid for the initial stages of problems
involving small and moderate Reynolds numbers as
well as for moderate and large times of sufficiently
large Reynolds number problems.
In the next section the governing equations along
with the corrosponding boundary conditions are pre-
sented with the introduction of a variable transforma-
tion which simplifies the geometry of the problem.
The flow variables are then scaled with respect to the
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Figure 1: Schematics of the physical problem

boundary layer variable λ. In section 3 the bound-
ary value problems corresponding to various orders of
approximations are derived and solved. Results and
discussions are presented in section 4 and concluding
remarks are presented in section 5.

2 Governing Equation

Consider the problem of mixed convection heat trans-
fer from an unsteady flow past a circular cylinder of
radius a centred at the origin and rotating at an angular
velocity of Ω0. The flow is assumed to be viscous and
incompressible. It is also assumed that the flow re-
mains laminar and two-dimensional for all times and
for all parameter values considered in this paper. The
surface of the cylinder is kept at a constant temper-
ature T0 while the approaching stream with constant
shear U(y) = −γy − U0 is kept at constant tempera-
ture T∞ where x and y are the usual Cartesian coor-
dinates. The temperature difference δT = T0 − T∞
is assumed to be positive, giving rise to the buoyancy
force and inducing fluid motion.
Applying the Boussinesq approximation and neglect-
ing the effects of viscous dissipation and radiation the
governing equations are given by the equations of mo-
tion and the energy equation:

∂ζ

∂t
+u

∂ζ

∂x
+v

∂ζ

∂y
= ν

(
∂2ζ

∂x2
+

∂2ζ

∂y2

)
+αg

∂T

∂x
(1)

ζ =

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
(2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= κ

(
∂2T

∂x2
+

∂2T

∂y2

)
(3)

where t is time, g is acceleration due to gravity, α

is the thermal expansion coefficient, u = −∂ψ

∂y
and

v =
∂ψ

∂x
are the velocity components in the x and y

directions respectively, ζ =
∂v

∂x
− ∂u

∂y
is the vorticity,

ψ is the stream function, T is the temperature, ν is the
kinematic viscosity and κ is the thermal diffusivity.
Introducing the following non-dimensional quantities

x′ =
x

a
, y′ =

y

a
, u′ =

u

U0
, v′ =

v

U0
, t′ =

tU0

a

ψ′ =
ψ

aU0
, ζ ′ =

aζ

U0
, φ′ =

T − T0

δT
, v =

v′

U0
,

and using the modified polar coordinates (ξ, θ) where
ξ = ln r equations 1-3 become

e2ξ ∂ζ

∂t
=

∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+

2
Re

(
∂2ζ

∂ξ2
+

∂2ζ

∂θ2

)

+ eξ Gr
2Re2

(
cos θ

∂φ

∂ξ
− sin θ

∂φ

∂θ

)
(4)

e2ξζ =

(
∂2ψ

∂ξ2
+

∂2ψ

∂θ2

)
(5)

e2ξ ∂φ

∂t
=

∂ψ

∂θ

∂φ

∂ξ
−∂ψ

∂ξ

∂φ

∂θ
+

2
Pe

(
∂2φ

∂ξ2
+

∂2φ

∂θ2

)
(6)

where we have dropped the primes.Here the Reynolds,
Peclet and the Grashof numbers are defined respec-
tively as

Re =
2aU0

ν
, Pe = RePr, and Gr = RaPr

where Ra =
gαδT (2a)3

νκ
is the Rayleigh number and

Pr =
ν

κ
is the Prandtl number. We also use the

Richardson number, Ri =
Gr
Re2 .

Note that, it is convenient to introduce the new (ξ, θ)
coordinate system which maps the surface of the
cylinder to ξ = 0 and the infinite region exterior
to the cylinder to the semi-infinite rectangular strip
ξ ≤ 0, 0 ≤ θ ≤ 2π.
The boundary conditions on the surface of the cylinder
for t > 0 include the usual no-slip, the impermeability
and isothermal conditions:

ψ = 0,
∂ψ

∂ξ
= Ω, andφ = 1, on ξ = 0 (7)
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where Ω =
aΩ0

U0
is a non-dimensional angular ve-

locity. The free stream conditions far away from the
cylinder surface are:

φ → 0, ζ → K, and (8)

ψ → K

4
e2ξ +V eξ sin(θ)−K

4
e2ξ cos 2θ as ξ →∞

(9)
where K =

aγ

U0
is a dimensionless shear parameter

and V is the dimensionless centre-line velocity tak-
ing on the values 0, 1 or -1 depending on the stream
flow direction. Since the flow variables are periodic
with respect to θ, we invoke the following periodicity
condition:

χ(ξ, θ, t) = χ(ξ, θ + 2π, t), (10)
where χ represents the flow variables ψ, ζ or φ. Note
that, on the surface of the cylinder ψ is overdeter-
mined since it has two boundary conditions while ζ
is underdetermined. To resolve this, we apply Green’s
Second identity which is given by:∫ ∫

D

(
g52 h− h52 g

)
dA =

∫
C

(
g ∂h

∂n − h ∂g
∂n

)
dS

where g and h are twice differentiable functions in
the region D, C is the closed curve representing the

boundary of D and
∂

∂n
represents the normal deriva-

tive. Then using ψ for g and the harmonic functions
e−mξ sin(mθ) and e−mξ cos(mθ) for h in Green’s
identity, we obtain the following global integral con-
ditions:

1
π

∫ ∞

0

∫ 2π

0
e(2−m)ξζ sin(mθ)dθdξ = 2V δ1,m,

(11)
1
π

∫ ∞

0

∫ 2π

0
e(2−m)ξζ cos(mθ)dθdξ = −Kδ2,m,

(12)
1
π

∫ ξ∞

0

∫ 2π

0
e2ξζdθdξ = Ke2ξ∞ − 2Ω. (13)

for m = 1, 2, ..., and where δi,j is the Kronecker delta
function which is zero when i 6= j and 1 when i = j.
Therefore, these integral conditions essentially con-
vert the surface and the free stream boundary condi-
tions into conditions that are valid throughout the en-
tire domain of the problem.
Finally, we have the following initial conditions:

ζ(ξ, θ, t = 0) = 0, ζ(ξ, θ, t = 0) = 0, (14)

φ(ξ, θ, t = 0) =

{
1 if ξ = 0
0 if ξ 6= 0.

(15)

Note that the initial temperature distribution is singu-
lar and therefore results in a thin boundary-layer re-
gion close to the surface of the cylinder.

3 Approximate analytic solutions

The governing equations described in the previous
section are highly nonlinear. Therefore, it is not possi-
ble to obtain analytical solution valid for all time and
all flow parameter values. In this section we obtain ap-
proximate solutions for the early development of the
flow and the heat transfer process using series expan-
sion in terms of an appropriate boundary layer param-
eter. Recall that the structure of the flow field and
heat transfer process in the initial stages of the flow is
characterized by a thin boundary layer-region near the
cylinder surface. By examining the dominant terms of
the initial solutions, it can be shown that the thickness

of this boundary layer is given by λ =

√
8t

Pe
which

measures the diffusive growth of the boundary-layer
structure and is used to rescale the space coordinate
ζ and the flow variables via the changes of variables

ξ = λz, ψ = λΨ, ζ =
ω

λ
, φ =

Φ
λ

Hence the
thin boundary-layer is stretched and the initial singu-
larity is removed with this change of variables and the
governing equation become:

∂2ω

∂z2
+

2
Pr

e2λz
(

z
∂ω

∂z
+ ω

)
=

2
Pr

λe2λz ∂ω

∂λ
−λ2 ∂2ω

∂θ2

−Reλ2

2

(
∂Ψ
∂θ

∂ω

∂z
− ∂Ψ

∂z

∂ω

∂θ

)
− eλzRaΓ (16)

e2λzω =

(
∂2Ψ
∂z2

+ λ2 ∂2Ψ
∂θ2

)
, (17)

∂2Φ
∂z2

+ 2e2λz
(

z
∂Φ
∂z

+ Φ
)

= 2λe2λz ∂Φ
∂λ

− λ2 ∂2Φ
∂θ2

−Peλ2

2

(
∂Ψ
∂θ

∂Φ
∂z

− ∂Ψ
∂z

∂Φ
∂θ

)
, (18)

where Γ =
Prλ
4Re

(
cos θ

∂Φ
∂z

− λ sin θ
∂Φ
∂θ

)
.

We now use the following single series expansions in
λ in order to obtain analytic approximate solutions of
the governing equations and the accompanying initial
and boundary conditions:

Ψ = Ψ0 + λΨ1 + λ2Ψ2 + ... (19)

ω = ω0 + λω1 + λ2ω2 + ... (20)

Φ = Φ0 + λΦ1 + λ2Φ2 + .... (21)

Note that λ is a small parameter not only when t is
small but also when Re is large. Therefore, these ap-
proximations are valid not only for small times but
also for large times for problems with large Re. While

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Kenzu Abdella, Felicia Magpantay

ISSN: 1790-5044
8

Issue 1, Volume 2, January 2007



the double series expansion used in [53] and [54] sim-
plifies the analytic calculations, it is more advanta-
geous to use the single expansion used in this paper
since the validity of the single expansion in λ would
only require that λ be small which can be achieved
for moderate and large times provided that Re is suf-
ficiently large. However, the double series expansion
is valid only for small times. Substituting the above
single expansions into the boundary layer equations
and equating like powers of λ results in a hierarchy
of boundary value problems for the expansion coeffi-
cients.

3.1 Linear approximation for all values of Pr

The O(1) and O(λ) boundary value problems for the
mixed convection case turn out to be independent of
Ra. Therefore, the O(1) approximations which are
valid for all values of Pr are identical to those found
in [10] for the forced convection case and are given
by:

Φ0 = 0 and ω0 = A0(θ)fe−(fz)2 (22)

Ψ0 = Ωz + A0(θ)
√

π

2

(
zerf(fz) +

e−(fz)2 − 1
f
√

π

)

(23)

where f =
1√
Pr

and

A0(θ) =
2√
π

(
2V sin θ −K cos 2θ +

K − 2Ω
2

)
.

(24)
Similarly the O(λ) approximations are identical to the
forced case obtained in [10]:

Φ1 = erfc(z). (25)

ω1 = K + A1(θ)erfc(fz)−A0(θ)
√

π

4
erfc(fz)

−1
2
A0(θ)e−(fz)2)

(
2f3z3 + fz

)
. (26)

Ψ1 =
Kz2

2
+

1
16f2

Fm(θ)
(

erf(fz)− 2f2z2erfc(fz)
)

−ze−(fz)2

8f
√

π
Fp(θ) +

zA1(θ)
f
√

π
, (27)

where
Fp(θ) =

√
πA0(θ) + 4A1(θ)

Fm(θ) =
√

πA0(θ)− 4A1(θ)

A1(θ) = 2V sin θ − 2K cos 2θ.

3.2 Higher order approximations for Pr=1

Since the second and higher order approximations
turn out to be analytically intractable for general val-
ues of Pr, we assume that Pr=1 for these approxima-
tions.

3.2.1 The O(λ2) approximation

The second order approximation is obtained by col-
lecting the O(λ2) terms resulting in the following
boundary value problems:

∂2Φ2

∂z2
+2z

∂Φ2

∂z
−2Φ2 = −4z2

(
z
∂Φ0

∂z
+ Φ0 +

∂Φ1

∂z

)

−∂2Φ0

∂θ2
− Pe

2

(
∂Ψ0

∂θ

∂Φ0

∂z
− ∂Ψ0

∂z

∂Φ0

∂θ

)
(28)

∂2ω2

∂z2
+ 2f2z

∂ω2

∂z
− 2f2ω2 = −4f2z2

(
z
∂ω0

∂z

+ω0 +
∂ω1

∂z

)
− ∂2ω0

∂θ2
+

Ra cos(θ)
2
√

πRe
e−z2

(29)

∂2Ψ2

∂z2
= 2z2ω0 + 2zω1 + ω2 − ∂2Ψ0

∂θ2
(30)

subject to boundary conditions

Ψ2 = 0,
∂Ψ2

∂z
= 0, and Φ2 = 0 on z = 0,

(31)
Φ2 → 0 and ω2 → 0 as z →∞ (32)

and the integral conditions,

1
π

∫ ∞

0

∫ 2π

0
T (z, θ) sin(mθ)dθdz = 0, m = 1, 2, ...

(33)
1
π

∫ ∞

0

∫ 2π

0
T (z, θ) cos(mθ)dθdz = 0, m = 1, 2, ...

(34)
1
π

∫ ξ∞

0

∫ 2π

0

(
ω2 + 2zω1 + 2z2ω0

)
dθdz = 2Kz2

∞.

(35)
where

T (z, θ) =

(
ω2 + (2−m)zω1 +

(2−m)2

2
z2ω0

)
.

Solving equation 28 with f = 1 and with respect to
the Φ2 boundary conditions yields

Φ2 = −1
2
zerfc(z)− z2e−z2

√
π

. (36)
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Similarly, solving equation 29 with f = 1 subject to
the free-stream condition on ω2, gives:

ω2 = A2(θ)z + A3(θ)(e−z2
+
√

πzerf(z))

− 1
2
√

π
A1(θ)(2z2e−z2 −√πzerf(z))

+
1
24

A0e
−z2

(
9z2 − 2z4 + 12z6

)

+
1
16
√

πzerf(z)
(
2ReΩA′0(θ)− 3A0(θ)

− 4A′′0(θ)
)
+

1
96

ReA0(θ)A′0(θ)
(
6πzerf2(z)

+ 8ze−z2
+
√

πerf(z)(3− 6z2)e−z2
)

− 6ze−2z2 − Ra cos (θ)
8Re

√
π

e−z2

− Ra cos (θ) z3

24Re
(37)

where

A3(θ) = − 1
2
√

π
(2A2(θ) + A1(θ)) +

1
16

(
4A′′0(θ)

+3A0(θ)− ReA′0(θ)(2Ω +
√

πA0(θ))
)

(38)

Applying the integral condition given by equations
33-35 then gives the function A2(θ):

A2(θ) = a0 +
4∑

i=1

(ai sin(iθ) + bi cos(iθ)) (39)

where
a0 = 0, a1 = −V,

a2 =
−Re

(
6πV 2 + 3πK2 − 4KΩ + 4V 2 + 2K2

)

6π
,

a3 = 0, a4 =
ReK2(3π + 2)

6π
,

b1 = −V Re
3πK + 2K − 2Ω

3π
, b2 = 3K,

b3 = ReV K
3π + 2

2π
, b4 = 0. (40)

Finally, integrating equation (30) subject to the sur-
face boundary condition for Ψ2 yields:

Ψ2 = A4(θ)z + A5(θ) + K
z3

3
+

A3(θ)
192

√
π(

32
√

π(z2 + 1)e−z2
+ πzerf(z)(32z2

+ 48))
1
6
z3A2(θ) +

A1(θ)
192

√
π

(
64
√

πz3

+ 24
√

πzerf(z)− 48z2(e−z2
+
√

πzerf(z))
)

+
√

π

192
ReA′0(θ)erf(z)

(
2
√

πz3erf(z)

− 3
√

πzerf(z)− 11e−z2
+ 4z2e−z2 − 4

)

+
√

π

96
ReA′0(θ)

(
ze−2z2

+
√

32πerf(
√

2z)
)

+
√

π

192
zA0(θ)

(
erf(z)(10z2 − 9)− 16

√
πz2

)

+
1
32

z2A0(θ)e−z2
(
4z2 + 3

)

+
1
96

ΩReA′0(θ)z
(√

πerf(z)(2z2 − 3)

+ 2e−z2
(z2 − 2)

)
− 1

16
zA′′0(θ)

(√
πerf(z)F1(z) + 2z(e−z2 − 2)

)

− 1
480

Ra cos (θ)
(
30zerf (z)

√
π + 30e−z2

)

Re
√

π

− 1
480

Ra cos (θ)
(
z5√π − 30

)

Re
√

π
(41)

where the functions A4(θ) and A5(θ) determined by
applying the surface boundary conditions are given by

A4(θ) = −ReA′0(θ)A0(θ)
48

, (42)

A5(θ) = −1
6
A3(θ) +

1
24

ReΩA′0 (43)

3.3 Higher order approximation

The boundary value problems for ωn and Ψn, asso-
ciated with the third and higher order approximations
are too complex to solve analytically. Therefore, we
only consider the Φ3 problem which is given by:

∂2Φ3

∂z2
+ 2z

∂Φ3

∂z
− 4Φ3 = −8

3
z3

(
z
∂Φ0

∂z
+ Φ0

)

−4z3 ∂Φ1

∂
− 4z

(
z
∂Φ2

∂z
+ Φ2

)
− ∂2Φ1

∂θ2
(44)

−Re
2

(
∂Ψ1

∂θ

∂Φ0

∂z
+

∂Ψ0

∂θ

∂Φ1

∂z
− ∂Ψ1

∂z

∂Φ0

∂θ
− ∂Ψ0

∂z

∂Φ1

∂θ

)

subject to

Φ3 = 0, on z = 0, and Φ3 → 0 as z →∞.
(45)

Then, solving equation (44), we obtain the following
expression for Φ3:

Φ3 = A6(θ)F1(z) + A7(θ)F2(z)− 3z2

− 17
32

erf(z) +
17

16
√

π
ze−z2 − 1

2
√

π
z3e−z2
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+
1
16

ReA′0(θ)zerf(z)e−z2
+

31
16

z2erf(z)

+
1

2
√

π
z5e−z2

+
1

12
√

π
ReA′0(θ)e

−z2

+
√

πF1(z) (I1(z)erfc(z) + I3(z)

−
√

π

2
erfc(z)erfi(z) +

1
32

ReA′0(θ)erf2(z)

)

+ 2zI2e
−z2

(46)

where I1(z)=
∫ z
0 erf(s)es2

ds, I2(z)=
∫ z
0 erfc(s)es2

ds,

and I3(z) =
∫ z
0 erfc(s)2es2

ds, F1(z)=1 + 2z2,

F2(z)=2ze−z2
+
√

πF1(z)erf(z). It can be shown that
I1(z)= 1√

π
z2

2F2

(
1, 1; 3

2 , 2; z2
)

,I2(z)=
√

π
2 erfi(z)-

I1(z) where 2F2 is the generalized hypergeometric
function.
Then applying the boundary conditions of equation
45, we obtain

A6(θ) = −ReA′0(θ)
12
√

π
,A7(θ) =

c1 + c2ReA′0(θ)
96π

+ C

(47)
where c1 = 51

√
π, c2 = (8 − 3π), and C =∫∞

0 erfc2(s)es2
ds = .39107.

Note that there is no Ra term in the expression for Φ3.
In fact, it turns out that the leading Ra dependence
term is order five. It can be shown that the leading Ra
dependence of Φ is given by:

Φ5(Ra) = − 1
16π

F (z)Ra sin(θ) (48)

F (z) = f1(z)+(f2(z)) e(−z)2 +f4(z)e−2z2
+f5+f6

where

f1(z) =
(

1
18

z8 +
13
36

z6 +
37
72

z4 − 5
48

z2
)

e−2z2

f2(z) =
√

π

(
z9

9
+

7z7

9
+

17z5

12
+

z3

2
+

z

3

)
erf(z)

f3(x) =
720z5π − 14400

√
π − 5z6π3/2 + f3a

4800z5π − 144000
√

π

f3a = 150zπ − 10z8π3/2 + 300z3π − 8z10π3/2

f4(z) =

(
−πz10

18
− 5πz8

12
− 11πz6

12
− 5πz4

8

−9πz2

32
− 3π

64

)
erf(z)2e(2z2) +

(
−
√

πz9

9

−7
√

πz7

9
− 17

√
πz5

12
−
√

πz3

3

)
erf(z)e(z2)

+
1
12
− z8

18
− 13z6

36
− 37z4

72
+

3z2

16

f5(z) =

(
πz10

18
+

5πz8

12
+

11πz6

12
+

17πz4

24
+

7π

64

+
17πz2

32

)
erf(z)2 +

11
180

(
3 + 12z2 + 4z4

)

f6(z) =
1

720
(−44 + 15π)

π3/2

((
10z + 4z3

)
e−z2

+ f6a

)

f6a = 4erf (z)
√

π

(
3
4

+ 3z2 + z4
)

4 Results and Discussion

In this section, we test the validity of the analytic so-
lution at the initial stages of a moderate Re flow and
at the fully developed stage of a high Re flow.
The test is carried out by comparing the results of the
analytic solution with those of a high-resolution nu-
merical solution obtained using a spectral finite dif-
ference scheme [54]. In this numerical approach,
the flow variables as well as the temperature func-
tion are approximated in terms of truncated Fourier
series expansion of N terms in the angular direction.
The resulting 6N+3 two dimensional partial differen-
tial equations in time and in the radial variable are then
integrated using a finite difference procedure.

In order to gain insight into the patterns of the heat
transfer rate, we compute the local Nusselt number
and the average Nusselt number variations with re-
spect to time and radial component. The local Nus-
selt number Nu and average Nusselt number Nu are
respectively defined as:

Nu(θ, t) = − 2
λ2

(
∂Φ
∂z

)

z=0
(49)

Nu(t) =
1
2π

∫ 2π

0
Nu(θ, t)dθ. (50)

Using the analytic approximation of the temperature
function Φ and taking the derivative with respect to z
and then finding its value at z = 0 yields:

Nu(θ, t) =
4

λ
√

π
+ 1 + λN1(θ) + Raλ3 sin(θ)N2(θ)

(51)
where

N1(θ) = −8

(
51
√

π + (8− 3π)ReA′0(θ)
96π

+ C

)

N2(θ) = − 2√
π

(
1

15360
+

1
720

(−44π + 15π2
)

π2

)
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Similarly, the average Nusselt number is given by:

Nu(t) =
4

λ
√

π
+1− λ

2π

(
17
2
√

π + 16πC

)
+O(λ3).

(52)

4.1 Forced Convection case

Here we present some results for the forced convec-
tion heat transfer case which corresponds to the lim-
iting case of Ri = 0. Therefore, in this case, the
temperature equation is fully decoupled from the flow
equations such that the fluid flow would no longer be
influenced by the heat transfer process.
Figure 2 depicts the time evolution of the numerically
simulated and the analytically determined local Nus-
selt’s number for Re=1000, K = 0.0, Ω = 0.25 and
t =0.01, 0.05, 0.1, 0.3, 0.5 and 1.0. The figures show
excellent agreement between the analytic approxima-
tions and the numerical simulations for all times pre-
sented. Since the analytic solutions are valid for large
Re values, we note that our analytic solution performs
well even at a moderately large time,t = 1. However,
we notice that the analytic accuracy is not as high in
Figure 3 for t = 1 since Re is small.

4.2 Mixed convection case

We now consider the mixed convection case where
the heat transfer and the fluid flow are dominated by
buoyancy effects resulting from a non-zero buoyancy
parameter Ri. The flow equations described by the
Navier-Stokes equation are now fully coupled with the
temperature equation.
We begin with Figure 4 where the time evolution of
the numerically simulated and the analytically deter-
mined local Nusselt’s number are depicted for Ri=10,
Re=1000, K = 0.2, Ω = 0.25 and t =0.01, 0.05, and
0.5. As we can see from the figures, there is excel-
lent agreement between the analytic approximations
and the numerical simulations for all times presented.
Note again that, since Re is moderately large, the an-
alytic solution is in good agreement even at t = 0.5
This is because our expansion is valid in this limit as
well. Similar results are obtained for Re=50 as de-
picted in Figure 5. However, we notice that the ana-
lytic accuracy is not as high in Figure 5 for t = 0.5. In
this case, the analytic solution is not valid except for
small time t since Re is also small.

Figure 2: Local Nusselt Number comparison for
Ri=0.0, Re=1000, K = 0.0, Ω = 0.25, V = 1 at
times (a) t = 0.01, (b) t = 0.05, (c) t = 0.1, (d)
t = 0.3, (e) 0.5, and (f) t = 1.0
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Figure 4: Local Nusselt Number comparison for Ri=
10, Re=1000, K=0.2, Ω=0.25, t=0.01,0.05,0.5
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Figure 3: Local Nusselt Number comparison for
Ri=0.0, Re=50, K = 0.0, Ω = 0.25, V = 1 at times
(a) t = 0.01, (b) t = 0.05, (c) t = 0.1, (d) t = 0.3, (e)
0.5, and (f) t = 1.0
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Figure 5: Local Nusselt Number comparison for Ri=
10, Re=50, K=0.2, Ω=0.25, t=0.01,0.05,0.5
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Figure 6: Surface vorticity for Ri=10, Re=50, K=0.2,
Ω=0.25, t=0.01,0.05
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Figure 7: Surface vorticity for Ri=10, Re=1000,
K=0.2, Ω=0.25, t=0.01,0.05

The surface vorticity distribution which is given by

ζ(0, θ, t) =
1
λ

A0(θ)

+

(
K + A1(θ)−

√
π

4
A0(θ)

)
λA3(θ)− Ri cos (θ)

8Re
√

π
λ

(53)
is depicted in Figures 6 and 7 for Ri=10, K = 0.2,
Ω = 0.25, t =0.01, 0.05, 0.5 for Re values of 50 and
1000 respectively. Again we notice that the analytic
solution becomes less accurate as time increases and
as Re decreases.
The integrated average Nusselt numbers are also com-
pared in Figure 8 for K = 0.2, Ω = 0.25, Ri=10 and
Re values of 50 and 1000. We see that there is ex-
cellent agreement between the two solutions for small
values of t. However, as t increases the two solutions

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Kenzu Abdella, Felicia Magpantay

ISSN: 1790-5044
13

Issue 1, Volume 2, January 2007



tend to deviate from each other as expected. Note also
that the effect of the increase in Re is to enhance the
heat transfer.
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Figure 8: Integrated average Nusselt numbers
Re=50,1000 Ri=5, K=0.2, Ω=0.25, t=0.01

Finally, the dependency on the shear parameter K is
demonstrated in Figure 9 for Re=1000, Ri=10 and
Ω = 0.0. We note that the vorticity distribution be-
comes less symmetric with increasing shear. The fig-
ure also shows that shear enhances the surface vortic-
ity in the upper half of the cylinder where there are
faster moving fluid particles with the maximum oc-
curring at the top tip of the cylinder. Again the ana-
lytic approximations are in excellent agreement with
the numerically predicted solutions. This is consis-
tent with the findings in [10] for the forced convection
case.
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Figure 9: Surface vorticity for Ri=10, Re=1000,
K=0,0.2, Ω=0, t=0.01

5 Conclusion

In this paper analytic approximations to the thermal-
fluid problem involving forced and mixed convec-
tive heat transfer from a rotating isothermal cylinder
placed in a non-uniform stream shear flow are pre-
sented. A convenient coordinate system is first intro-
duced in order to simplify the geometry of the prob-
lem. The flow variables are then scaled with respect
to the boundary layer parameter λ resulting in a set of
boundary layer equations subject to appropriate ini-
tial and boundary conditions. The analytic approxi-
mations for the boundary value problem are obtained
via a Fourier series expansion in terms of the bound-
ary layer variable. The resulting approximations are
valid not only for small time but also for moderate
and large times provided that the Reynolds number of
the flow is sufficiently large.
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