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Abstract: - Computer simulation of liquid fuel jet injection into heated atmosphere of combustion chamber, 

mixture formation, ignition and combustion need adequate modeling of evaporation, which is extremely 

important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Combustion of most 

widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface 

of droplets turns to be one of the limiting factors of the process as well. The problems of fuel droplets 

atomization, evaporation being the key factors for heterogeneous mixtures reacting mixtures, the non-

equilibrium effects in droplets atomization and phase transitions will be taken into account in describing 

thermal and mechanical interaction of droplets with streaming flows. In the present lecture processes of non-

equilibrium evaporation of small droplets will be discussed. It will be demonstrated, that accounting for non-

equilibrium effects in evaporation for many types of widely used liquids is crucial for droplets diameters less 

than 100 microns, while the surface tension effects essentially manifest only for droplets below 0.1 micron. 

Investigating the behavior of individual droplets in a heated air flow allowed to distinguish two scenarios for 

droplet heating and evaporation. Small droplets undergo successively heating, then cooling due to heat losses 

for evaporation, and then rapid heating till the end of their life time. Larger droplets could directly be heated up 

to a critical temperature and then evaporate rapidly. Atomization of droplets interferes the heating and 

evaporation scenario. 
 

 

Key-Words: - Combustion, ignition, phase transition, heat flux, evaporation, non-equilibrium, diffusion, mathematical 

simulation  

 

1   Introduction
′′′′ 

Investigations of acute problems of heat and 

mass exchange accompanied by phase transitions need 

adequate modeling of evaporation, which is extremely 

important for small droplets and sprays [1-4]. 

Combustion of hydrocarbon fuels takes place mostly 

in a gas-phase regime. Thus, evaporation of fuel from 

the surface of droplets turns to be one of the limiting 

factors of the process [5-7]. 

Evaporation under terrestrial conditions is 

strongly influenced by gravity induced 

thermoconvective flows. Those effects mask the 

influence of non-equilibrium processes in phase 

transitions making the proper understanding of the 

phenomenon very difficult in the ground-based 

experiments. Besides, non-equilibrium effects have a 
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stronger manifestation under low gravity conditions 

for interfaces of high curvature.  

The aim of the present study is to develop a 

mathematical model for the non-equilibrium 

evaporation and to determine the applicability limits 

for the existing quasi-equilibrium models. The 

problem will be solved taking evaporation of small 

droplets as an example.  

Mathematical models for individual droplets 

evaporation incorporated in polydispersed mixtures 

modeling, are usually based on the assumptions of 

the equilibrium character of phase transitions.
5
 

Comparison of theoretical and experimental data 

shows that this assumption being undoubtedly valid 

for large droplets and flat surfaces, brings to 

essential errors for small droplets [4, 10, 11]. 
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Fig. 1. Schematic picture of diffusion flame surrounding 

fuel droplet in the atmosphere of an oxidant. 

The aim of the present study is to develop a 

mathematical model for the non-equilibrium 

evaporation of droplets and to determine the 

applicability limits for the existing quasi-equilibrium 

models. 

 

2   Mathematical model 

We regard an axis-symmetrical problem in the 

coordinate system with the center coinciding with the 

center of a droplet, the zone Wxx >  occupied by a gas 

mixture, the zone Wxx <<0  - by liquid, 

Wxx = being the phase interface. 

The system of equations for the gas mixture 

above the interface ( Wxx > ) has the form: 
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The system of equations for multi-component fluid 

( Wxx <<0 ) looks as follows: 
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where ρ is density of the mixture; v - velocity; iY  - 

mass concentration of the i-th component; im  - its 

molar mass; iD  - diffusion coefficient; λ  - heat 

conductivity; T - temperature; ∑
=

==
N

i

ipip TYcTch
1

 

- specific enthalpy of the mixture; pic  - specific heat 

capacity of the component at constant pressure; k 

=0,1,2 correspond to the cases of plane, cylindrical 

and spherical symmetry respectively. The specific 

volume for fluid mixture x

N

i

ii VLY ∆+= ∑
=1

1 ρρ⌢ , 

and the specific enthalpy is xi

N

i

i hLYhh ∆+=∑
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⌢
, 

where xx hLVL ∆∆ ,  are specific extra volume and 

extra enthalpy for the solution. 

The boundary conditions at phase interface 

Wxx = are: 
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where subscripts g,l denote the values of parameters 

in gas and liquid phases respectively; Lih is the 

specific enthalpy of phase transition. The modified 

Hertz-Knudsen equation for non-equilibrium 

evaporation will serve as an additional boundary 

condition: 
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where iX is the molar concentration of the i-th 

component; ip is the partial pressure of the i-th 

component above the interface; iδ is the 

accommodation coefficient; )( Wi Tp∗
 is the 

equilibrium vapor pressure for the i-th component at 

a temperature WT , which could be determined from 

the Clausius-Clapeyron equation or its simplified 

solutions: 
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The boundary conditions at infinity ( ∞→x ) 

are the following: 

NiYYTT ieie ,...1,, === .                 (11) 

The boundary conditions in the center ( 0→x ) 

are: 
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To solve the system (1)-(7) along with the 

boundary conditions  (11)-(12) one needs to pose 

initial distributions for temperature and concentrations, 

which would not contradict the boundary conditions. 

The sensitivity of results on non-equilibrium 

evaporation to variation of droplets radii and other 

parameters [11] brought us to the necessity to search 

for a universal dimensionless parameter, which could 

characterize the deviation of the evaporation process 

from an equilibrium one. To obtain an analytical 

solution we regard the simplified problem of a steady-

state evaporation of a single droplet under non-

equilibrium conditions. 

 

3   Steady-state solution for non-

equilibrium evaporation 

Regard the steady-state problem of non-

equilibrium evaporation of uni-component uniformly 

heated liquid droplet of a constant radius. The 

governing system of equations takes the form: 
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=∆ for the non-equilibrium 

model of phase transitions, and 0=∆ ip  - for an 

equilibrium one. The boundary conditions at infinity 

( ∞→x ) take the form: 

NiYYTT ieie ,...,1,, === .             (23) 

As it follows from the equation (13) and the 

boundary condition (18) the following integral is 

valid within the gas phase: 
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The equation (15) could be converted into the 

following form 
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which shows that for gases ( 1/ ≈= λρ piii cDLe ) 

the last term in the right hand side of the equation 

could be neglected. 

On introducing the following dimensionless 

variables  
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the system of equations (14), (15) takes the form: 
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Due to our derivations the deviation of the 

process from the equilibrium one could be 

characterized by a dimensionless parameter NI . 

The boundary conditions at infinity ( ∞→z ) 

are: 
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.,...,1,,1 NiYieih === χχ          (31) 

Introducing a new variable 
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The solution of (33) is the following: 
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where jj BA , can be determined from the boundary 

conditions.  
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Substituting (35) into the boundary condition (29) one 

obtains the equation determining the dimensionless 

evaporation rate Wξ  or the Peclet number Pe: 
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The last expression for the phase equilibrium function 

could be also substituted by the data from the tables on 

the thermophysical properties of substances [13]. 

The solutions (34) providing flow parameters 

distribution around evaporating droplet then take the 

form: 
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where Wξ  could be obtained from solution (35), (36). 

To determine the )(zξ  function analytically one could 

assume that ρρ /constD = , which could be a good 

approximation for constant pressure problems [6]. 

Then the equalities are valid 
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which neglecting the γ  variation in space provide 

the following formula 
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Formula (37) allows to express Peclet number in the 

following way 
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which being substituted into (32) provides an 

equation: 
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Substituting the solution )(ξχh  and integrating the 

equation (38) one obtains analytical formula 

providing the link between z and ξ  : 
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The set of equations (35), (36) allows to 

determine the unknown Peclet number in non-

equilibrium phase transitions as a function of the 

following parameters: 
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The first six of them characterize the media and the 

boundary conditions. The seventh parameter 

NI characterizes the deviation of the system from the 

equilibrium state. The value NI is zero for the case 

of equilibrium, and it grows remaining 

positive( 0>NI ) with the increase of the deviation 

from the equilibrium. 

 

 

4   The role of non-equilibrium effects 

To investigate the influence of non-equilibrium 

effects in phase transitions Peclet numbers for 

droplets evaporation were determined for different 

values of NI parameter (Fig.1). The values of the 

other governing parameters were assumed to be the 

following 
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The Fig. 1 gives the plots of Peclet numbers, 

obtained within the frames of non-equilibrium 

( nePe ) and quasi-equilibrium ( eqPe ) models. The 
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value of Peδ  is also plotted in Fig. 2 to characterize 

the relative deviation of Peclet number from its 

equilibrium value ( eqeqne PePePePe /)( −=δ ). The 

Peclet number for non-equilibrium evaporation could 

be determined by the formula 
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wherein the value of the factorS −Ψ  as a function of 

NI  parameter for the chosen values of other governing 

parameters is shown in Fig. 2a. The equilibrium Peclet 

number as obtained from the quasi-steady solution has 

the following form: 
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The results of comparison of non-equilibrium 

and quasi-equilibrium Peclet numbers for droplet 

evaporation show that the rate of evaporation strongly 

depends on the value of the parameter NI . On 

increasing NI  Peclet number decreases rapidly as 

compared with the equilibrium evaporation; the 

deviations of the evaporation rates from those 

predicted by the equilibrium model turn to be larger 

and larger. For NI <1 the divergence of equilibrium 

and non-equilibrium solutions Peδ  does not exceed 

4%, for NI =10 the deviations increases up to 25%, for 

NI >100 the deviation surpasses an order of magnitude. 

Thus in order to have adequate estimates for small 

droplets evaporation rate one needs to use the non-

equilibrium model for NI >1. 

To have adequate data for small droplets 

( 1>NI ) evaporation rates it is necessary to use the 

non-equilibrium model. 

 

 
Fig. 2a. Peclet number variation versus IN parameter for 

equilibrium and non-equilibrium evaporation. 

 
Fig. 2b. Droplet dimensionless radius variation versus 

time for different initial values of INe parameter 

characterizing deviation of the system from the 

equilibrium. 

 

To obtain an analytical formula for 

dimensionless evaporation rate Wξ  let us assume 

that it is a small value 10 <<ξ , which means that 

(Pe << 1). Then for the two component mixture 

( 2N =  - evaporating component, 1i =  - inert 

component) one obtains the following formula: 
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The last formula can be essentially simplified 

on assuming the absence of fluid vapor at 

infinity 02 =eY : 
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The above formulas testify that the increase of 

parameter NI  brings to a decrease of dimensionless 

evaporation rate. 

The results of theoretical and numerical 

analysis show that in order to have adequate data for 
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evaporation rates of small droplets ( 1>NI )it is 

necessary to use the non-equilibrium model. 

 

5  Quasi-steady solution for a single 

droplet evaporation 

Investigations of unsteady-state droplet 

evaporation show that for small droplets flow 

parameters in gas phase reach their quasi-steady values 

very quickly. Thus the quasi-steady approximation 

regarding droplet evaporation could be used, which 

means that its radius decreases in time much slower 

than gas flow parameters come to a steady state. Thus 

it is assumed, that the rate of droplet evaporation for 

each time moment could be determined based on the 

obtained steady non-equilibrium solution. Then the 

decrease of the droplet radius can be determined by the 

following formula: 
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equation (41) takes the form 
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where 0Wx is the initial radius, 0t is the characteristic 

time for droplet evaporation under equilibrium 

conditions.  
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characterizing initial deviation of the system from an 

equilibrium state. Increasing the initial deviation from 

the equilibrium brings to a decrease of the slope of the 

curve and increases the actual time for droplet 

evaporation. 

 

 

6  Droplet evaporation in a streaming 

flow 

Droplets in quiescent gas could be observed only in 

microgravity and investigation of their evaporation is 

performed to obtain material and kinetic data. Under 

normal gravity condition on evaporating in a heated 

atmosphere droplet generates a cooler environment 

due to energy consumption for evaporation. Thus 

thermo-convective induced flows are possible. The 

effect of thermal convection is essential as long as 

arM number is larger then unity 

arM 1evap convt t= > . This number for evaporating 

droplet could be evaluated as 

3
0

arM
( )

L
evap conv

pe e W

gr h
t t

Dc T T
= =

−
. For small 

droplets arM number could be less then unity, and 

thermal convection is no longer essential. Another 

case is streaming flows, which are characterized by 

presence of velocity difference between gas and 

droplet. 

The momentum equation for a single droplet motion 

in the gas flow has the following form 

d

du
m mg p f
dt

φ= − ⋅∇ +
�

��
,   

dr
u

dt
=
�
�

, (44) 

where the drag force could be expressed as 

follows: 

( )
2

2 4

d
d g

C d
f v u v u

π
ρ= − −

� � � � �
,  (45) 

the drag coefficient being the function of 

Reynolds number [5] 

24 4, 4
0, 42

Re Re
dC Kβ

 
= + + ⋅ 
 

, (46) 

Re
v u dρ
µ
−

=
� �

,  (47) 

2
s s

ρ ρ
β

ρ ρ
 

= − 
 

,   

4 /5

s

T
K

T

 
=  
 

, where 

1/( 1)

2

1/( 1)
2 2

2 2

1
1 ,                                             1;

2

( 1) 1 ( 1) 2
1 ,   1.

( 1) 2 2 2 ( 1)

s

M M

M M
M

M M

γ

γ

γ

ρ
ρ γ γ γ

γ γ γ

−

−

 − + < 
 

=
 + − − + + ⋅ ≥  − + − − 

  (48) 

Gravity induced streaming flows could exist for 

rather long time, while in the absence of gravity the 

characteristic time for the streaming flow being 

essential is the function of droplet initial diameter 

and relative gas velocity. It could be estimated by 

the following formula  

0

0

v

a
τ = , where 0

0

( 0)df t
a

m

=
= . (49) 

The energy equation for a droplet has the 

following form 

s

de
m q Q
dt

= + , where 
0

vs s fe c T h= + . (50) 

The energy of phase transitions could be 

determined by the formula: 
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s L

dm
Q h

dt
= ,   (51) 

where Lh  is the latent heat of evaporation. Heat flux to 

a single droplet from the surrounding gas flow is 

determined as follows [5] 

( )
( )2

Nu ,                  Re 1000;

St ,    Re 1000.

s

r w

d T T
q

d v u H H

π λ

π ρ

 ⋅ ⋅ − <
= 

− ⋅ ⋅ − ≥
� �  (52) 

where 

2 /3 1/3Nu 2 0,16 Re Pr= + ⋅ ⋅ ,   
2/3St Pr

2

dC −= , (53) 

On reaching by the droplet temperature the boiling 

value the evaporation rate is determined by a simple 

formula 

L

dm q

dt h
= − ,   bT T= .  (54) 

Else the non-equilibrium evaporation model is 

used to determine the evaporation rate 

1
Nu log

1

e

w

Y
m d D

Y
π ρ

 −
= ⋅ ⋅ ⋅  − 
ɺ , (55) 

( )
0

2

0

21 1
exp

sN b
w

b s e

RTW P H
Y m

Wp R T P T pd

π
πδ

  
= − −      

ɺ .(56) 

The dynamic interaction of liquid droplets with the 

gaseous flow could bring to instability of the interface 

and atomization of droplets. The criterion for liquid 

droplets instability is that of the critical Weber number 

[17]: 
σ

ρ dvrel
2

=We , where σ  is the surface tension at 

the interface, relv  is relative velocity of a droplet 

versus gas. On exceeding the critical value of the 

Weber number droplets breakup due to vibrational 

instability takes place. On essentially surpassing the 

critical Weber number other mechanisms start playing 

essential roles in the breakup process that brings to 

formation of fine mist. These main characteristics of 

the atomization process could be taken into account by 

approximate formula [16, 18] determining mean 

diameters of droplets da originating in breakups of 

initial droplets (diameter d). 




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



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
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>

≤≤
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***
*
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3
1

2

WeWe

WeWeWe
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We

WeWe

d

d

n
d

da

π
α

          (57) 

where n is the number of droplets per volume unit, α2  

– volumetric fraction of the droplet phase, the critical 

Weber numbers are determined as follows: 

0.8

* **12(1 ), 350−= + =We Lp We ,           (58) 

where the Laplace number 
2

c

cd
Lp

µ
σρ

= , cρ , cµ  - 

liquid density and viscosity. 

To determine the mean diameter of droplets *d  

after the breakup of a type of an explosion 

( **WeWe > ) one needs to evaluate the part of the 

accumulated by a droplet elastic energy spent for the 

breakup. The assumption, that the breakup energy 

was spent for the formation of new free surface [19] 

makes it possible to evaluate the number N and the 

mean diameter *d  of the formed droplets: 

2

*
*

3

2

*

1

  ;1

d

E

d
d

d

E
N

σπ
σπ +

=






 += .         (59) 

The breakup energy could be evaluated as the 

difference between the work of the drag forces 

separating small droplets from the initial one, and 

the kinetic energy of fragments’ scattering: 

∑
=

∗−=
*

1

2

*
2

N

i

ii
drag

vm
AE .                 (60) 

Assuming that the initial droplet is split into *N  

equal droplets (
3

*

3

*
d

d
N = ) having equal velocities of 

radial expansion of the cloud *v  and the separation 

of droplets takes place after the droplet is moved 

away at a distance ~ *d , one obtains the following 

formulas: 

*

2

*

2

*
8

1
ddvCNA relddrag πρ= ;
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ρρ

d
vvC

d
d

creld 





 −+

=
2

*

2
*

3

1

2

1

4

1
1

.     (61) 

The mean velocity of the cloud expansion *v  could 

be evaluated based on the condition of matching the 

two formulas for d∗  at **WeWe = . The reason to 

perform that matching is that both formulas for 

breakup regimes were obtained from experiments, 

thus, indirectly the expansion of the cloud of 

droplets after the breakup should have been taken 

into account. On the other hand, the dependence of 

characteristic droplets diameters on the Weber 

number should be continuous. Then, finally one 

obtains 

*****

*
*

)(
8

1
WeWeWeWe

We

+−
=

dC

d
d .    (62) 

In modeling droplets breakup in a gas flow the 

inertia of the process should be taken into account. 
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Fragmentation does not take place instantaneously: it 

needs time for small droplets to separate from the 

initial one, i. e. it needs a definite time for the liquid 

bridges between the droplets to be established, 

elongated and broken [40]. The first order estimate of 

the breakup time gives the following formula: 



















−+=

*

*
*

4
1

8

3
1

WeWe

We

dc

d

rel C
C

v

d
t

ρ
ρ

.    (63) 

 

The problem of droplet interaction with the 

streaming gas flow was investigated taking into 

account mechanical drag, atomization of droplets, non-

equilibrium heat and mass transfer. A series of model 

problems was regarded, in which gas flow and droplet 

initially had different relative velocities and 

temperatures, and then relaxation took place. Those 

model problems are similar to that encountered in 

shock wave initiation of detonation in combustible 

dispersed fuel-air mixtures. The two-phase flow 

becomes strongly non-equilibrium behind the shock 

wave, because due to mechanical inertia droplets keep 

their speed practically constant and gas accelerates on 

passing the shock wave. Besides, due to thermal inertia, 

temperature inside droplets practically does not change, 

while gas temperature increases instantaneously 

behind the shock wave. Due to that reason gas 

temperature in all the numerical experiments was 

assumed to be higher than the boiling temperature for 

liquid droplets. 

The thermophysical properties for gas and 

droplets were assumed similar for all numerical 

experiments: ambient pressure 1,013p =  bar, 

temperature 1000T = K, gaseous phase – air, liquid – 

n-decane (C10H22 ). Initial droplet temperature was 

assumed to be 300T = K. 

 

Fig. 3. Velocity relaxation versus time for droplets of 

different diameters. 0 50 /V m s= , taking into account 

atomization. 

 
Fig. 4. Mean droplet temperature variation versus time for 

droplets of different initial diameters. 0 50 /V m s=  

The relaxation processes for droplets of 

different diameters were regarded. Numbered lines 

on the successive figures correspond to the 

following initial diameters of droplets (curves 

1(1µm), 2(5µm), 3(10µm), 4(50µm), 5(100µm), 

6(500µm), 7(1000µm)). 

Figs. 3-6 illustrate parameters of droplets 

variation in the process of mechanical and thermal 

relaxation for the set of numerical experiments 

assuming initial velocity difference to be equal to 50 

m/s. Fig. 3 illustrates velocity relaxation. It is seen 

that on decreasing initial droplet radius the 

relaxation process turns to be faster. The decrease of 

the relaxation time is monotonous. Some curves 

begin lower than 50 m/s because the relaxation 

process is too fast for small droplets, and the time 

scale on the x-axis is logarithmic beginning from a 

definite small value. 

 
Fig. 5. Droplet diameter variation versus time. 

0 50 /V m s=  

Fig. 4 illustrates droplet temperature variation 

versus time for droplets of different initial diameters.  
The dynamics of droplet heating is the 

following. For small droplets (curves 1(1µm), 2(5 
µm), 3(10 µm), 4(50 µm)) in the very beginning the 
temperature increases due to external heating. On 
rapid decrease of droplet relative velocity 
evaporation in the stream of gas brings to a decrease 
of temperature. Then on decreasing droplet radius 
heat fluxes growth brings to an increase of 
temperature until the droplet disappears. The first 
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increase of temperature is higher for larger droplets, 
which relative velocity decreases much slower than for 
small droplets (curves 5(100 µm), 6(500 µm), 7(1000 
µm)). Large droplets follow different scenario: The 
first increase of their temperature goes as high as up to 
the critical value. Then evaporation takes place at a 
critical temperature very rapidly. Arrows with numbers 
in Fig. 4 and 6 indicate the end of droplet life time. 
That is the reason for a larger droplet (curves 5, 6, 7 in 
Figs. 4 and 6) to have a shorter life time.  

Fig. 5 illustrates droplet diameter variation due 

to evaporation. It is seen from the figure that 

evaporation time increases with the increase of initial 

droplet diameter, but the increase does not take place 

monotonously: the increase of life time (curves 1, 2, 3, 

4) changes for a decrease (curves 4, 5) and then comes 

back to an increase (curves 5, 6, 7). That testifies the 

effect of manifestation of different mechanisms 

depending on the characteristic size of droplets. The 

first rapid decrease of droplet radius (curves 6, 7 in Fig. 

5) is due to atomization of large droplets.The breakup 

of large droplets (Fig. 5) brings to the conditions that 

behavior of droplets of initial diameter 500 microns 

and 1000 microns looks absolutely similar after some 

time necessary for atomization to proceed. 
Fig.6 presents the results for droplet temperature 

variation versus normalized time /t τ  (49), i.e. in the 
relative time scale characterizing each droplet. As it is 
seen from the figure all maxima and minima of 
temperature correspond to nearly the same normalized 
time moments independently on initial droplet radius. 
The difference between the two scenarios for droplet 
behavior in the stream of heated air could be clearly 
distinguished from this figure. 

 

Fig. 6. Mean droplet temperature variation versus 

normalized time for droplets of different diameters. 

0 50 /V m s= , taking into account atomization. 

 

Fig. 7. Velocity relaxation versus time for droplets of 

different diameters. 0 100 /V m s= , taking into account 

atomization. 

Figs. 7 - 9 present the results of similar 

numerical experiments, but for higher initial relative 

velocity: 0 100 /V m s= . Two different scenario for 

droplet behavior could be distinguished as well. But 

for the higher relative velocity smaller droplets 

already reach critical temperature during the first 

temperature increase (Fig. 9). Thus curve 4 belongs 

already to the second group of curves, which 

corresponds to the second scenario of droplet heating 

and evaporation. Fragmentation is more essential for 

higher relative velocity: curves 4, 5, 6, 7 converge in 

time due to equalizing of droplet radii in 

fragmentation (Fig. 9). 

 

Fig. 8. Droplet diameter variation versus time for droplets 

of different diameters. 0 100 /V m s= , taking into 

account atomization. 
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Fig. 9. Mean droplet temperature variation versus time for 

droplets of different diameters. 0 100 /V m s= , taking into 

account atomization. 

 
Fig. 10. Droplet diameter variation versus time for droplets 

of different initial diameters. 0 50 /V m s= , atomization 

not taken into account. 

Atomization of droplets changes droplet lifetime 

and evaporation scenario for large droplets. Figs. 10-

11 illustrate droplet diameter variation for droplets of 

different initial size in interaction with streaming flow 

not accounting for atomization.  Comparison with Figs. 

5 and 8 representing results with account of 

atomization clearly demonstrates the effect.  

 

Fig. 11. Droplet diameter variation versus time for 

droplets of different diameters. 0 100 /V m s= , 

atomization not taken into account. 

 

7 Droplet cloud combustion modeling. 

To investigate the cloud slowing down, heating of 

particles and surrounding atmosphere, atomization of 

droplets and shock wave formation due to the 

transformation of the kinetic energy of the cloud into 

thermal and kinetic energy of the surrounding gas it is 

necessary to apply the models for multiphase media 

accounting for the two-way coupling effects for fragments 

and gas, thermochemical and mechanical destruction of 

fragments. 

Mathematical models for the non-equilibrium 

polydispersed mixture flows and breakup of 

pressurized vessels in non-uniform internal loading 

are described in details in the papers [19, 20]. 

The cloud of small droplets injected into the 

chamber slows down very rapidly due to the drag 

forces. The deceleration for fragments is 

proportional to 1/r0 and grows up with the decrease 

of a characteristic size r0. The velocity variation 

versus distance could be estimated by formula: 

0

0

3
exp( )

8
rel rel d

c

x
v v C

r

ρ
ρ

= −  (60) 

It is seen from (60) that on decreasing droplet 

size the slowing down distance also decreases. Since 

droplet cloud incorporates a variety of droplets 

having different size and speed its evolution could 

bring to a peculiar non-uniform pattern of droplets 

distribution within the combustion chamber. 

On slowing down the cloud its kinetic energy 

is converted into the internal energy of the 

surrounding gas. Droplets are being heated and 

evaporate. Thus mixture formation takes place. 

Numerical modeling of jet injection into a 

gas-filled cylindrical containment from the wall 

along the axis was performed based on the 

developed mathematical models [16, 19]. A 

cylindrical containment of 0.1 m radius and 0.2 m 

height was regarded. A cloud of small droplets, 

characterized by the average diameter 0.3 mm and 

stochastic deviations 0.05 mm was injected from left 

bottom along the axis. The fragments initial 

temperature was 400 K with stochastic deviations 

± 10 K; maximal velocity in the axial direction was 

assumed to be 20 m/s, average velocity 15 m/s with 

stochastic deviations 5 m/s both in axial and radial 

directions. The average density of liquid was 

assumed as 1000cρ =  kg/m
3
, viscosity and surface 

tension in the liquid 10
-3

 Ns and 10
-2

 N/m 

respectively. The gas pressure inside the 

containment was varied from 0.01 MPa up to 1.5 
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MPa, initial temperature T0 = 700 K, molar mass 0.028 

kg/mol.  

 
Fig. 12. Model particles location for droplet 

cloud injection into the chamber with low gas pressure 

p0 = 0.01 MPa (0.1 atm). 

 
Fig. 13. Successive stage for droplet cloud 

injection into the chamber with low gas pressure p0 = 

0.01 MPa (0.1 atm). 

 
Fig. 14. Model particles location for droplet 

cloud injection into the chamber with high gas 

pressure p0 = 1 MPa (10 atm). 

 

 
Fig. 15. Successive stage for droplet cloud 

injection into the chamber with high gas pressure  

p0 = 1 MPa (10 atm). 

 

 
Fig. 16. Final stage for droplet cloud injection 

into the chamber with high gas pressure  

p0 = 1 MPa (10 atm). 

 

Figs. 12 and 13 show the model particles 

location for the two successive times. The initial 

pressure of gas inside the containment was rather 

low: p0 = 0.01 MPa (0.1 atm). The size of circles 

showing model particles is much larger than their 

real size, but directly proportional to it. The intensity 

of color reflects particles temperature.  

Figs. 14, 15 and 16 illustrate the model 

particles locations for the case of a relatively high 

gas pressure inside the containment (p0 = 1 MPa (10 

atm)). The aerodynamic drag is much more essential 

for the present case. On entering the containment 

fragmentation of liquid droplets due to their 

interaction with the atmosphere brings to a formation 

of very fine droplets in the front part of the cloud 

(Fig. 14). The droplets, representing smaller 

fragments, are illustrated by dots in Fig. 14. 

Nevertheless, the major mass of the cloud is 

represented by those dots, and only a smaller number 

of low velocity particles keep its initial size. 

The small droplets slow down very rapidly 

and loose their kinetic energy much faster then the 

large ones. thus the large fragments, that had initially 

much lower velocity, come to overtake the small 

ones (Figs. 15, 16). 
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Numerical investigations of detonation initiation 

in dispersed hydrocarbon fuel - air mixtures after mild 

ignition via DDT and by shock waves of different 

intensities were performed. The vessel was 0.5 m long 

and 0.05m diameter. The aerosol occupied the 

cylindrical coaxial zone beginning from 0.1 m along 

the axis its diameter being equal to 0.015 m. The flow 

was assumed to have the following initial turbulence 

characteristics: energy k = 0.1 J/kg, the mixing length l 

= 0.01m, mean velocity 0u = , initial temperature 300 

K. The number of model particles used in calculations 

was 20000. Validation of numerical scheme was 

performed based on comparing the obtained results of 

numerical simulations for the detonation wave 

velocities in dispersed mixtures with available 

experimental data [16]. To simulate hydrocarbons the 

following parameters were taken: ρ = 850 kg/m
3
; ∆H = 

43 MJ/kg; hL = 200 kJ/kg; W = 140 kg/kmol. The 

share of water in hydrocarbon decomposition was 

assumed to be ζ= 0.2. The mean droplets diameter was 

assumed 100 µm, minimal diameter − 10 µm, maximal 

− 200 µm. The droplets size distribution function was 

assumed to be a triangular one. The initial droplets 

density was varied from 5 to 20 kg/m
3
.  

The results of simulations show that for 

different fuel concentration and intensity of shock 

wave initiation different scenarios of the process are 

possible. There could be formed a combustion wave 

lagging behind attenuating shock. There could be onset 

of detonation, or galloping detonation in the dispersed 

layer. For high average density of fuel droplets within 

the layer combustion does not take place inside layer, 

where pressure is maximal, however high speed 

detonation type process onset on the periphery is 

observed supported by the piston effect due to induced 

vapor combustion in the zones within the 

concentration limits. 

 a 

b 

 c 

d 

Fig. 17. Hydrocarbon concentration for successive times 

of shock wave propagation in dispersed mixture (a, b - 

initial fuel density 5 kg/m
3
; c, d - initial fuel density 20 

kg/m
3
). 

 a 

b 

 
c 

d 

Fig. 18. Temperature maps (K) for successive stages of 

shock wave propagation in dispersed mixture (a, b - initial 

fuel density 5 kg/m
3
; c, d - initial fuel density 20 kg/m

3
). 

Thus the results illustrate the fact, that increase of 

droplet concentration above definite value inhibits 

the onset of detonation in dispersed mixtures and 

gives birth to a detonation mode typical for non-

premixed systems.  

 

  Conclusions 

It was demonstrated that non-equilibrium 

models more adequately describe final stages of 

droplet evaporation. Those models are free from the 

common drawbacks of all quasi-equilibrium models, 

because non-equilibrium approach allows to avoid 

non-physical growth of the evaporation rate on 

decreasing droplet radius. 

Accounting for non-equilibrium effects 

produces an influence on the integral characteristics 
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of droplet evaporation process. The lifetime for single 

evaporating droplet could be several times longer 

under non-equilibrium conditions as compared with 

equilibrium ones. 

Investigating the behavior of individual droplets 

in a heated air flow allowed distinguish two scenarios 

for droplet heating and evaporation. Small droplets 

undergo successively heating, then cooling due to heat 

losses for evaporation, and then rapid heating till the 

end of their life time. Larger droplets could directly be 

heated up to a critical temperature and then evaporate 

rapidly. Atomization affects droplet life time. 

Investigation of poly-dispersed multi-velocity 

droplet cloud injection into the heated atmosphere of a 

combustion chamber showed that flow scenario 

essentially depends on gas state (pressure and 

temperature) inside the chamber. The fastest droplets 

undergo fragmentation and slow down rapidly, while 

the slowest droplets remain big and overtake small 

ones. This droplet size separation effect manifests 

stronger for the case of higher gas density inside the 

chamber.  

Increase of droplet concentration above definite 

value inhibits the onset of detonation in dispersed 

mixtures and gives birth to a detonation mode typical 

for non-premixed systems.  
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