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Abstract: - In this work, numerical simulations involving supersonic and hypersonic flows on an unstructured 

context are analyzed. The Van Leer and the Radespiel and Kroll schemes are implemented on a finite volume 

formulation, using unstructured spatial discretization. The algorithms are implemented in their first and second 

order spatial accuracies. The second order spatial accuracy is obtained by a linear reconstruction procedure 

based on the work of Barth and Jespersen. Several non-linear limiters are studied, as well two types of linear 

interpolation, based on the works of Frink, Parikh and Pirzadeh and of Jacon and Knight. Two types of viscous 

calculation to the laminar case are compared. They are programmed considering the works of Long, Khan and 

Sharp and of Jacon and Knight. To the turbulent simulations, the Wilcox and Rubesin model is employed. The 

ramp problem to the inviscid simulations and the re-entry capsule problem to the hypersonic viscous 

simulations are studied. The results have demonstrated that the Van Leer algorithm yields the best results in 

terms of the prediction of the shock angle of the oblique shock wave in the ramp problem and the best value of 

the stagnation pressure at the configuration nose in the re-entry capsule problem. The convective time step is 

the best choice to accelerate the convergence of the numerical schemes, as reported by Maciel. In terms of 

turbulent results, the Wilcox and Rubesin model yields good results, proving the good capacity of this 

turbulence model in simulate high hypersonic flows. This paper is the first part of this work and is related to the 

theory and inviscid solutions. The second paper of this work is concerned with the laminar and turbulent 

viscous results. 
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1 Introduction 
Conventional non-upwind algorithms have been 

used extensively to solve a wide variety of problems 

[1]. Conventional algorithms are somewhat 

unreliable in the sense that for every different 

problem (and sometimes, every different case in the 

same class of problems) artificial dissipation terms 

must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks 

and steep compression and expansion gradients may 

defy solution altogether. 

 Upwind schemes are in general more robust but 

are also more involved in their derivation and 

application. Some upwind schemes that have been 

applied to the Euler equations are, for example, [2], 

[3] and [4]. Some comments about these methods 

are reported below: 

 [2] suggested an upwind scheme based on the 

flux vector splitting concept. This scheme 

considered the fact that the convective flux vector 

components could be written as flow Mach number 

polynomial functions, as main characteristic. Such 

polynomials presented the particularity of having 

the minor possible degree and the scheme had to 

satisfy seven basic properties to form such 

polynomials. This scheme was presented to the 

Euler equations in Cartesian coordinates and three-

dimensions. 

 [3] proposed a new flux vector splitting scheme. 

They declared that their scheme was simple and its 

accuracy was equivalent and, in some cases, better 

than the [5] scheme accuracy in the solutions of the 

Euler and the Navier-Stokes equations. The scheme 

was robust and converged solutions were obtained 

so fast as the [5] scheme. The authors proposed the 

approximated definition of an advection Mach 

number at the cell face, using its neighbor cell 

values via associated characteristic velocities. This 

interface Mach number was so used to determine the 

upwind extrapolation of the convective quantities. 
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 [4] emphasized that the [3] scheme had its merits 

of low computational complexity and low numerical 

diffusion as compared to other methods. They also 

mentioned that the original method had several 

deficiencies. The method yielded local pressure 

oscillations in the shock wave proximities, adverse 

mesh and flow alignment problems. In the [4] work, 

a hybrid flux vector splitting scheme, which 

alternated between the [3] scheme and the [2] 

scheme, in the shock wave regions, was proposed, 

assuring that resolution of strength shocks was clear 

and sharply defined. 

 Algorithms for solving the Euler equations using 

a perfect gas model on structured grids in two- and 

three-dimensions have become widespread in recent 

years ([6] and [7]). However, these algorithms have 

shown difficulties in predicting satisfactory results 

around complex geometries due to mesh 

irregularities. As a result, attention has turned to the 

development of solution algorithms on arbitrary 

unstructured grids. Impressive results have been 

obtained for a wide range of problems ([8] and [9]). 

 One problem associated with unstructured 

meshes is the increased difficulty in obtaining 

smooth higher order spatial approximations to state 

data at cell interfaces. Two methods have been used 

to obtain higher order accuracy on unstructured 

meshes. A method used by several researchers for 

cell vertex schemes ([10] and [11]) was applied to 

obtain higher order accuracy in a procedure 

analogous to MUSCL differencing on a structured 

mesh. A conventional structured mesh limiter can be 

employed in this scheme to obtain approximately 

monotone results near flow discontinuities. The 

second method, which was proposed by [9], linearly 

reconstructs the cell averaged data and imposes a 

monotone preserving limiter to achieve smooth 

results near flow discontinuities. 

 On an unstructured algorithm context, [12-13] 

has presented a work involving the numerical 

implementation of four typical algorithms of the 

Computational Fluid Dynamics community. The 

[2], [5], [14] and [15] algorithms were implemented 

and applied to the solution of aeronautical and of 

aerospace problems, in two-dimensions. The Euler 

equations in conservative form, employing a finite 

volume formulation and an unstructured spatial 

discretization, were solved. The [5] and the [15] 

schemes were flux difference splitting ones and 

more accurate solutions were expected. On the other 

hand, the [2] and the [14] schemes were flux vector 

splitting ones and more robustness properties were 

expected. The time integration was performed by a 

Runge-Kutta method of five stages. All four 

schemes were first order accurate in space and 

second order accurate in time. The steady state 

physical problems of the transonic flow along a 

convergent-divergent nozzle and of the supersonic 

flows along a ramp and around a blunt body were 

studied. The results have shown that the [5] scheme 

has presented the most severe pressure fields in the 

ramp and blunt body problems and the most 

accurate value of the stagnation pressure in the blunt 

body case. On the other hand, the [2] scheme has 

yielded the most accurate value of the shock angle 

in the ramp problem, while the [15] scheme has 

yielded the best value of the lift coefficient in the 

blunt body problem. 

 Following the studies of 2007, [16-17] has 

presented a work involving the numerical 

implementation of more three typical algorithms of 

the Computational Fluid Dynamics community. The 

[3], [4] and [18] algorithms were implemented and 

applied to the solution of aeronautical and aerospace 

problems, in two-dimensions. The Euler equations 

in conservative form, employing a finite volume 

formulation and an unstructured spatial 

discretization, were solved. The [18] scheme was a 

flux difference splitting one and more accurate 

solutions were expected. On the other hand, the [3] 

and [4] schemes were flux vector splitting ones and 

more robustness properties were expected. The time 

integration was performed by a Runge-Kutta 

method of five stages. All three schemes were first 

order accurate in space and second order accurate in 

time. The steady state physical problems of the 

transonic flow along a convergent-divergent nozzle, 

of the supersonic flows along a ramp and around a 

blunt body, and of the “cold gas” hypersonic flow 

around a double ellipse were studied. The results 

have shown that the [18] scheme presents the most 

severe pressure fields and the most accurate values 

of the stagnation pressure in the blunt body and in 

the double ellipse problems. On the other hand, the 

[3] scheme yields the best wall pressure distribution, 

in comparison with the experimental results, in the 

nozzle problem, whereas the [4] scheme yields the 

most accurate value of the shock angle in the ramp 

problem. 

 In relation to high resolution unstructured 

solutions, [19-20] has presented a work involving 

[3] and [4] schemes implemented on a finite volume 

context and using an upwind and unstructured 

spatial discretization to solve the Euler equations in 

the two-dimensional space. Both schemes were flux 

vector splitting ones. These schemes were 

implemented in their second order accuracy versions 

employing the linear reconstruction procedure of [9] 

and their results were compared with their first order 

accuracy versions and with theoretical results. Five 
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nonlinear flux limiters were studied: Barth and 

Jespersen (minmod like), Van Leer, Van Albada, 

Super Bee and -limiter. The time integration used a 

Runge-Kutta method of five stages and was second 

order accurate. Both algorithms were accelerated to 

the steady state solution using a spatially variable 

time step procedure. This technique has proved 

excellent gains in terms of convergence ratio as 

reported in [21-22]. The algorithms were applied to 

the solution of the steady state physical problem of 

the supersonic flow along a compression corner. 

The results have shown that the [4] scheme using 

Barth and Jespersen, Van Leer, Van Albada and 

Super Bee nonlinear limiters presented the most 

accurate values to the shock angle of the oblique 

shock wave generated at the compression corner. 

 In 2010, [23-24] has implemented the [2] and [5] 

algorithms, on a finite volume context and 

employing an upwind and unstructured spatial 

discretization, to solve the Euler equations in two-

dimensions. The [5] scheme was a flux difference 

splitting type algorithm, whereas the [2] scheme was 

a flux vector splitting type algorithm. Both 

algorithms were implemented in their second order 

versions, employing the [9] linear reconstruction 

procedure and their results were compared with 

their first order version solutions and theoretical 

results. Five non-linear flux limiters were studied: 

Barth and Jespersen (minmod), Van Leer, Van 

Albada, Super Bee and β-limiter. The Runge-Kutta 

method of five stages, second order accurate, was 

used to perform time integration. The steady state 

physical problem of the supersonic flow along a 

compression corner was studied. A spatially 

variable time step procedure was employed to 

accelerate the convergence of the numerical 

schemes to the steady state solution. Effective gains 

in terms of convergence acceleration were reported 

in [21-22]. The results have demonstrated that the 

[5] scheme in its second order version, using the 

Van Albada and Super Bee limiters, yielded the 

most accurate solutions. 

 In terms of turbulence studies, [25-26] has 

developed interesting investigation involving the 

turbulence models of [27] and [28] applied to the 

steady state problem of the supersonic flow along a 

ramp. The [29] and [30] algorithms were 

implemented and used to perform the numerical 

experiments. Both schemes were second order 

accurate in space and time. The [29] algorithm was 

a Lax-Wendroff type one and the time integration 

was performed in conjunction with the spatial 

discretization. The time integration was of 

predictor/corrector type. The [30] scheme was a 

symmetrical one and the time integration was 

performed according to a Runge-Kutta method. The 

Favre-averaged Navier-Stokes equations were 

solved, according to a finite volume formulation and 

on a structured spatial discretization context, and the 

[27] and [28] models were employed to describe the 

turbulence effects in the mean flow properties. A 

spatially variable time step procedure was employed 

to accelerate the convergence of [29] and [30] in the 

experiments. The results have demonstrated that the 

[30] algorithm predicts a pressure field more severe 

than that obtained by the [29] one, as the turbulent 

flow is studied, a more real situation, to both 

models. The pressure distribution along the ramp 

obtained by the [29] and [30] schemes presented the 

expected behavior in the turbulent solution 

generated by the [27] model, whereas the laminar 

solution simulated a weaker shock wave ahead of 

the ramp. In the case with the [28] model, only the 

solution obtained with the [30] scheme presented 

the expected pressure distribution behavior. In 

general terms, the [30] algorithm has presented the 

best solutions. 

 [31] has presented a work where the [2] flux 

vector splitting scheme was implemented, on a 

finite-volume context. The two-dimensional Favre-

averaged Navier-Stokes equations were solved 

using an upwind discretization on a structured mesh. 

The [32] and [33] two-equation turbulence models 

were used in order to close the problem. The 

physical problems under studies were the low 

supersonic flow along a ramp and the moderate 

supersonic flow around a blunt body configuration. 

The implemented scheme used a MUSCL 

(Monotone Upstream-centered Schemes for 

Conservation Laws) procedure to reach second 

order accuracy in space. The time integration used a 

Runge-Kutta method of five stages and was second 

order accurate. The algorithm was accelerated to the 

steady state solution using a spatially variable time 

step. This technique has proved excellent gains in 

terms of convergence rate as reported in [21-22]. 

The results have demonstrated that the [33] model 

has yielded more critical pressure fields than the 

ones due to [32]. The shock angle of the oblique 

shock wave in the ramp problem and the stagnation 

pressure ahead of the blunt body configuration are 

better predicted by the [33] turbulence model. 

 In this work, numerical simulations involving 

supersonic and hypersonic flows on an unstructured 

context are analyzed. Based on the experiences 

performed in the structured and unstructured 

contexts aforementioned, the [2] and [4] algorithms 

are implemented on a finite volume formulation, 

using unstructured spatial discretization. The 

algorithms are implemented in their first and second 

WSEAS TRANSACTIONS on FLUID MECHANICS Edisson Sávio De Góes Maciel

ISSN: 1790-5087 201 Issue 4, Volume 6, October 2011



order spatial accuracies. The second order spatial 

accuracy is obtained by a linear reconstruction 

procedure based on the work of [9]. Several non-

linear limiters are studied, as well two types of 

linear interpolation, based on the works of [18] and 

[34]. Two types of viscous calculation to the 

laminar case are compared. They are programmed 

considering the works of [34] and [35]. To the 

turbulent simulations, the k-
2
 two-equation model 

of [33] is employed, considering the good 

experience observed by the present author in the 

structured case. The ramp problem to the inviscid 

simulations and the re-entry capsule problem to the 

hypersonic simulations are considered. A spatially 

variable time step procedure is implemented aiming 

to obtain fast convergence rates to the two 

algorithms, as reported by [21-22]. Five options of 

time step are described and studied. The results have 

demonstrated that the [2] algorithm yields the best 

solution in terms of the prediction of the shock 

angle of the oblique shock wave in the ramp 

problem and the best value of the stagnation 

pressure at the configuration nose of the re-entry 

capsule problem. In terms of turbulent results, the 

[33] model yields good results, proving the good 

capacity of this turbulence model to high hypersonic 

flows. 

This work is divided in two parts: 

Part I – It describes the theory to be studied in this 

work. It details the system equations, the numerical 

algorithms, the viscous formulation, the time step 

options, the initial and boundary conditions, etc.; the 

inviscid results are also presented in this part; 

Part II – It describes the laminar and turbulent 

viscous results obtained by this work, analyzes them 

and makes comparisons. 

 

 

2 Navier-Stokes Equations 
The two-dimensional flow is modeled by the 

Navier-Stokes equations, which express the 

conservation of mass and energy as well as the 

momentum variation of a viscous, heat conducting 

and compressible media, in the absence of external 

forces. The Euler equations are obtained in the 

limiting case of an infinity Reynolds number or, in 

other words, neglecting the viscous vectors. So, 

their description is omitted. The integral form of 

these equations may be represented by: 

                                   

     0GdVdSnFFnEEQdVt
VS

yvexve
V

  ,                             

(1) 

where Q is written for a Cartesian system, V is the 

cell volume, nx and ny are components of the unity 

vector normal to the cell boundary, S is the flux 

area, Ee and Fe are the components of the 

convective, or Euler, flux vector, Ev and Fv are the 

components of the viscous, or diffusive, flux vector 

and G is the source term of the two-equation model. 

The vectors Q, Ee, Fe, Ev and Fv are, incorporating a 

k-
2
 formulation, represented by: 
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where the components of the viscous stress tensor 

are defined as: 

   ; Reyvxu32xu2t MMxx   

  ;Rexvyut Mxy 

     (3). Reyvxu32yv2t MMyy 

 

The components of the turbulent stress tensor 

(Reynolds stress tensor) are described by the 

following expressions: 

    k32Reyvxu32xu2 TTxx  ; 

  RexvyuTxy  ;                                   

    k32Reyvxu32yv2 TTyy  .   (4) 

Expressions to fx and fy are given bellow: 

    ;qvtutf xxyxyxxxxx   

             
    yyyyyxyxyy qvtutf  ,          (5) 

where qx and qy are the Fourier heat flux 

components and are given by: 

WSEAS TRANSACTIONS on FLUID MECHANICS Edisson Sávio De Góes Maciel

ISSN: 1790-5087 202 Issue 4, Volume 6, October 2011



  ;xePrPrReq iTTLMx   

         
  yePrPrReq iTTLMy  .      (6) 

The diffusion terms related to the k-
2
 equation are 

defined as: 

  ;xkRe1 kTMx   

                
  ykRe1 kTMy  ;           (7) 

  ;xsRe1 sTMx 
 

                 
  .ysRe1 sTMy             (8) 

In the above equations,  is the fluid density; u and 

v are Cartesian components of the velocity vector in 

the x and y directions, respectively; e is the total 

energy per unit volume; p is the static pressure; k is 

the turbulence kinetic energy; s is the second 

turbulent variable, which can be the rate of 

dissipation of the turbulence kinetic energy (k- 

model) or the square of the flow vorticity (k-
2
 

model). In the present study, s = ω
2
; the t’s are 

viscous stress components; ’s are the Reynolds 

stress components; the q’s are the Fourier heat flux 

components; Gk takes into account the production 

and the dissipation terms of k; Gs takes into account 

the production and the dissipation terms of 
2
; M 

and T are the molecular and the turbulent 

viscosities, respectively; PrL and PrT are the laminar 

and the turbulent Prandtl numbers, respectively; k 

and s are turbulence coefficients;  is the ratio of 

specific heats; Re is the laminar Reynolds number, 

defined by: 

                         MREFREFlVRe  ,                   (9) 

where VREF is a reference flow velocity and lREF is a 

configuration reference length. The internal energy 

of the fluid, ei, is defined as: 

                        
 22

i vu5.0ρee  .                (10) 

The molecular viscosity can be estimated by three 

options described in the sub-section 2.1. The 

Navier-Stokes equations are nondimensionalized in 

relation to the freestream density, , the freestream 

speed of sound, a, and the freestream molecular 

viscosity, . The system is closed by the state 

equation for a perfect gas: 

             ρkvu0.5ρe1)(γp 22  ,       (11) 

 

considering the ideal gas hypothesis. The total 

enthalpy is given by    peH . 

 

2.1  Molecular Viscosity – Models: 

Three models to the molecular viscosity were 

studied in the laminar case: 
(a) A constant value, equal to the 

nondimensionalized viscosity, which results 

in the value 1.0 to the molecular viscosity in 

the simulations; 

(b) A variable molecular viscosity based on the 

empiric Sutherland formula: 

 

           
 TS1bT 21

M  ,               (12) 

where T is the absolute temperature (K), b = 

1.458x10
-6

 Kg/(m.s.K
1/2

) and S = 110.4 K, to the 

atmospheric air in the standard atmospheric 

conditions (see [36]). 

(c) A variable molecular viscosity based on the 

[37] model: 

 

                  
72.0

M kT ,                        (13) 

where k = 1.0 is recommended by [37] and T is 

nondimensionalized by freestream speed of sound. 
 

 

3 Van Leer and Radespiel and Kroll 

Algorithms 
The space approximation of the integral Equation 

(1) to a triangular finite volume yields an ordinary 

differential equation system given by: 

                           iii CdtdQV  ,                   (14) 

with Ci representing the net flux (residual) of the 

conservation of mass, conservation of momentum 

and conservation of energy in the volume Vi. The 

residual is calculated as: 

                           321i FFFC  ,                    (15) 

where Fl is the discrete convective minus diffusive 

flux at the interface “l”. The cell volume on an 

unstructured context is defined by: 
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   1n2n1n3n2n3n3n2n3n1n2n1ni yxxyyxyxxyyx5.0V  ,

    (16) 

with n1, n2 and n3 being the nodes of a given 

triangular cell, defined in Fig. 1. Figure 1 exhibits 

the computational cell adopted for the simulations, 

as well its respective nodes, neighbors and flux 

interfaces. 

 

Figure 1: Schematic of a Cell and Its Neighbors, Nodes 

and Flux Interfaces. 

 The convective discrete flux calculated by the 

AUSM scheme (Advection Upstream Splitting 

Method) can be interpreted as a sum involving the 

arithmetical average between the right (R) and the 

left (L) states of the “l” cell face, multiplied by the 

interface Mach number, and a scalar dissipative 

term. The subscript “L” is associated to properties 

of a given “i” cell and the subscript “R” is 

associated to properties of the “ne” neighbor cell of 

“i”. Hence, to the “l” interface: 
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(17) 

where  T
lyxl SSS   defines the normal area 

vector to the “l” surface. The area components at 

this interface are defined by: 

                 ll
x

l
x SnS     and   

ll
y

l
y SnS  .             (18) 

The normal unity vector components, l
xn and 

l
yn , 

and the flux area of the “l” interface, S
l
, are defined 

as: 

  5.02
l

2
ll

l
x yxyn  ,   ;yxxn

5.02
l

2
ll

l
y 

 

                               5.02
l

2
l

l yxS  .                (19) 

Expressions to xl and yl are given in Tab. 1.  The 

quantity “a” represents the speed of sound, which is 

defined as: 

                                 5.0
kpa  .                  (20) 

 

Interface xl yl 

l = 1 
1n2n xx   1n2n yy   

l = 2 
2n3n xx   2n3n yy   

l = 3 
3n1n xx   3n1n yy   

Table 1: Values of xl and yl. 

Ml defines the advection Mach number at the “l” 

face of the “i” cell, which is calculated according to 

[3] as: 

                                 RLl MMM ,                   (21) 

where the separated Mach numbers M
+/-

 are defined 

by the [2] formulas: 

          ;1

;1Mif,0

Mif,1M25.0

;1Mif,M

M
2


















  

            ;1

.1Mif,M

Mif,1M25.0

;1Mif,0

M
2


















        (22) 

ML and MR represent the Mach number associated 

with the left and right states, respectively. The 

advection Mach number is defined by: 

                         aSvSuSM yx  .                  (23) 
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 The pressure at the “l” face of the “i” cell is 

calculated by a similar way: 

                               RLl ppp ,              (24) 

with p
+/-

 denoting the pressure separation defined 

according to the [2] formulas: 

   
















;1Mif,0

;1Mif,M21Mp25.0

;1Mif,p

p
2

  

                 
















.1Mif,p

1Mif,M21Mp25.0

;1Mif,0

p
2

;      (25) 

 The definition of the dissipative term  

determines the particular formulation of the 

convective fluxes. The following choice 

corresponds to the [2] algorithm, according to [4]:                                   

 
 
















.0M1if,1M5.0M

;1M0if,1M5.0M

;1Mif,M

l

2

Ll

l

2

Rl

ll

VL
ll

 (26) 

The above equations clearly show that to a 

supersonic cell face Mach number, the [2] scheme 

represents a discretization purely upwind, using 

either the left state or the right state to the 

convective terms and to the pressure, depending of 

the Mach number signal. This [2] scheme is first 

order accurate in space. The time integration is 

performed using an explicit Runge-Kutta method of 

five stages, second order accurate, and can be 

represented in generalized form by: 

 

    
)k(

i
)1n(

i

)1k(
j,ij,i

)1k(
iik

)0(
i

)k(
i

)n(
i

)0(
i

QQ

,QGVQCtQQ

QQ









  (27) 

with k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 

and 5 = 1; and C = F1+F2+F3. 

 The [4] scheme is described by Eqs. (16) to  (25) 

and (27).  The next step is the determination of the  

dissipative term. An hybrid scheme is proposed by 

[4], which combines the [2] scheme, better 

resolution at shock regions, and the [3] (AUSM) 

scheme, better resolution at background regions. 

Hence, 

                       LS
l

VL
ll 1  ,             (28) 

with: 

 

 


















;0M1if,1M
2

1
M

;1M0if,1M
2

1
M

;1Mif,M

l

2

Ll

l

2

Rl

ll

VL
l    

 















 ~
Mif,~

2

~
M

~
Mif,M

l

22

l

ll
LS
l ,     

(29) 

where 
~

 is a small parameter, 0 < 
~
 0.5, and  is 

a constant, 0    1. In this work, the values used 

to 
~

 and  were: 0.2 and 0.5, respectively. The 

time integration follows the method described by 

Eq. (27). This scheme is first order accurate in 

space. 

 The gradients of the primitive variables to the 

viscous flux are calculated using the Green theorem, 

which considers that the gradient of a primitive 

variable is constant at the volume and that the 

volume integral which defines the gradient is 

replaced by  a  surface  integral  (see  [35]). To the 

xu   gradient, for example, it is possible to write: 

  










xS

x

S

x

V

udS
V

1
Sdnu

V

1
dV

x

u

V

1

x

u 

 

      .Suu5.0Suu5.0Suu5.0
V

1
3l2l1l x3neix2neix1nei 

  

 

(30) 

 

 

4 Cell Centered Higher Order 

Correction 
A piecewise linear redistribution of the cell 

averaged flow variables to obtain higher order 

accuracy while insuring that new extrema are not 

created in the reconstruction process is given by [9]: 

                            

         0y0x0000 yyQxxQy,xQrQy,xQy,xQ  ,                   

(31) 

where r is the vector from the cell center (x0,y0) to 

any point (x,y) in the cell, and Q represents the 

solution gradient in the cell. Note that this equation 
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is simply the first order accurate Taylor 

approximation plus a higher order correction. With 

this approximation, the solution gradient Q is 

constant in each cell and can be computed from 

                        

 


 dn.Q
V

1
Qi ,                (32) 

where V is the volume contained in the path of 

integration. For the cell centered case, the path 

chosen passes through the centroids “a”, “b” and 

“c” of the three surrounding cells “ne1”, “ne2” and 

“ne3” of the given cell “i”, respectively, as shown in 

Fig. 2. 

 

Figure 2: Integration Path for the Gradient Calculation. 

The vector Q represents the best estimate of the 

solution gradient in the cell computed from 

surrounding centroid data. 

 Consider a limited version of the linear function 

about the centroid of cell “i” 

    iii00i rQy,xQy,xQ  ,   i  [0,1].   (33) 

To find the value of i, a monotonicity principle is 

enforced on the unlimited quantities 

 
inni y,xQQ

n
  calculated in Eq. (31) at the faces 

of cell “i”. It requires that the values computed at 

the faces must not exceed the maximum and 

minimum of neighboring centroid values, including 

the centroid value in cell “i”, i.e., that 

                           
max
ii

min
i QQQ

n
 ,                  (34) 

where  neighborsi
min
i Q,QminQ   and 

 neighborsi
max
i Q,QmaxQ  . Note that this definition 

differs from that of [38], but coincides with the 

monotonicity definition used recently by [39] for 

structured meshes in multi-dimensions. For linear 

reconstructions, extrema in Q(x,y)i occur at the 

vertices of the face and sufficient conditions for Eq.  

(33) can be easily obtained. The value i can now 

be calculated for each vertex “j” of cell “i” as 

                              

 z,1min

;0QQif,1

;0QQif,
QQ

QQ

;0QQif,
QQ

QQ

z
ji

ij

ij

ij

i
min
i

ij

ij

i
max
i






























 ,                        

(35) 

with  
321 iiii ,,min  , where “j” is the index 

of each vertex defining cell “i”. New limited values 

for Qi at each of the faces of cell “i” are then 

calculated from Eq. (33) using the value of i 

calculated for the cell. Following this procedure 

guarantees that the linearly reconstructed state 

variables satisfy the monotonicity principle when 

evaluated anywhere within a face. The nonlinear 

limiter described by Eq. (35) is of a minmod type. 

Other limiters are presented below and were studied 

in this work. The definitions of these limiters are 

presented in [40]. 

 Van Leer non-linear limiter: 

 

                              z1

zz

ji



 ;                         (36) 

 

 Van Albada non-linear limiter: 

                               
2

2

i
z1

zz
j 


 ;                        (37) 

 

 Super Bee non-linear limiter: 

              
    2,zmin,1,z2min,0max

ji  ;         (38) 

 

 -limiter: 

            
     ,zmin,1,zmin,0max

ji ,          (39) 

 

where “z” is the ratio of differences of the vector of 

conserved variables, defined according to Eq. (35), 

and  assumes values from 1.0 to 2.0, being 1.5 the 

value adopted in this work. 

WSEAS TRANSACTIONS on FLUID MECHANICS Edisson Sávio De Góes Maciel

ISSN: 1790-5087 206 Issue 4, Volume 6, October 2011



5 Laminar Viscous Flux – Jacon and 

Knight Procedure 
The contribution to Ci from the viscous fluxes and 

heat transfer on face “k” is obtained from 

application of Gauss’ Theorem (see [41]) to the 

quadrilateral defined by the centroids of the cells 

adjacent to face “k” and the two nodes defining the 

endpoints (see Fig. 3). For any function f(x,y), 

 

                            






V
xdAfn

V

1

x

f
,                  (40) 

 

where V and V are the volume and surface of the 

quadrilateral abcd, respectively, and nx is the 

component of the outwards normal in the x 

direction. A similar equation is obtained for yf  . 

The values of xf   and yf   are evaluated at 

midpoint p of Fig. 3. The values of Q at the nodes 

are needed both the reconstruction process and the 

laminar viscous terms and are obtained by second 

order interpolation of Q from those cells sharing the 

node (see [42]): 

 

                         
 
cells

i

cells

iij QQ ,               (41) 

 

where Qj denotes the Q at node j, Qi denotes Q at 

the centroid of cell “i” which shares the node j, the 

sum is over all cells sharing the node (xj,yj), and i 

are dimensionless weights. 

 
Figure 3: Quadrilateral Employed for Determination of 

Viscous Fluxes. 

 

In the present study, two forms of evaluating i are 

studied: the first proposed by [34] and the second 

due to [18]. In the first method, i is given by: 

 

              
   jiyjixi yyxx1  ,        (42) 

 

with: 

 

           
   2

xyyyxxxyyyxyx IIIRIRI  ;       (43) 

           
   2

xyyyxxyxxxxyy IIIRIRI  ;       (44) 

        

    
cells

jiy

cells

jix ;yyR;xxR

    

 (45)

 

      

    
cells

2

jiyy

cells

2

jixx ;yyI;xxI

     

(46)

 

                 

   
cells

jijixy yyxxI .                 (47) 

 

In the second method, i is given by: 

 

                  
     5.02

ji

2

jii yyxx  ,         (48) 

 

being (xi,yi) the centroid coordinates of cell “i”. 

 

 

6 Wilcox and Rubesin Model to 

Turbulent Flow 
In this work, the k-

2
 model of [33] is studied, 

where s = 
2
. To define the turbulent viscosity, it is 

necessary to define the turbulent Reynolds number: 

 

                           
  MT kRe ,                       (49) 

 

with:  MM  and  defined as 
2s  . It 

needs to define a D damping factor: 

 

                            
 TRe

e1D


 ,                      (50) 

 

with:  a constant to be defined. The turbulent 

viscosity is expressed in terms of k and  as: 

 

                            
 kDReT .                     (51) 

 

The source term denoted by G in the governing 

equation contains the production and dissipation 

terms of k and 
2
. To the [33] model, the Gk and 

2G


 terms have the following expressions: 

     kkk DPG     and   222 DPG


 ,    (52) 

 

where: 
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
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
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


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 ;      (53) 
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, 

(54) 

with the second damping factor E defined as: 

                            
 TRe5.0

e1E


 .                   (55) 

 

The closure coefficients adopted to the [33] model 

assume the following values: 99174.0 ; 

15.0 ; 09.0*  ; 0.2k  ; 0.22 


; 

9.0 ; PrdL = 0.72; PrdT = 0.9. 

 

 

7 Unstructured Triangulation 
 An unstructured discretization of the calculation 

domain is usually recommended to complex 

configurations, due to the easily and efficiency that 

such domains can be discretized ([30], [43] and 

[44]). However, the unstructured mesh generation 

question will not be studied in this work. The 

unstructured meshes generated in this work were 

structured created and posteriorly the connectivity, 

neighboring, node coordinates and ghost tables were 

built in a pre-processing stage. 

 
Figure 4: Triangulation in the Same Sense (SS). 

 

 A study involving two types of domain 

triangulation is performed. In the first case, the 

mesh is generated with the triangles created in 

the same sense (see Fig. 4). In the second case, 

the triangles generated in one row is in a 

specific sense and in the above row is in an 

opposite sense (see Fig. 5), originating a mesh 

with more regular geometrical properties. It is 

important to emphasize that in the second 

method, the number of lines should be odd. 

These triangulation options are studied in all 

cases: inviscid, laminar and turbulent. 

 
Figure 5: Triangulation in Alternate Sense (AS). 

 
 

8 Time Step Options 
 

8.1  Spatially Variable Time Steps 

The basic idea of the spatially variable time step 

procedure consists in keeping constant the CFL 

number in all calculation domain, allowing, hence, 

the use of appropriated time steps to each specific 

mesh region during the convergence process. In this 

work, two options of spatially variable time step 

calculated at each iteration were studied and are 

described below: 
(a) Convective time step: 

 

 According to the definition of the CFL 

number, it is possible to write: 

 

                        iii csCFLt  ,                 (55)  

 

where: CFL is the “Courant-Friedrichs-Lewy” 

number to provide numerical stability to the 

scheme;   i

5.022
i avuc





   is the maximum 

characteristic velocity of information propagation in 

the calculation domain; and  is  is a characteristic 

length of information transport. Considering a finite 

volume context,  is  is chosen as the minor value 
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found between the minor centroid distance, 

involving the “i” cell and a neighbor, and the minor 

cell side length. 

(b) Convective + diffusive time step: 

 

 To a viscous simulation and according to 

the work of [37], it is possible to write: 

 

                 

 

ivc
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tt

ttCFL
t 










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
 ,               (56) 

 

with tc being the convective time step and tv 

being the viscous time step. These quantities are 

defined as: 
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 (58b) 

where interface properties are calculated by 

arithmetical average, M is the freestream Mach 

number,  is the fluid molecular viscosity and Kv is 

equal to 0.25, as recommended by [37]. 

8.2. Geometrical Time Steps 
Following the idea of keeping an appropriated time 

step to each mesh region, it is proposed in this work 

two options of time step which depend of the 

studied mesh region. They are called “geometrical” 

time steps because depend mainly of the cell volume 

in a given region. They are described below: 

(a) Geometrical time step – Option 1: 

 

This time step is defined as: 

 

ii

0
i

V/11

dt
t 










 , with dt0 = CFL.      (59) 

 

(b) Geometrical time step – Option 2: 

This time step option is an improvement of 

Eq. (59) and is defined as: 

 

 
i

exp

i

0

i
V/11

dt
t 










 , with dt0 = CFL and 

exp = 1/2 or 1/3.                                      (60) 

 

8.3. Constant Time Steps 
 

 In this case, the time step is defined as the 

minimum one calculated by Eq. (55), at the first 

iteration, and is keeping constant along all 

convergence process. 

 

 

9 Initial and Boundary Conditions 

9.1 Initial Condition 

Freestream values, at all grid cells, are adopted for 

all flow properties as initial condition, as suggested 

by [30] and [45]. Therefore, the vector of conserved 

variables is defined as: 

T

22
i kM5.0

)1(

1
sinMcosM1Q












  ,                       

(61) 

where k is the freestream turbulent kinetic energy 

and  is the freestream turbulent vorticity. These 

parameters assumes the following values in the 

present work: k = 1.0x10
-6

 and 

 2
REF

lu10   , with u being the freestream u 

Cartesian component of velocity and lREF being a 

characteristic length, the same adopted in the 

definition of the Reynolds number. 

9.2. Boundary Conditions 

The boundary conditions are basically of five types: 

solid wall, entrance, exit, far field and continuity. 

These conditions are implemented with the help of 

ghost cells. 

 

9.2.1 Wall Condition 

Considering the inviscid case, this condition 

imposes the flow tangency at the solid wall. It is 

satisfied considering the wall tangent velocity 

component of the ghost volume as equals to the 

respective velocity component of its real neighbor 

cell. At the same way, the wall normal velocity 

component of the ghost cell is equaled in value, but 

WSEAS TRANSACTIONS on FLUID MECHANICS Edisson Sávio De Góes Maciel

ISSN: 1790-5087 209 Issue 4, Volume 6, October 2011



with opposite signal, to the respective velocity 

component of the real neighbor cell. On the other 

hand, in the viscous case, it imposes the non-

permeability and non-slip wall conditions. 

Therefore, the tangent velocity component of the 

ghost volume at wall has the same magnitude as the 

respective velocity component of its real neighbor 

cell, but opposite signal. In the same way, the 

normal velocity component of the ghost volume at 

wall is equal in value, but opposite in signal, to the 

respective velocity component of its real neighbor 

cell. These procedures lead to the following 

expressions to ughost and vghost, in each case: 

 

 
  ;caseInviscid

vnnu)nn2(v

v)nn2(unnu

real
2
y

2
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2
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.caseViscous
vv

uu

realghost

realghost










     
    (63) 

 The pressure gradient normal to the wall is 

assumed to be equal to zero, following an inviscid 

formulation or a boundary-layer like condition. The 

same hypothesis is applied to the temperature 

gradient normal to the wall, considering adiabatic 

wall. The ghost volume density and pressure are 

extrapolated from the respective values of the real 

neighbor volume (zero order extrapolation), with 

these two conditions. The total energy is obtained 

by the state equation of a perfect gas. 

 To the k-
2
 model, the turbulent kinetic energy 

and the turbulent vorticity at the wall ghost volumes 

are determined by the following expressions: 

   0.0kghost     and       22
nMghost d338  , 

(64) 

where  assumes the value 3/40 and dn is the 
distance of the first centroid point to the wall. 

 

9.2.2 Entrance Condition 

The entrance condition considers subsonic and 

supersonic flow. They are detailed below: 

 

(a) Subsonic flow: Five properties are specified and 

one extrapolated. This approach is based on 

information propagation analysis along 

characteristic directions in the calculation domain 

(see [45]). In other words, for subsonic flow, five 

characteristic propagate information point into the 

computational domain. Thus five flow properties 

must be fixed at the inlet plane. Just one 

characteristic line allows information to travel 

upstream. So, one flow variable must be 

extrapolated from the grid interior to the inlet 

boundary. The pressure was the extrapolated 

variable from the real neighbor volumes, for all 

studied problems. Density and velocity components 

adopted values of freestream flow. To the k-
2
 

model, the turbulence kinetic energy and the 

turbulence vorticity assume the values of the initial 

condition (freestream flow). The total energy is 

determined by the state equation of a perfect gas. 

 

(b) Supersonic flow: In this case no information 

travels upstream; therefore all variables are fixed 

with their freestream values. 

 

9.2.3 Exit Condition 

Again, two flow situations are analyzed. They are 

detailed below: 

 

(a) Subsonic flow: Five characteristic propagate 

information outward the computational domain. 

Hence, the associated variables should be 

extrapolated from interior information. The 

characteristic direction associated to the “(qnormal-a)” 

velocity should be specified because it point inward 

to the computational domain (see [45]). In this case, 

the ghost volume pressure is specified from its 

initial value. Density, velocity components, the 

turbulence kinetic energy and the turbulence 

vorticity are extrapolated. The total energy is 

obtained from the state equation of a perfect gas. 

(b) Supersonic flow: All variables are extrapolated 

from interior grid cells, as no flow information can 

make its way upstream. In other words, nothing can 

be fixed. 

 

9.2.4 Far field condition  

This condition is only needed to the turbulent 

variables, once the far field is also an entrance 

and/or exit boundary. The mean flow kinetic energy 

is assumed to be 2u5.0K   and the turbulence 

kinetic energy at the far field adopts the value kff = 

0.01K, or 1% of K. The turbulence vorticity is 

determined by its freestream value. 

 

9.2.5 Continuity condition 

This condition requires the flow continuity at the 

trailing edge of the re-entry capsule (Kutta 

condition). It is done considering the vector of 

conserved variables at the trailing edge lower-

surface as equal to the vector of conserved variables 

at the trailing edge upper-surface. 
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10  Inviscid Results 
Two problems were studied in this work, namely: 

the inviscid supersonic flow along a ramp geometry 

and the viscous hypersonic flow around a re-entry 

capsule geometry. In this part of the present work, 

the inviscid supersonic flow along a ramp is studied. 

The ramp configuration is detailed as also the type 

of boundary contours. These configuration 

characteristics are described in Figs. 6 and 7. 

 

 
Figure 6: Ramp Configuration. 

 

The re-entry capsule is detailed and studied in [46]. 

Numerical experiments were run on a Notebook 

computer with dual core processor of 2.13GHz of 

clock and 4.0 GB of RAM. The criterion adopted to 

reach the steady state was to consider a reduction of 

three (3) orders of magnitude in the value of the 

maximum residual in the calculation domain, a 

typical CFD community criterion. The maximum 

residual is defined as the maximum value obtained 

from the discretized equations in the overall domain, 

considering all conservation equations. 

 

 
Figure 7: Ramp Computational Domain. 

The necessary tables to run the unstructured 

algorithms are generated in a pre-process stage. The 

initial conditions to the ramp problem are described 

in Tab. 2. 
 

 
Table 2: Initial Conditions to the Studied Problem. 

 The number of cells and nodes for the ramp 

problem are presented in Tab. 3. A mesh of 61x61 

nodes, in a finite difference context, is employed. 

 

Problem: Number of 

triangular cells: 

Number 

of nodes: 

Ramp 7,200 3,721 

 
Table 3: Cells and Nodes of the Mesh. 

 
 Figures 8 and 9 exhibit the meshes employed in 

the calculation of the inviscid flow to the ramp 

calculation. Figure 8 shows the mesh oriented in the 

same sense (clockwise sense) and Fig. 9 exhibits the 

mesh oriented in the alternate sense (one row is in 

clockwise sense and the following is in the counter-

clockwise sense). Both cases are analyzed in the 

inviscid and viscous cases. 

 
Figure 8: Ramp Mesh in the Same Sense (SS). 

 

From now on, the term “SS” represents the first type 

of mesh, or better, represent the mesh oriented in the 

Problem: Property: Value: 

 Freestream Mach, M∞ 2.0 

Ramp Attack angle,  0.0 

 Ratio of specific heats,  1.4 
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same sense, whereas the term “AS” represents the 

second type of mesh, the mesh oriented in the 

clockwise sense in one row and in the counter-

clockwise sense in the following row. 

 
Figure 9: Ramp Mesh in the Alternate Sense (AS). 

 
 The first results present the first order solution 

obtained by the [2] and [4] algorithms. The inviscid 

supersonic flow along a ramp is employed to test the 

capacity of the algorithms to simulate inviscid 

supersonic flow, in both SS and AS cases. In section 

10.2., this same test case is studied by the second 

order versions of [2] and [4], in both SS and AS 

cases. 

 

 

10.1 First Order Inviscid Solutions – Ramp 

Problem 
Figures 10 to 13 exhibit the density field obtained 

by [2] and [4] in SS and AS cases. The density field 

generated by the [2] algorithm in AS case is denser 

than the other fields. Good solution quality is 

observed in all four cases, mainly to the AS cases, 

which do not present shock oscillations in the 

density contours. However, as observed, the AS 

cases present solutions with a “cut out” effect, 

which damages lightly the quality solution. Both 

algorithms present this behavior to the AS case, 

which indicates that it is a problem of the mesh 

discretization and not of the numerical schemes. 
 Figures 14 to 17 show the pressure field obtained 

by [2] and [4], in the SS and AS cases, along the 

ramp geometry. The most severe pressure field is 

obtained by the [4] algorithm, in the SS case. 

 Figures 18 to 21 exhibit the Mach number field 

obtained by [2] and [4] in the cases SS and AS. As 

can see, they do not present Mach number 

oscillations and are clear. It is possible to note that 

the most intense Mach number field is due to [2] in 

the AS case. The smallest shock wave thickness is 

observed in both AS solutions. 

 
Figure 10: Density Field ([2] – SS). 

 
Figure 11: Density Field ([2] – AS). 

 
Figure 12: Density Field ([4] – SS). 

 

 One way to quantitatively verify if the solutions 

to the ramp problem are satisfactory consists in 

determining the shock angle of the oblique shock 
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wave, , measured in relation to the initial direction 

of the flow field, obtained by each scheme. [47] 

(pages 352 and 353) presents a diagram with values 

of the shock angle, , to oblique shock waves. 

 
Figure 13: Density Field ([4] – AS). 

 
Figure 14: Pressure Field ([2] – SS). 

 

 
Figure 15: Pressure Field ([2] – AS). 

 Figure 16: Pressure Field ([4] – SS). 

 Figure 17: Pressure Field ([4] – AS). 

 

The value of this angle is determined as function of 

the freestream Mach number and of the deflection 

angle of the flow after the shock wave, . To  = 20º 

(ramp inclination angle) and to a freestream Mach 

number equals to 2.0, it is possible to obtain from 

this diagram a value to  equals to 53.0 º. Using a 

transfer in Figures 14 to 17, it is possible to obtain 

in Tab. 4: 
 

Algorithm:  (): Error (%): 

[2] – SS 55.0 3.77 

[2] – AS 53.4 0.75 

[4] – SS 53.8 1.51 

[4] – AS 53.6 1.13 

 
Table 4: Shock Angle and Percentage Error to the Ramp 

Problem – First Order. 
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Figure 18: Mach Number Field ([2] – SS). 

 
Figure 19: Mach Number Field ([2] – AS). 

 

 The percentage errors indicate the [2] scheme 

and the AS case as more accurate than the other 

ones in the estimation of the shock angle of the 

oblique shock wave, considering first order 

solutions. 

 
Figure 20: Mach Number Field ([4] – SS). 

 
Figure 21: Mach Number Field ([4] – AS). 

 
Figure 22: Wall Pressure Distribution. 

 
    Figure 22 shows the pressure distributions along 

the ramp obtained by the [2] and [4] first order 

schemes, to the SS and AS cases. They are 

compared with the oblique shock wave and the 

Prandtl-Meyer expansion wave theories. The shock 

and the expansion fan are appropriately formed and 

well solved by all schemes. The pressure plateau is 

better predicted by [4] scheme, considering the AS 

case. All algorithms capture appropriately the shock 

discontinuity within three (3) points. The expansion-

fan-end pressure is well detected by all schemes. 

 By the obtained results, for the first order 

solutions, the [4] scheme considering the AS case 

presents the best wall pressure distribution, whereas 

the [2] scheme considering also the AS case 

presents the best prediction of the shock angle of the 

oblique shock wave. 

 

10.2 Second Order Inviscid Solutions – 

Ramp Problem 
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In this section, the second order versions of the [2] 

and [4] algorithms are presented. Five (5) non-linear 

limiters, which incorporate TVD properties to the 

numerical schemes, were tested, but only three (3) 

yielded converged solutions, in general. The three 

non-linear limiters that yielded converged results 

were: Barth and Jespersen, Van Leer and Van 

Albada. Only the Van Leer non-linear limiter did 

not produce converged results as the [4] scheme, in 

the SS case, was studied. To facilitate the non-linear 

limiters nomenclature, they were abbreviated by: BJ 

(Barth and Jespersen), VL (Van Leer) and VA (Van 

Albada). The results follow the aforementioned 

order. 

10.2.1  Barth and Jespersen non-linear limiter 

solutions 

Figure 23: Density Field ([2] – SS). 

 Figure 24: Density Field ([2] – AS). 

 

 Figures 23 to 26 present the density field 

calculated by [2] and [4], in cases SS and AS, as 

using the BJ non-linear limiter. As can be observed, 

the density field obtained by the [4] algorithm in the 

AS case exhibits the densest field. As also can be 

observed, the AS cases yielded the smallest shock 

wave thickness, similarly to the first-order-solution 

behavior. 

 Figure 25: Density Field ([4] – SS). 

 Figure 26: Density Field ([4] – AS). 

 Figure 27: Pressure Field ([2] – SS). 

 

 Figures 27 to 30 show the pressure field obtained 

by [2] and [4] in cases SS and AS. The most severe 
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pressure field is obtained by [4] in the AS case. The 

smallest shock wave thickness are again observed in 

the AS cases. These cases also present the “cut out” 

effect, which is characteristic of the type of spatial 

discretization. It is also possible to note in Fig. 30 

that the shock region downstream the ramp presents 

some oscillations, which indicate a non-uniform 

plateau at the ramp region. 

 Figure 28: Pressure Field ([2] – AS). 

 Figure 29: Pressure Field ([4] – SS). 

 Figure 30. Pressure Field ([4] – AS). 

 Figures 31 to 34 exhibit the Mach number field 

generated by [2] and [4] in the cases SS and AS. 

The most intense Mach number field is obtained by 

the [2] algorithm, in the AS case. As can be seen, 

some Mach number oscillations are present along 

the shock wave in the AS solutions. 

Figure 31: Mach Number Field ([2] – SS). 

 Figure 32: Mach Number Field ([2] – AS). 

 
Figure 33: Mach Number Field ([4] – SS). 
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Figure 34: Mach Number Field ([4] – AS). 

 

     Figure 35 shows the wall pressure distribution 

obtained by [2] and [4], as using the BJ non-linear 

limiter, in the cases SS and AS. This pressure 

distribution is compared with the oblique shock 

wave and expansion wave theories. As can be 

visualized, the best solution is due to [4] in the 

SS case. It is also observed that all distributions 

present a pressure peak at the beginning of the 

ramp. It is also important to note that both SS 

solutions predict the expansion-fan-pressure 

recovery correctly. All solutions capture the 

shock discontinuity in four (4) points, worse 

than the first order solutions. 

 
Figure 35: Wall Pressure Distribution. 

 
 In relation to the shock angle of the oblique 

shock wave, the estimation for this parameter to 

each algorithm and case is presented in Tab. 5. 

Using a transfer in Figs. 27 to 30, it is possible to 

obtain the following results. The percentage errors 

indicate the [2] scheme and the AS case as more 

accurate than the other ones in the determination of 

the shock angle of the oblique shock wave, 

considering the second order solutions of BJ non-

linear limiter. 
 

Algorithm:  (): Error (%): 

[2] – SS 54.0 1.89 

[2] – AS 53.3 0.57 

[4] – SS 54.0 1.89 

[4] – AS 53.8 1.51 

 
Table 5: Shock Angle and Percentage Error to the Ramp 

Problem – Second Order (BJ). 

10.2.2  Van Leer non-linear limiter Solutions 

The second studied non-linear limiter was the Van 

Leer one. Figures 36 to 38 presents the density field 

obtained by [2] and [4] algorithms in SS and AS 

cases. Only the [4] solution in the SS case did not 

present converged results. As can be seen, the AS 

solutions present the smallest shock wave thickness. 

The “cut out” effect of these solutions is again 

observed. The [4] scheme in the AS case presents 

the densest field, although the solution quality is not 

the best. As can be observed until now, although the 

SS case exhibit better quality of the property 

contours, the AS case exhibit better shock wave 

thickness prediction, as also the best shock angle of 

the oblique shock wave. It seems that the fact of 

changing the unstructured discretization from one 

row to the other, alternating the sense of 

triangulation, incorporates better properties in the 

mesh, resulting in solutions more accurate. This 

behavior will be clearer in the viscous case. 

 Figure 36: Density Field ([2] – SS). 
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Figure 37: Density Field ([2] – AS). 

 
Figure 38: Density Field ([4] – AS). 

 
Figure 39: Pressure Field ([2] – SS). 

 

     Figures 39 to 41 show the pressure field 

generated by [2] and [4] in cases SS and AS. Only 

the [4] algorithm in the SS case did not present 

converged solution. The most severe pressure field 

is obtained by the [4] scheme in the AS case, which 

characterizes this algorithm and case as the most 

conservative. Figure 41 presents a pressure peak 

close to the ramp beginning. It will originate a peak 

at the wall pressure distribution and possibly Mach 

number oscillations in this region. It is also 

important to emphasize the smallest thickness of the 

AS cases. It seems that the alternate sense in the 

unstructured discretization allows the numerical 

schemes to capture better shock wave properties. It 

seems that the discretization error in one row is 

canceled by the following row. 

 
Figure 40: Pressure Field ([2] – AS). 

Figure 41. Pressure Field ([4] – AS). 

 
     Figures 42 to 44 exhibit the Mach number field 

generated by the [2] and [4] algorithms. They are 

analyzed considering the SS and AS cases. All 

contour solutions present a small oscillation at the 

ramp beginning, which does the maximum Mach 

number field bigger than the initial freestream Mach 

number distribution. Despite it, all solutions are of 

good quality and clear. The maximum Mach number 

field is due to [2] in the AS case. The shock 

resolution is improved by the use of the AS 

unstructured spatial discretization. In spite of the 
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“cut out” effect, these solutions are the most 

representative of the field properties. This problem 

is classical in the CFD community and is used to 

simulate for instance the “boosters” of the VLS 

(Brazilian Satellite Launcher Vehicle) in a first 

stage of project phase. 

 
Figure 42: Mach Number Field ([2] – SS). 

 Figure 43: Mach Number Field ([2] – AS). 

 
Figure 44: Mach Number Field ([4] – AS). 

 

 Figure 45: Wall Pressure Distribution. 

 
 Figure 45 shows the wall pressure distribution 

obtained by the [2] algorithm, in cases SS and AS, 

and the [4], in case AS. As can be seen, all 

distributions present a peak at the ramp beginning. 

All solutions capture the shock discontinuity within 

four (4) points. The closest solution, in relation to 

the theoretical result, is that generated by the [2] 

scheme and the SS case. However, the closest 

expansion-fan-pressure recovery is obtained by the 

[2] and [4] algorithms in the AS case. 

 In relation to the shock angle of the oblique 

shock wave, the estimation for this parameter to 

each algorithm and case is presented in Tab. 6. 

Using a transfer in Figs. 39 to 41, it is possible to 

obtain the following results. The percentage errors 

indicate the [4] scheme and the AS case as more 

accurate than the other ones in the determination of 

the shock angle of the oblique shock wave, 

considering the second order solutions of Van Leer. 
 

Algorithm:  (): Error (%): 

[2] – SS 52.9 0.19 

[2] – AS 53.7 1.32 

[4] – AS 53.0 0.00 
 

Table 6: Shock Angle and Percentage Error to the Ramp 

Problem – Second Order (VL). 

2.2.3  Van Albada non-linear limiter Solutions 

The last non-linear limiter which produced 

converged results is the Van Albada one. Figures 46 

to 49 exhibit the density field obtained by [2] and 

[4] in cases SS and AS. Comparing these figures, it 

is possible to distinguish the [4] scheme in the AS 

WSEAS TRANSACTIONS on FLUID MECHANICS Edisson Sávio De Góes Maciel

ISSN: 1790-5087 219 Issue 4, Volume 6, October 2011



case as the densest field. However, the shock region 

is full of density oscillations. In Figure 47, some 

density oscillations appear, following the shock 

profile. The best solution qualities are obtained in 

the SS cases. 

 
Figure 46: Density Field ([2] – SS). 

 
Figure 47: Density Field ([2] – AS). 

 
Figure 48: Density Field ([4] – SS). 

 
Figure 49: Density Field ([4] – AS). 

 Figure 50: Pressure Field ([2] – SS). 

 Figure 51: Pressure Field ([2] – AS). 

 

 Figures 50 to 53 exhibit the pressure field 

generated by the [2] and [4] algorithms in the SS 

and AS cases. As observed, the most severe pressure 

field is obtained by [4] scheme in the AS case. 

However, a pressure oscillation is found at the ramp 
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beginning, which originates a pressure peak in the 

wall pressure distribution. The smallest shock wave 

thickness is observed again in the AS cases. 

 Figure 52: Pressure Field ([4] – SS). 

 Figure 53: Pressure Field ([4] – AS). 

 
Figure 54: Mach Number Field ([2] – SS). 

 

 Figures 54 to 57 show the Mach number field 

obtained by the [2] and [4] schemes in the SS and 

AS cases. The most intense Mach number field is 

generated by [2] scheme in AS case. Both AS cases 

present Mach number oscillations at the ramp 

beginning, which is a non-physical situation. 

 
Figure 55: Mach Number Field ([2] – AS). 

 
Figure 56: Mach Number Field ([4] – SS). 

 Figure 57: Mach Number Field ([4] – AS). 
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 Figure 58 exhibits the wall pressure distribution 

generated by the [2] and [4] schemes in the SS and 

AS cases. All solutions capture the chock 

discontinuity in four (4) points. All solutions also 

present a pressure peak at the ramp beginning. The 

best wall pressure distribution is due to [4] in the SS 

case. Even with the oscillation, this scheme is closer 

to the theoretical results than the others. Both AS 

solutions present better expansion-fan-pressure 

recovery 

 

 
Figure 58: Wall Pressure Distribution. 

 

 In relation to the shock angle, Table 7 presents 

the results in the estimation of this parameter. As 

can be seen, the best result is proportioned by the 

[4] algorithm in the case SS. It is also important to 

note that all errors were inferior to 1.0%, which 

indicates that the Van Albada non-linear limiter 

presented the best behavior among the tested ones. 

 

Algorithm:  (): Error (%): 

[2] – SS 53.3 0.57 

[2] – AS 53.4 0.75 

[4] – SS 53.0 0.00 

[4] – AS 53.2 0.38 

 
Table 7. Shock Angle and Percentage Error to the Ramp 

Problem – Second Order (VA). 

10.3  Time Step Study 

 In this work were studied five types of time step: 

four (4) to inviscid flows and one (1) to viscous 

flows. The viscous-flow-time-step option is 

analyzed in the next paper of this work (see [46]). In 

this paper only the inviscid options are evaluated. 

Table 8 gives the maximum number of CFL, the 

number of iterations to obtain convergence and the 

computational cost to each time step option. The [2] 

algorithm, in its first order variant, was employed in 

the numerical experiments. 

 

Time Step 

Option: 

CFL: Number of 

Iterations: 

Cost
(1)

: 

Constant 

time step 

1.30 684 0.0000181 

Convective 

time step 

1.10 618 0.0000187 

Geometrical 

1 time step 

65.00 685 0.0000182 

Geometrical 

2 time step 

0.04
(2)

 711 0.0000189 

(1): Gives in seconds/per iteration/per cell; (2): exp = 0.33. 

 
Table 8: Characteristics of the Time Step Options. 

 As pointed out above the best convergence is 

obtained by the convective time step option, being 

only 3.31% most expensive than it contra part the 

constant time step option. The geometrical 1 time 

step option also is a good procedure to accelerate 

the convergence process, being only 0.55% more 

expensive than the constant time step option. 

 As conclusion, for inviscid cases, the convective 

time step as implemented in this work involves the 

best cost-benefit relation and is the recommended 

procedure to this type of flow. Similar result was 

obtained in [21-22]. 

 

10.4  Computational Cost of the Numerical 

Schemes 

Table 9 exhibits the computational cost of the 

numerical schemes studied in this work. They are 

given in seconds/per cell/per iteration. As can be 

seen, the cheapest scheme is the [2] algorithm, in 

the AS case, first order accurate, using a CFL 

number of 0.9 and having a computational cost of 

0.0000171sec/per cell/per iteration. 
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Scheme: Case: Order: CFL: Cost
(1)

: 

[2] SS 1
st
 0.9 0.0000172 

[2] SS 2
nd

 – BJ 0.1 0.0002051 

[2] SS 2
nd

 – VL 0.1 0.0002035 

[2] SS 2
nd

 – VA 0.1 0.0002038 

[2] AS 1
st
 0.9 0.0000171 

[2] AS 2
nd

 – BJ 0.1 0.0002013 

[2] AS 2
nd

 – VL 0.1 0.0002020 

[2] AS 2
nd

 – VA 0.1 0.0002036 

[4] SS 1
st
 0.9 0.0000178 

[4] SS 2
nd

 – BJ 0.1 0.0002010 

[4] SS 2
nd

 – VA 0.1 0.0002021 

[4] AS 1
st
 0.9 0.0000177 

[4] AS 2
nd

 – BJ 0.1 0.0002022 

[4] AS 2
nd

 – VL 0.1 0.0002029 

[4] AS 2
nd

 – VA 0.1 0.0002011 
(1): Gives in seconds/per iteration/per cell 

 
Table 9: Computational Cost of the Numerical Schemes. 

 

11 Conclusions 

In this work, numerical simulations involving 

supersonic and hypersonic flows on an unstructured 

context are analyzed. Based on the experiences 

performed in the structured and unstructured 

contexts, the [2] and [4] algorithms are implemented 

on a finite volume formulation, using unstructured 

spatial discretization. The algorithms are 

implemented in their first and second order spatial 

accuracies. The second order spatial accuracy is 

obtained by a linear reconstruction procedure based 

on the work of [9]. Several non-linear limiters are 

studied, as well two types of linear interpolation, 

based on the works of [18] and [34]. Two types of 

viscous calculation to the laminar case are 

compared. They are programmed considering the 

works of [34] and [35]. To the turbulent simulations, 

the k-
2
 two-equation model of [33] is employed, 

considering the good experience observed by the 

present author in the structured studies. The ramp 

problem in the supersonic inviscid case and the re-

entry capsule problem in the hypersonic viscous 

case are considered. A spatially variable time step 

procedure is implemented aiming to obtain fast 

convergence rates to the two algorithms, as reported 

by [21-22]. Five options of time step are described 

and studied. The results have demonstrated that the 

[2] algorithm yields the best result in terms of the 

prediction of the shock angle of the oblique shock 

wave in the ramp problem and the best value of the 

stagnation pressure at the configuration nose of the 

re-entry capsule problem. In terms of turbulent 

results, the [33] model yields good results, proving 

the good capacity of this turbulence model to 

simulate high hypersonic flows. 

 In terms of the time step options to simulate 

supersonic and hypersonic flows, four (4) options 

were employed to study the ramp problem in 

inviscid conditions. The results presented in Tab. 8 

indicate the convective time step as the best 

technique to accelerate the convergence of 

numerical algorithms to the steady state solution, 

according to [21-22]. 

 The cheapest scheme is the [2] algorithm, in the 

AS case, first order accurate, using a CFL number 

of 0.9 and presenting a computational cost of 

0.0000171sec/per cell/per iteration. 

 This paper is the first part of this study and treats 

exclusively with the theory employed in this work 

and the inviscid results. The laminar and turbulent 

viscous results and their analyses are the subject of 

the second paper of this study and are reported in 

[46]. 
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