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Abstract: - This paper describes the numerical model BOUSS-WMH (BOUSSinesq Wave Model for Harbours), 

a finite element model for nonlinear wave propagation near shore and into harbors. It is based upon an extended 

version of the Boussinesq equations to which terms were added to generate regular or irregular waves inside the 

numerical domain, absorb outgoing waves, partially reflect waves at physical boundaries, control numerical 

instabilities and reproduce energy dissipation due to bottom friction and wave breaking. The paper focuses on 

the implementation of partial reflection, bottom friction and wave breaking as well as on the model applications 

to experimental test cases. Results are compared with physical model tests and another numerical model. 
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1. Introduction 
The most important physical effects associated with 

the nonlinear wave transformation of sea waves in 

nearshore regions can be described by Boussinesq-

type equations [19]. One example of this class of 

equations was introduced by Nwogu [30]. Such 

equations describe the nonlinear evolution of sea 

waves over a sloping impermeable bottom without 

considering wave breaking. Their validity range 

extends from shallow up to intermediate water 

depths where the nonlinear and dispersive effects 

are mild. Therefore, they seem adequate to describe 

the wave field outside and inside ports, harbours and 

sheltered zones. In the last few decades several 

authors have been working to extend the 

applicability domain of these equations to deep as 

well as to very shallow waters and also to include 

other physical phenomena such as currents, wave 

breaking, bottom friction etc… Nowadays there is a 

large number of extended Boussinesq equations 

[26][29][25][5][30][42][13][27][28][1][46][18]. 

The numerical resolution of Boussinesq-type 

equations has mostly used finite difference methods 

[32][26][29][4][43][20][23]. Although 

computationally more complex, the finite element 
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method deals directly with unstructured grids that 

correctly represent the physical boundaries of the 

domain, including the coastline, islands and other 

obstacles. Moreover the finite element method 

allows minimizing the number of points in the grid 

using local refinement techniques. Several authors 

have used this method with success 

[15][2][14][3][22][39][40]. These models use 

different time integration schemes and either 

triangular or rectangular linear elements. Recent 

advances in computational resources allow for 

inclusion of higher levels of non-linear and 

frequency dispersion terms as well as more complex 

interpolation functions [45][12].  

Developments on Walkey’s model [40] led to the 

BOUSS-WMH model whose first version was 

presented in Pinheiro et al. [33]. The model now 

includes internal wave generation (using the source 

function method with which regular and irregular 

waves can be generated), artificial numerical 

viscosity (to control numerical instabilities), 

numerical sponge layers (placed on radiation 

boundaries to absorb outgoing waves), numerical 

porosity layers (placed either on physical boundaries 

or inside the domain to simulate the reflection, 

transmission and energy dissipation effects of 

porous structures on the waves) and energy 

dissipation due to bottom friction and wave 

breaking.  

This paper is organized as follows: in section 2, the 

governing equations are summarized, the extensions 

to the original equations are presented and the 

numerical scheme is briefly discussed. Three 

different applications of the model are given in 

Section 3. The simulation of wave propagation over: 

a spherical shoal to evaluate nonlinear behaviour of 

the model and test the model’s sensitivity to 

different meshes; a constant slope beach profile and 

a bared beach profile to evaluate the wave breaking 

simulation. In the above test cases, the numerical 

results are compared with results from physical 

model measurements. The concluding remarks are 

drawn in the last section. 

 

2. BOUSS-WMH Numerical Model 
2.1 Generic model description 
The extended Boussinesq equations derived by 

Nwogu [30] are given by the following equations, at 

depth Zα=θ h. 
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where η is the free surface elevation, 

v)(u,),,( == tyxuu is the horizontal velocity 

vector, h the water depth. 

The original Nwogu’s equations were further 

extended to take into account some important 

physical processes (wave transmission through 

porous structures, bottom friction and wave 

breaking) as well as other source/damping terms for 

numerical reasons. The BOUSS-WMH model 

equations result as follows: 
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where the added terms stand for: 

� fS  - source function for wave generation; 

� ( ) ηυυ 2∇+ st  - viscous damping (distribution in 

time and in space); 

� uuu tl fnfn +  - laminar and turbulent friction 

(porous structures); 

� uuwf
h η+

1
 - wave induced bottom friction; 

� ( )uηυ
η

+∇∇
+

h
h

e

1
 - wave breaking. 

These additional terms are detailed in the following 

sections. 

 

2.2 Wave generation 
The wave generation is made by an internal 

generation condition, which is added to the model, 

using a source function following the procedure 

described by Wei et al. [41]. In this method, the 

source function is derived by a linearized form of 

the Boussinesq equations and by using Green’s 

theorem, an explicit relation between the desired 
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surface wave amplitude and the source function 

amplitude is obtained. A Gaussian function is used 

to distribute the generated wave over several mesh 

points. 
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where D is the amplitude of the source function, σ is 

a parameter corresponding to the width of the source 

region and (xs–x)
2
 is the square of the distance to the 

centre of the source region. 
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where α1 = α + 1/3, and I1 is given by: 
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2.3 Boundary conditions 
The boundary conditions can be of three types: full 

absorption, full reflection or partial reflection. 

Full reflection represents a solid impermeable 

vertical wall. Non permeability and mass 

conservation conditions lead to the following 

boundary conditions: 

0=⋅nu  and 0=⋅nw  (8) 

where n  is perpendicular to the boundary. 

Full absorption is obtained with use of viscous 

damping layers (sponge layers) This viscous term 

has quadratic growth in the part of the domain 

corresponding to the sponge layer absorbing all 

frequencies of waves, see section 2.4.1.3 for more 

details. 

To partially absorb wave energy at a given boundary 

the method presented by Nwogu & Dermirbilek [31] 

is used. It simulates partial wave reflection and also 

transmission through porous structures such as 

breakwaters. The modified equations for the porous 

region are obtained by replacing u with u/n, where n 

is the porosity, and including a term to account for 

energy dissipation inside the structure. 

Laminar and turbulent friction factors are obtained 

using the empirical relationships recommended by 

Engelund [11]: 
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where υ  is the kinematic viscosity of water, d is the 

characteristic stone size, and 0α  and 0β  are 

empirical constants that range from 780 to 1500, 

and 1.8 to 3.6 respectively. The characteristic stone 

size is given by: 

3
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where sW  is the stone weight in kN and sρ  is the 

mass density of armor material (2650 kg/m3.for 

quarry stone and 2300 kg/m3 for concrete blocks). 

The region where the partial reflection 
condition is enforced is a porosity layer and it 

must be introduced gradually to avoid large 

discontinuities which lead to instability. So, a 

Gaussian function is used to distribute growing 

porosity in half a wavelength width. Fig. 1 shows an 

example of varying viscosity and porosity. 
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Fig. 1: Viscosity (quadratic growth in sponge layer) 

and Porosity (Gaussian growth in porous layer). 

 

2.4 Energy dissipation 

2.4.1 Viscous damping 
The viscous damping term has three components: 

21 vvvv t ++=  (11) 

The first component is distributed in time domain. 

The other two components are distributed in space 

domain. νt and ν1 aim at controlling numerical 

instabilities while ν2 aims at absorbing outgoing 

waves at fully absorptive boundaries. 

 
2.4.1.1. Stability control at initial time steps 

Initial conditions for this problem are those for an 

undisturbed free surface. For this initial condition, 

as the wave enters the domain, the integration 

software will identify that as a discontinuity, forcing 

the use of very small time steps. In order to avoid 

this, a smoothing function (νt) is introduced:  

T

t
m

t emv
2

1

−
⋅=  (12) 

where T is the wave period and m1 and m2 are 

empiric constants that usually range between 1x10
-3

 

and 2x10
-3

 and 0.5 and 2, respectively. This term is 
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added to the free surface equation as a viscous 

coefficient. In the first time steps this will damp the 

solution, allowing the use of larger time steps. Due 

to the exponential decay nature of this damping 

term, it will not affect the solution obtained after a 

suitably large time. 

 
2.4.1.2. Stability control in  space domain 

In order to avoid spurious modes that damp the 

numerical solution, a small viscosity is introduced 

equally distributed in space and covering the whole 

domain. An expression for this viscosity can be 

given by: 

( )3
4

1
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⋅
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π
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where λ is the wave length ∆x is the average node 

spacing and γ is an empirical parameter in m/s that 

usually ranges between 2x10
-6

 and 8.5x10-6. 

 

2.4.1.3. Sponge layers 

It is important to fully absorb all incident waves at 

the outgoing boundaries. Due to the dispersive 

nature of the equations modelled, a simple radiation 

boundary condition is not completely effective, as 

the waves in the domain do not have a single phase 

speed. Therefore, a viscous damping layer, termed 

sponge layer, is introduced near the outflow 

boundary in order to absorb incident waves at those 

boundaries. These sponge layers take the form of a 

viscous term (ν2) added the free surface equation as 

presented in the following equation: 
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where, XS is the starting location of the layer and XF 

is its final location. XF-XS is the width of the layer. 

It was found in practice that the width of the sponge 

layer must be one to two wavelengths, in order to 

provide sufficient damping, [20]. 

Viscosity layers must be introduced gradually. So, 

this viscous term grows quadratically in the part of 

the domain corresponding to the sponge layer, see 

Fig. 1. 

 

2.4.2 Bottom friction 
The bottom boundary layer of flow associated with 

the passage of waves is normally restricted to a 

small region above the sea floor. There is therefore a 

very small amount of energy dissipation due to 

bottom friction in typical wave propagation 

distances of the order of 1km used in Boussinesq-

type models. The energy dissipation due to bottom 

friction however plays an important role in the wave 

transformations near shore, in very shallow waters.  

The effect of energy dissipation due to a turbulent 

bottom boundary layer is simulated using a term of 

bottom shear stress, Fb, to the momentum equation, 

following the procedure adopted by Nwogu & 

Demirbilek [31]. 
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where wf  is the wave friction factor. This equation 

is expressed in terms of αU  instead of the bottom 

velocity in order to minimize the computational 

effort to determine it.  

The wave friction factor estimates the bottom shear 

stress induced by the passage of the wave. To 

estimate the wave friction factor the method 

presented by Le Roux [21] is used. This author 

proposes a rigorous form of expressing wf  using 

two variables, the equivalent diameter of the 

particles, D, and the wave period, T.  

ρ

ρβ γ
2

2

wcr

w
U

Dg
f =

 (16) 

where γρ  e 
ρ

 are the densities of the submerged 

particles and of water, respectively. The Shields 

parameter, β , is given by: 
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The critical orbital velocity, wcrU  is given by: 
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with 6757.0
027.0

−= dswcr Wθ , where dsW  is the 

nondimensional sedimentation velocity and can be 

evaluated according to the empirical formulation of 

Dietrich [10]: 

5832
68.0

2D
Wds =

 (19) 

 
2.4.3 Wave breaking 
Wave breaking is a very complex turbulent 

phenomenon that constitutes an important form of 

energy dissipation and cannot be neglected in near 

shore areas. 

Several empirical formulations have been adopted 

by different authors to model wave breaking. 

WSEAS TRANSACTIONS on FLUID MECHANICS L. Pinheiro, C. J. Fortes, J. A. Santos, L. Fernandes, M. Walkley

ISSN: 1790-5087 177 Issue 3, Volume 6, July 2011



To model the turbulent mixing and dissipation 

caused by breaking, an “eddy viscosity” approach is 

used, [18]. It consists in adding an ad-hoc 

dissipative and momentum conservative term Rb to 

the momentum equation. This term contains the 

eddy viscosity, which is defined in agreement with 

experimental data. 
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and v  is the eddy viscosity and η+h  represents 

the total water depth. The eddy viscosity is defined 

as: 

( )
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The parameter bδ  is the mixing length coefficient. 

The purpose of the parameter B is to avoid an 

impulsive start of the wave breaking and 

consequently the instability of the solution. 
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where t∂∂ *η  determines the onset and the 

cessation of wave breaking. The use of t∂∂η  as an 

initiation parameter ensures that the dissipation is 

concentrated in the front face of the wave as in 

nature. 

A breaking event begins when t∂∂η  exceeds some 

initial threshold value and it will continue even if 

t∂∂η  drops bellow that value. The magnitude of 

the threshold value will decrease in time from the 

initial value tI ∂∂ )(η  to a final one tF ∂∂ )(η . A 

simple linear relation is used to model the evolution 

of t∂∂ *η : 
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where 
*T  is the transition time, 0t is the instant 

where breaking was initiated and so 0tt −  is the age 

of the wave breaking event. The expressions for 

tI ∂∂ )(η , tF ∂∂ )(η  and *T  are: 
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gHtcstT a** =
 (26) 

These parameters must be correctly calibrated 
in order to simulate well the wave breaking.  

3. Applications 
The model was applied to three different test cases: 

a) regular waves that propagate over a spherical 

shoal, b) wave propagation at an experimental beach 

profile and c) wave propagation over a bared beach. 

The numerical simulations were run in a LINUX 

workstation with a quad-core AMD Opteron™ 265 

at 2GHz and 8GB RAM memory. 

Comparisons with experimental and numerical 

results were made using three statistical parameters: 

the agreement index, AI [44], the quadratic mean 

error (RMSE) and the absolute mean error (BIAS), 

each given by equations: 
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where xi are the experimental values, yi are the 

numerical model values, x  is the average 

experimental value and N is the number of points. 

The agreement index ranges from 0 to 1, being 1 the 

maximum agreement between experimental and 

numerical values. 

 

3.1 Spherical shoal 
This test case helps to evaluate nonlinear behaviour 

of the model as well as the model’s sensitivity to 

different mesh sizes. 

3.1.1 Numerical conditions 
The case of propagation of waves over a spherical 

shoal was studied experimentally and numerically 

by Chawla [7]. Chawla performed a number of 

physical simulations with both regular and irregular 

waves.  

In Fig. 2 the geometry of the shoal and transects, 

where measurements were made are presented. The 

wave tank is 20 m long and 18.2 m wide with a 

maximum and minimum depth of 0.45 m and 

0.08 m respectively. The centre of the shoal is 

located at x=5.0 m and y=8.98 m. The shoal is a 

portion of a sphere with 9.1 m radius and the 
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circular intersection of the shoal and the bottom is 

given by: 

( ) ( ) 222
57.298.87 =−+− yx  (30) 

The equation that describes the bathymetry inside 

this circle is:  

( ) ( )98.8798.818.9
22

2 −−−−+−= yxz
 (31) 

where z coordinate has its origin at the still water 

surface. 

Test cases 1, 2 and 3 proposed by Chawla [7] are 

simulated here. In Table 1 the wave characteristics 

and kh for the fundamental wave as well as for the 

1st and 2nd harmonics are presented. Wave 

breaking does not occur in any of the three test 

cases. Kh parameter indicates that Boussinesq type 

models can represent nonlinear wave interactions 

although 2nd harmonics have relatively high values, 

especially for cases 1 and 2. __________________________________________ 
Test H(m) T(s) L(m) kh(1) kh(2) kh(3) __________________________________________ 
1 0.019 0.75 0.875 3.21 12.85 51.41 

2 0.040 0.75 0.875 3.21 12.85 51.41 

3 0.023 1.00 1.490 1.90  7.25 16.63 __________________________________________ 
Table 1: Wave characteristics for the spherical shoal 

case. 

The numerical domain, wave generation line and 

two sponge layers with increasing viscosity are 

shown in Fig. 14. The generation zone is located at 

y = 3 m and is 0.89 m wide. All the boundaries of 

the domain are fully reflective but two sponge layers 

were placed at both outgoing boundaries. These 

sponge layers are 1.78 m wide. The time step was of 

0.01 s and the total simulation time was of 40 s. 

  

Fig. 2: Geometric configuration of the tank. 

 

 
Fig. 3: 3D perspective of the shoal and the mesh. 

For the above three incident conditions, the model 

BOUSS-WMH was applied. The results in terms of 

significant wave height were compared with 

experimental results as well as with numerical 

results from another Boussinesq-type model, 

COULWAVE, [23], that is more accurate than 

BOUSS-WMH and uses finite differences. 

 

3.1.2 Sensitivity analysis 
To evaluate the influence of the finite element mesh 

size on the numerical results, five different meshes 

were generated ranging in number of points from 

about 18 000 to 300 000 - this corresponds to an 

average of 5 to 21 points per wavelength (Np/λ), for 

a wave period of T = 0.75 s. The meshes bandwidths 

(BW) vary between 187 and 744. In terms of 

quality, 86% to 99.96% of the elements are 

considered optimal (i.e. each node is connected to 

six other nodes and the triangles’ internal angles are 

60º). In Table 2 the mesh characteristics are 

presented.  __________________________________________ 
Mesh Np Ne BW Np/λ Npmin/ λ  ___________________ 
    0.75s 1s 0.75s 1s __________________________________________ 
A 18169 35840 187 5 11 3 7 

B 31204 61910 290 7 16 3 7 

C 72140 143286 376 10 24 6 14 

D 144207 287388 709 16 37 8 18 

E 287614 573242 744 21 48 11 25 __________________________________________ 
Table 2: Finite element meshes characteristics for 
spherical shoal example. 
 

The values of the significant wave height index (the 

ratio between significant wave height of a point in 

the area and height of incident wave) are then 

calculated at the whole domain but specifically at 60 

points distributed along transects A-A to G-G, for 

comparison with the physical model results. 

Fig. 16 shows the significant wave height indexes at 

transect A-A obtained for all meshes, for tests 2 and 
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3. Fig. 17 shows a comparison of statistical 

parameters, AI, RMSE and BIAS which characterize 

the differences in relation to experimental results, 

and the processing time (CPU time) obtained by the 

different meshes. 
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Fig. 4: BOUSS-WMH model. Significant wave 
height indexes for each grid. Test 2 (above) Test 

3(below). 
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Fig. 5: Statistical parameters (orange lines) and  

CPU time (blue lines) evolution with the mesh size. 
(Dashed line - Test 2; solid line - Test 3). 

In test 3, it is observed that from grid C to F, the 

numerical differences in results are minor. In test 2, 

which is a more demanding test than test 3 (higher 

non-linearity), only grids D and E have satisfactory 

results. So, it can be concluded that the model 

requires a minimum of 6 and an average of 10 

points per wavelength to obtain acceptable results. 

However, only from a minimum of 8 and an average 

16 points per wavelength are the results more 

accurate (Grid D). Taking the smallest processing 

time required to obtain a reasonable accuracy on 

results, it appears that the D grid is the best to 

simulate the other tests. 

3.1.3 Results 
For the three tests, using mesh D, comparisons of 

the numerical model results with the experimental 

data [7] and numerical results from the 

COULWAVE model [23] are presented. 

Statistical parameters (AI,  RMSE  and BIAS) are 

used to quantify the differences in the significant 

wave heights for all sections. The energy spectra 

obtained by numerical models for three gauges 

located in transect A-A were also calculated. 

3.1.3.1. Free surface elevation and wave height 

indexes 

A 3D visualization of the numerical values of the 

free surface elevation after 5 s, 10 s, 20 and 40 s of 

simulation for test 2 (T = 0.75 s, H = 0.4 m) is 

shown, Fig. 1. Fig. 2 and Fig. 3 presents the views 
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of 2D free surface elevation after 40 s of simulation 

and a 3D view of the detail located over the shoal. 

Fig. 4 shows the contours of the wave height 

indexes 40 s of simulation, for tests 1, 2 and 3. 

Fig. 1 clearly shows the propagation of the waves 

over time on the spherical shoal. There are changes 

in the wave (direction, height and shape) due to the 

effects of bottom induced refraction and wave 

diffraction around the shoal. Indeed, the wave as it 

passes over the shoal suffers: a) the shoaling due to 

decrease in depth, b) refraction due to the 

orientation of the bathymetry c) diffraction due to 

the presence of the shoal that is somewhat of an 

obstacle that the wave must overcome. This leads to 

an increase in wave height after the shoal, as this is 

an area where the waves that skirted the shoal will 

meet (area of energy concentration) as well as 

reducing the height on each side of the shoal due to 

the lateral distribution of energy (diffraction). This 

behavior is also displayed in Fig. 2 and Fig. 3. In 

the latter figure it is also visible the high non-

linearity of the waves, since they have sharp crests 

and flattened troughs. 

 
Fig. 1. Free surface elevation after 5 s, 10 s, 20 s e 

40 s of simulation (Test 2). 

 
Fig. 2. Free surface elevation after 40 s of 

simulation. Tests 1, 2 and 3, respectively. 

   
Fig. 3. Free surface elevation detail over the shoal 

after 40 s of simulation. Tests 1, 2 and 3, 

respectively. 

 
Fig. 4. BOUSS-WMH – Contour plots of wave 

height indexes. Tests 1, 2 and 3, respectively. 

The pattern of wave height indexes is very similar 

for all three test cases. Before the shoal no 

significant differences of the i wave height indexes 

occur, over the shoal there is a progressive increase 

of these values and they reach a maximum value 

immediately after the shoal. The extent of this zone 

of high values varies from test to test. After this 

zone, there is a decrease of the wave height indexes. 

On the sides (left and right) of the shoal there is a 

decrease of wave height indexes. 

Comparing the wave height indexes of the tests 1 

and 2 whose main difference is the height of the 

incident wave, it appears that the zone of increased 

wave height stretches for an area larger for test 2 

than test 1. For the third test, this area has an even 

greater extent, since the period of the incident wave 

of this case is larger. Thus, the wave feels the 

presence of the shoal sooner than in  the other two 

cases. It also turns out a better definition of contour 

lines (less noise) is a consequence of a greater 

number of points per wavelength of the finite 

element mesh. 

3.1.3.2. Significant wave heights 

Fig. 6, Fig. 7 and Fig. 8 show the numerical 

significant wave heights obtained by the models 

BOUSS-WMH and COULWAVE and the 

experimental values in transects A-A, C-C and G-G, 

for tests 1, 2 and 3. The corresponding statistical 

parameters are shown in Table 3,Table 4 and Table 

5. 
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Fig. 6 - Test 1.  Transects A-A, C-C and F-F. Wave 

height indexes. Experimental (black points) and 

numerical values: BOUSS-WMH (blue), 

COULWAVE (red). 
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Fig. 7 - Test 2.  Transects A-A, C-C and F-F. Wave 

height indexes. Experimental (black points) and 

numerical values: BOUSS-WMH (blue), 

COULWAVE (red). 
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Fig. 8 - Test 3.  Transects A-A, C-C and F-F. Wave 

height indexes. Experimental (black points) and 

numerical values: BOUSS-WMH (blue), 

COULWAVE (red). 
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__________________________________________ 

 BIAS RMSE AI __________________________________________ 
 CW BSS CW BSS CW BSS __________________________________________ 
AA -0.111 -0.279 0.571 0.312 0.712 0.867 

BB -0.061 -0.220 0.630 0.536 0.443 0.450 

CC -0.010 -0.134 0.456 0.293 0.387 0.600 

DD -0.055 -0.197 0.479 0.305 0.498 0.806 

EE 0.150 -0.263 0.251 0.200 0.870 0.858 

FF 0.222 -0.160 0.211 0.132 0.589 0.630 

GG 0.063 -0.210 0.079 0.156 0.362 0.406 __________________________________________ 
Table 3: Test 1.  Transects A-A to G-G. Statistical 

parameters. 

 __________________________________________ 
 BIAS RMSE AI __________________________________________ 
 CW BSS CW BSS CW BSS __________________________________________ 
AA -0.649 0.013 0.729 0.186 0.543 0.954 

BB -0.385 0.125 0.661 0.389 0.396 0.620 

CC -0.370 0.128 0.573 0.261 0.377 0.792 

DD -0.397 0.082 0.611 0.210 0.381 0.928 

EE -0.317 -0.052 0.237 0.116 0.826 0.943 

FF -0.324 -0.102 0.238 0.113 0.490 0.595 

GG -0.346 -0.029 0.252 0.071 0.269 0.630 __________________________________________ 
Table 4: Test 2.  Transects A-A to G-G. Statistical 

parameters. 

  __________________________________________ 
 BIAS RMSE AI __________________________________________ 
 CW BSS CW BSS CW BSS __________________________________________ 
AA 0.022 0.075 0.119 0.140 0.993 0.990 

BB -0.029 0.047 0.150 0.249 0.979 0.940 

CC 0.000 0.074 0.155 0.255 0.957 0.898 

DD -0.026 0.071 0.223 0.246 0.912 0.843 

EE 0.022 0.028 0.126 0.147 0.979 0.967 

FF 0.029 0.022 0.089 0.087 0.931 0.936 

GG 0.032 0.036 0.048 0.105 0.587 0.182 __________________________________________ 
Table 5: Test 3.  Transects A-A to G-G. Statistical 

parameters. 

 

In general, for all tests, the numerical model 

BOUSS-WMH can reproduce fairly well the 

behaviour and the magnitude of the experimental 

results. Indeed, the numerical model simulates the 

wave height growth over the shoal and close to that, 

and then the progressive wave height decrease (as it 

can be seen in transect A-A) as the wave moves 

away from the shoal.  

In the other transects, the numerical values follow 

also the experimental ones, although there are major 

differences in the area after the shoal. Note that 

transects B-B, C-C, D-D are downstream the shoal, 

where nonlinearity effects are higher. Notice that 

BOUSS-WMH is a weakly nonlinear model. In 

transects F-F and G-G, the agreement index is lower 

which may be due to the low number of measuring 

points.  

Specifically, with respect to test 1, (see Fig. 6 and 

Table 3) and in most transects, the model tends to 

underestimate the significant wave heights. The bias 

parameter graph clearly shows this trend. Only in 

transects F-F and G-G, the model overestimated the 

experimental results. The rmse is low in the sections 

E-E and G-G but reaches higher values in section B-

B. The agreement index is over 0.7 in most 

transects, apart from transects B-B, C-C and G-G.  

With respect to test 2 (see Fig. 7 and Table 4) the 

model reproduces well the wave height in all 

transects. This can be confirmed by the values of 

rmse and of the agreement index Fig.s. The rmse is 

lower than the test 1 and never exceeds 0.4. The 

index of agreement is always above 0.7 in all 

transects for both models except for the transect B-B 

and G-G. Regarding the bias, the model shows a 

different behaviour depending on the transect. In 

transects B-B, C-C and D-D the model 

overestimates the experimental results. In other 

transects, the reverse happens. Transect A-A both 

models underestimate the experimental values.. 

The analysis of test 3 (see Fig. 8 and Table 5) shows 

that BOUSS-WMH results tend to over-estimate of 

significant wave height for all transects, especially 

at transect A-A. The bias parameter graph clearly 

shows this trend. The agreement index is over 0.9, 

with the exception of transect G-G, transverse to the 

wave direction of the wave and on the front of the 

shoal, where the indexes were very small. The small 

values of the wave height and the few wave gauges 

may contribute to the value of ic.  The biggest rmse 

was achieved at the D-D, just downstream from the 

shoal, where one expects a considerable 

transformation of the wave. Possibly, this results 

from a model limitation to represent higher 

harmonics present in this region.  

Clearly, it appears that both models reproduce more 

accurately test 3 than test 2 and especially test 1. 

Note that this test is the least nonlinear of the tests 

simulated here.  

 

3.1.3.3. Spectral analysis 

Energy spectra were obtained at three different 

gauges located in the longitudinal section A-A for 

the three tests examined (Fig. 9 to Fig. 11). The 

gauges positions were x = 3.12 m and 7.42 m, 

known as gauges 1 and 9, respectively. The gauge 1 

is upstream of the shoal, while the other is located 

downstream of it. 
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Fig. 9 – Test 1. Wave spectra. COULWAVE (blue) 

e BOUSS-WMH (red) 
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Fig. 10 - Test 2. Wave spectra. COULWAVE (blue) 

e BOUSS-WMH (red) 
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Fig. 11 - Test 3. Wave spectra. COULWAVE (blue) 

e BOUSS-WMH (red) 

 

It is observed that as the wave propagates along the 

tank, the energy which was concentrated in only one 

frequency moves to other frequencies (harmonics) 

as expected. In all test cases, the second harmonic is 

associated with the higher energy, and especially at 

wave gauge 9. This is justified because this wave 

gauge is located closer to the shoal and downstream, 

where it expects higher nonlinearity.  

Test 2 showed the presence of higher harmonics 

with higher intensity, which can be explained by the 

characteristics of the incident wave: the wave height 

is the largest of the test cases (H = 0.04m) and the 

wave period is shorter than test 3. Since the models 

are based on the Boussinesq equations, they are 

limited to relatively low values of kh. So, it can 

show some difficulty on simulating the third 

harmonic because they have values of kh in the 

range 16 to 50, see Table 1. 

 

3.2 Constant Slope Beach Profile 

First, a calibration of the wave breaking 

parameters is performed by using one of the test 

conditions used on the experiments performed by 

Hansen & Svendsen [15], which simulate the 

wave propagation over a constant slope bottom. 

Once the best parameters were defined, the 

numerical model is applied to the other test 

conditions. 

Gauge 1 

Gauge 9 

Gauge 1 

Gauge 9 

Gauge 1 

Gauge 9 
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3.2.1 Numerical conditions 
The model was applied to a simple case of wave 

propagation and breaking of regular waves over a 

constant slope beach profile for witch there are 

experimental results obtained by Hansen & 

Svendsen [15]. 

Wave are generated at a 0.36m depth and shoal on 

a 1:34.26 slope until they brake. Test cases 

number 031041, 041041 e 051041 from Hansen & 

Svendsen [15],  experiments were reproduced in 

this work wich correspond to the wave 

characteristics in Table 6. 
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Fig. 12 - Bathymetry and location of source, 

sponge layers and wave gauges. 

 __________________________________________ 
Test Period (s) Wave Height (cm) __________________________________________ 
031041  3.33  4.30 

041041  2.50  3.90 

051041  2.00  3.60 __________________________________________ 
Table 6: Characteristics of generated waves. 

The simulation time was of 40s. The numerical 

domain has 63m in length and the source is located 

at x=30.0 m. Two sponge layers were placed at 

the extremities. The domain was discretized with 

4816 finite elements with 0.09m spacing between 

nodes. Over the slope 35 wave gauges were 

placed to measure wave heights. In order to avoid 

numerical instabilities the viscosity parameter  

was 3.0×10
-3

, for cases 031041 e 0341041 and 

2.2×10
-3

 for case 051041 

 

3.2.2 Parameter calibration 
Since experimental results are available the 

calibration of the several wave breaking 

parameters was made in order to get the best 

possible results. Parameters for the initiation and 

cessation of breaking are the most influential on 

the results while the other parameters have little 

influence. 
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Fig. 13 - Calibration of initiation and cessation of 

wave breaking parameters for test 031041. 
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Fig. 14 - Calibration of transition time and mixing 

length coefficients for test 031041. 

After analyzing these results the parameters 

adopted were: 
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3.2.3 Results 
Figure 4 and Figure 5 present the numerical and 

experimental results obtained for each incident 

wave condition. In general, for all cases tested, 

the numerical results follow well the experimental 

values, before and after breaking takes place. 

Indeed, for each test case, the wave shoals due to 

decreasing depth and brakes at the same locations 

obtained in experimental tests. After wave 

breaking occurs the wave height decreases due to 
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energy dissipation resulting from the turbulent 

phenomenon. 

However, there are some differences; the energy 

dissipation of the numerical model is higher in 

case 031041 and especially in case 051041. In the 

case 041041 the breaking does not occur at the 

same depth. 
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Fig. 15: Significant wave heigths HS (m) over the 

bathymetry for test cases 031041, 041041 and 

051041. 
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Fig. 16: Non dimensional wave heights for test 

cases 031041, 041041 and 051041. 

The main conclusions of this test were: 

 The model correctly simulates the behavior of 

the wave propagation along the domain; 

 The model correctly predicts the wave height 

before wave breaking, and the energy 

dissipation after this, although it is slightly 

higher than that observed experimentally; 

 The position of the break was well simulated 

by the numerical model, with only a slight 

difference in depth. In any case these 

differences are very dependent upon the test 

case. 

3.3 Bared Beach Profile 

This test case helps to evaluate the benefits of 

accounting for wave breaking related energy 

dissipation when studying real near shore and beach 

bathymetries. 

A bared beach case has been done to check the 

behavior of the model when several wave breakings 

occur. This corresponds to an experimental study 

performed by Sancho et al. [37]. 

3.3.1 Numerical conditions 
The bathymetry is 119.6 long, Fig. 17. 

WSEAS TRANSACTIONS on FLUID MECHANICS L. Pinheiro, C. J. Fortes, J. A. Santos, L. Fernandes, M. Walkley

ISSN: 1790-5087 186 Issue 3, Volume 6, July 2011



-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0 20 40 60 80 100 120

x (m)

P
ro
f.
 (
m
)

Zona

absorvente

Zona

absorvente

Fonte

 
Fig. 17: Wave breaking test of a bared beach: Shape 

of the bathymetry. 
The initial amplitude was 0.056m and a small 

viscosity of 2.0x10-3 was put in order to avoid all 

numerical instabilities. The period was 2.5s and the 

source function of was at x = 26.0m. 

The domain was discretized by linear finite 

elements with two nodes and the spacing between 

two nodes was ∆x = 0.05m. The corresponding 

domain has 2393 nodes. The simulation lasted 70s. 

Along the slope, 43 gauges were considered. 

 

3.3.2 Parameter calibration 
The first parameter to be calibrated is the numerical 

viscosity because it guarantees the stability of the 

numerical method but should not affect the results 

quantitatively. Therefore it should be as small as 

possible within the range allowing a stable run until 

the end of the simulation. Hence the value of this 

parameter decreased until the optimal value is 

found. values of 5×10
-3

, 4×10
-3

, 3×10
-3

, 2×10
-3 

and 

1×10
-3 

were tested, Fig. 18. Since the latter has 

failed to control the numerical instability the value 

adopted was 2×10
-3

. 
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Fig. 18: Calibration of numerical viscosity 

parameter. 

 

Subsequently some sensitivity tests were carried 

out to assess the influence of the wave breaking 

parameters and since experimental results were 

available it was possible to calibrate them. 

The initiation of breaking parameter is one of the 

most important because it allows us to determine 

the location of the 1st breaking, which can 

significantly alter the subsequent results. Fig. 19 

represents the values of wave height for the 

initiation breaking parameter ranging from 0.40 to 

0.65. A statistical analysis showed that the value 

of 0.50 leads to a closer match between numerical 

and experimental results, Fig. 20. 
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Fig. 19: Calibration of initiation parameter. 
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Fig. 20: Error statistics for the calibration of 

initiation parameter. 

 

The cessation parameter was varied between 0.08 

and 0.15 but it can be seen that it changes very 

little the results. The more appropriate in this case 

was 0.15, Fig. 21. 

The same applies to the transition time and the 

mixing length coefficient that have little influence 

on the results. 
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Fig. 21: Calibration of cessation parameter. 
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Fig. 22:Calibration of transition time. 
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Fig. 23: Calibration of mixing length coefficient. 

 

After analyzing these results the parameters 

adopted were: 
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3.3.3 Results 
Fig. 24 represents the free surface elevation at the 

time instants 20s, 26s, 30s, 34s, 38s and 42s that 

correspond to the time interval in which the first 

fully developed waves reach the end of the beach. In 

these graphs it can be seen the wave travelling over 

the bar, breaking and then recover over the pit and 

break again on the beach (the latter phenomenon is 

most visible in the last plot at t = 42s). 

 

 
Fig. 24: Free surface elevation at several time 

instants. 

 

Fig. 25 presents the comparison between the wave 

height experimental data and numerical results 

along the bathymetry obtained with BOUSS-WMH 

model and the FUNWAVE model. FUNWAVE 

Error! Reference source not found. is a phase-

resolving, time-stepping Boussinesq model for 

ocean surface wave propagation in the near shore 

and the comparison of both results on the bared 

beach case is interesting. This model is more 

complex than BOUSS3W, however the formulation 

of breaking itself is very similar and previously 

tested. Both of models give results at the same 

gauges as the ones of experimental work. 
Test case of a bared beach
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Fig. 25: Bathymetry and wave heights of the 
BOUSS-WMH and FUNWAVE models and 
experimental data. 
BOUSS-WMH model reproduced very well the 

behavior of waves up to the wave breaking location, 

which has occurred slightly before the experimental 

one. Little differences can be noticed around 90.0m, 

but the last wave breaking is very well re-produced. 

Although the BOUSS-WMH model seemed to be 

more accurate then FUNWAVE, computation of the 
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BIAS, the root mean square error (RMSE) and the 

index of agreement (AI) has been done in order to 

strictly compare the two numerical models, see 

Table 7.  ____________________________________________________________________________________ 
 BIAS RMSE AI ____________________________________________________________________________________ 
BOUSS-WMH -0.00419 0.0344 0.953 
FUNWAVE 0.000164 0.0452 0.922 ____________________________________________________________________________________ 
Table 7: Statistics of results.  
A negative bias for BOUSS-WMH means that the 

model tends to underestimate the wave height, while 

the FUNWAVE’s bias signifies that it overestimates 

it. Both of the values are very small. The root mean 

square error and the index of agreement show very 

good results from both models. 

 

4. Conclusions 
This paper describes the BOUSS-WMH model. 

Previous applications of the model confirmed that 

the model was able to simulate quite well the main 

characteristics of the wave field outside and inside 

harbor configurations. However, important physical 

processes were not simulated, namely wave 

breaking. This phenomenon constitutes an important 

form of energy dissipation that cannot be neglected 

in near shore areas. 
All the enhancements made for the BOUSS-WMH 

model improve its capacity to reproduce in a more 

realistic way phenomenon involved near coastal 

zone. It permits now to manage with full absorption 

and full or partial reflection boundary conditions, 

bottom friction and wave breaking events.  

The results and comparisons with physical model 

tests data showed that: 

� The physical processes introduced were 

adequately implemented in the model; 

� The model was able to simulate correctly the 

wave propagation and most of the wave 

transformations present; 

� There is a very good agreement with measured 

data. 

In sum it can be concluded that BOUSS-WMH 

model is a powerful tool to characterize wave fields 

in near shore areas and more importantly with 

complex harbor geometries. 
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