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Abstract. - The numerical algorithm for the decision of non-stationary two-dimensional problems of dynamics 

of compressible multi phase media is developed on the base of the method of particles in cells. With the purpose of 

elimination of non-physical fluctuations of the numerical decision inherent in methods of this type, there are 

offered method of integration of the equation of mass conservation and procedure of determination of pressure in 

nodes of numerical grid. On the base of algorithm some examples of modeling were executed: propagation of gas 

detonation with cellular structure in tube, explosion in a planet interiors and bubble detonation.  
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1 Introduction. 
  A Harlow method of particles in cells 

described in [1], was an ancestor of group of methods, 

in which continuous medium is represented as 

Lagrangian particles moving on motionless in space 

Eulerian grid. Such approach has a number of 

advantages in comparison with pure Lagrangian or 

pure Eulerian mode of flow description. In particular, 

within the framework of the method flows with large 

deformations accompanied by a number of contact 

and free surfaces. All-round research of properties of 

the method of particles in cells, description of its 

advantages and lacks are made in [2, 3]. 

Method GAP (grid and particles) [4] also belongs 

to group of methods of particles in cells. Its distinctive 

feature is that in number of parameters describing a 

particle, besides its mass and coordinates, an internal 

energy of particle, its volume and velocity are 

included. It has allowed carrying out integration of 

system of the equations of gas dynamics for 

Lagrangian particle, using Eulerian a grid for storage 

of space average meanings of density, internal energy 

and pressure. 

Some lacks are inherent in these methods. In 

particular, not physical fluctuations occur because of 

the mode of density computations. The method of 

large particle [5] is a further development of Harlow 

method, when the flow into a numerical cell 

corresponds to a singular particle with its subsequent 

deformation and variations of parameter values. The 

method allows getting a qualitative picture of the 

processes. Then the method of individual particles [6] 

appears which deals with multy phase high velocity 

flows. The basic idea of the method is that the system 

of the equations in partial derivatives, describing the 

compressible flow, is numerically integrated for each 

particle. For the determination of the values of space 

derivatives in particles the rectangular Eulerian grid is 

used, in which the meanings of components of tension 

tensor and velocity vector from the nodes of irregular 

Lagrangian grid are interpolated. The nodes of 

irregular Lagrangian are the centers of particles. After 

calculation of spatial derivatives in nodes of Eulerian 

grid, their interpolation in particles is carried out. 

These derivatives are used for computation of new 

values of particle parameters - its coordinates, 

velocity, density and internal energy.  

The present paper is devoted to modification of the 

method of individual particles for the problems with 

chemical reactions. 

 

 

2 Problem Formulation 
1. In a numerical field according to the initial data 

the bodies are placed which are broken into separate 

particles. Each particle represents individual volume 

(that is a volume, consisting from the same molecules 

of medium) and is also characterized by the following 
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parameters: М - mass, z and r - coordinates of its 

centre, u and v – velocity components of the centre in 

directions z and r accordingly, ρ- density, Е - specific 

internal energy, р - pressure. 

For each particle the system of gas dynamics 

equations is integrated.  

The basic equations are based on laws of 

conservation of mass, pulse and energy for 

two-dimensional non-stationary flow of the 

compressible medium without taking into account 

effects of dissipation: 
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 (1) 

Here S = 0 for plane and S = 1 for axial symmetry 

(z is axis of symmetry) respectively, t- time, µ- mean 

molecular mass of gas, Y - the period of the induction, 

at the beginning of the induction zone Y = 1 and at the 

end Y = 0; µ is the mean molecular mass of gas; Wµ 

and WY - velocities of change of µ and Y, respectively; 

Qz, Qr – components of the vector of outward mass 

forces. 

The propagation of shock and detonation waves 

through chemically active gas was modeled in the 

paper. Therefore for the description of possible 

chemical reactions the two-stage model of chemical 

kinetics was used [7], when chemical reactions occur 

at the point of the flow after a chemical ignition delay 

time tig, counted after the passage of a leading shock 

wave front. 

If 1 > Y > 0, then 
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After the expiration of the delay Y = 0, then 

,0=YW   (3) 

and Wµ is defined according to the model: 
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Here µmax - molecular mass of gas in a recombined 

state, T - temperature of gas, R - a universal gas 

constant, θ is the effective temperature of excitation of 

oscillatory degrees of freedom; K+, A2 - constants. For 

internal energy of gas the caloric equation of state is 

valid: 
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Where µa is molecular mass of gas in an atomic 

state. 

  The system of basic equations becomes is 

completed by the thermal equation of a state of ideal 

gas: 

µρ
RTp

=   (6) 

 

 

3 Problem Solution 
The process of calculation of spatial derivative 

meanings in particles for system (1) - (6), is separated 

into three stages (further description of a method we 

shall conduct for a uniform grid with square cells). 

First stage is interpolation "particles - grid". 
The interpolation can be made by various ways, for 

example by "weighing" by areas 
ij

NS (fig. 1)  
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Where the indexes i, j concern to numerical cell 

node (i; j), index N - to a particle with number N, A = 

(ρ, u, v, Y, µ). The summation is made on all particles 

located in four cells, for which unit (i, j) is common. 

In fig. 1 crosses and circles are the centers of particles 

of two classes. The dotted line shows splitting of a 
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cell into the areas, proportional to which the 

interpolation of parameters in nodes of a cell 

(containing the centre of a particle) is carried out. The 

interpolation can be made in another way as well, 

supplying higher order of accuracy. 

In parallel with interpolation "particles - grid" each 

particle in nodes of Eulerian grid leaves the 

information on number of substance, to which it 

belongs. From fig. 2 it is clear, how such marking of 

nodes is carried out. Here dotted line designates 

contact border between two bodies and their common 

free surface. At the second stage the statement of 

boundary conditions on Eulerian grid (described in 

detail later in the paper) is carried out. 

The third stage is interpolation "grid - 

particle". In nodes of Eulerian grid, necessary for 

integration of system (1) - (7), spatial derivatives are 

calculated by that or other mode. The good results are 

achieved if approximation of spatial derivative in 

internal nodes is executed by the central differences. 

For example derivative on coordinate z is:  
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In boundary nodes the unilateral differences are 

used, except for derivative of pressure in nodes on 

contact border, in which differences are central. The 

values of derivative in particles are determined by 

interpolation from nodes of a grid: 
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The summation is spent on nodes of a cell, in 

which there is a centre of a particle. Here 
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derivative value in particles, 
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are derivative 

values in grid nodes, h is a step of a grid.  

The received in such a way meanings of spatial 

derivative in a particle are used for calculation of the 

next time step by following finite difference scheme:  
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The following designations are accepted here: 
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where k is number of a time step, ∆t is step of 

integration on time, 
−

p  represents the sum of 

hydrostatic pressure and linear artificial viscosity. 

  We shall note that at the calculation of the 

component of particle velocity U
k

N

1+
and V

k

N

1+
, in the 

right hand part of the appropriate formulas there are 

not old meanings of velocity but intermediate values 

−
U

k

N

and 
−
V

k

N

, obtained from meanings of grid 

velocities by interpolation in a particle under the 

formula similar to (7). From a condition of 

conservation of full energy of a particle, the value of 

its specific internal energy in this case is corrected: 
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Full energy and pulse of system of particles do not 

change thus 

Such procedure of "smoothing" of velocity of a 

particle is expedient for applying through 5-10 steps 

on time to increase of the decision monotony. The 

smoothing on each step results in increase of a shock 

wave spreading on 2-3 cells. At calculation of a step 

on time without smoothing, the values 
U

k

N

, 
V

k

N

 and 
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E

k

N

 (determined in a particle) are used in scheme (8) 

instead of intermediate values 
−

U

k

N

, 
−
V

k

N

and 
−
E

k

N

.  

The scheme (8) is not conservative, has the first 

order of approximation on time and on space. The 

stability of one-dimensional variant of the scheme for 

the equation of state p = p(ρ) is investigated in linear 

approximation for two cases of arrangement of 

particles. The conditions of stability look as follows: 

а) The particles are located in nodes of a grid 

at BkВ ≤≤ :2 ,  

at 
4

4
:2

2 −+
≤>

BB
kВ ; 

б) The particles are located at the centers of cells at 

BkВ ≤≤ :3,2 ,  

at ( )489,094,026,1

8
:3,2

2 −⋅+⋅
≤>

BB
kВ ; 

Here B is a factor of linear artificial viscosity q, 

determined by ratio 
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ρ  is 

Courant number, C - velocity of a sound. It is visible, 

that the introduction of artificial viscosity in the 

scheme is necessary condition of its stability. 

As a test variant, one-dimensional problem of 

disintegration of arbitrary break in ideal gas was 

solved. Misbalance of full energy in the decision does 

not exceed value of 1 percent. The shock wave is 

smeared on 6-8 cells, contact break - on one cell. 

During the procedure of computation there can be 

a situation, when between two next particles there will 

be two (or more) emptier cells. It can take place, for 

example, in a zone of expansion or in a zone of strong 

deformations. Such particles cease "to feel" each 

other, since (according to situation, described above) 

the region of influence of each particle is limited to a 

cell, in which its centre at the fixed instant is located. 

This effect is characteristic for methods such as 

particles in cells. The simple way of its elimination is 

accommodation of large number of particles at the 

initial instant in region with prospective break of 

continuity. However this mode is too tiresome and 

insufficiently reliable since it is impossible to foresee 

always the areas with strong change of form or with 

the large expansion. It seems more rational to use the 

method of local elimination of areas of continuity 

infringement. 

For observation of local infringements of 

continuity, the vector of the form is included in 

number of parameters describing a particle. In plane 

case the particle represents rectangular parallelepiped 

of length equal to 1; in case of axial symmetry it 

represents a torus. The cross section of parallelepiped 

or torus by a plane (z, r) has the rectangular form. 

Lengthening and turn of the rectangular are set by 

components of a vector of the form. Knowing them, it 

is possible to determine orientation of a particle in a 

computational field. So, lengths of a particle sides a 

and b are connected with components of a vector of 

the form Lk and Lr by ratios: 
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M
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where parameter d has dimension of length, it is 

equal to 1 for plane and 2πrN - for axial symmetry (rN 

– r is a coordinate of a particle. The angle of a particle 

turn with respect to z axis is )/( zr LLarctg=ϕ . 

The changing of components of a vector of the 
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During a particle motion in a flow field without 

changing its rectangular form, it may: 

1) to be extended and to turn in a zone of 

deformations, 

2) to be increased in the sizes, practically not being 

extended (for example, in a rarefaction wave).  

In both cases there can be a break of continuity: in 

case 1 - in a direction of lengthening of a particle, in 

case 2 - in a direction of orientation of its sides. It is 

natural to introduce virtual particles into consideration 

("virtual" - because the parameters of these particles 

are not stored in memory of the computer), that is to 

consider, that the basic particle consists of two (in 

case1) or from four (in case 2) particles. The masses 

of such virtual particles are equal and its sum is a sum 

of the basic particle. Other their parameters coincide, 

except for coordinates. Thus, the interpolation on grid 

nodes is conducted now from not one, but two (in case 

1) or from four (in case 2) centers of virtual particles. 

The degree of continuity infringement is characterized 

by undimensional parameter η. The particle is 
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replaced with two virtual at hbha ⋅<⋅> ηη ,  and 

four at hb ⋅>η , where a is long side and b is short 

one of the basic particle. In majority of practical 

computations the value of parameter η is accepted 

equal to 1,2. With its increase the quality of 

observation of continuity infringements is worsened, 

with reduction - the time of computation grows 

because of occurrence of the large number of virtual 

particles. 

In case when the particle was extended more than 

twice or volume of a virtual particle became equal to 

one of Eulerian cell, it is useful to make «partition» of 

a particle. As a result of such operation all virtual 

particles become urgent, that is in memory of the 

computer the necessary quantity of cells is allocated. 

For example, the problem of impact of aluminum 

body with a rigid was solved. The size of body is 5х5 

mm, and the velocity is 1 mm / µs. The results of 

calculations show that in case of neglect of the form 

of particles the breaks of continuity appear with 

course of time owing to deformation, and the decision 

ceases to describe a real physical situation. The 

account of the form with introduction of virtual 

particles and their partition excludes such opportunity.  

For correct statement of boundary conditions of 

sliding and rebound on contact borders, and also on a 

free surface, at calculations of flows with not 

spherical tension tensor, it is necessary to know 

orientation of borders in space. In our method for this 

purpose the following procedure is used. The 

individual normal vector, specifying orientation of 

border, is determined for each node of Eulerian grid 

containing markers of two substances (node on 

contact border), and also for nodes, near to which 

"vacuum"nodes" are located (ones on free border). In 

the first case the normal vector is equal to the 

normalized sum of individual vectors focused from 

considered node in a direction of eight nearest nodes, 

which contain one marker of any bodies. 

In the second case the addition of vectors focused 

on nearest vacuum nodes is similarly made. Let's note, 

that node belonging simultaneously to free and 

contact borders, is considered as node on free border. 

Sometimes in calculations there is a situation, 

when among nodes nearest to one on contact border, 

there is no internal one (marked only by one marker). 

The normal vector in such node is determined with the 

help of interpolation from the nodes (next to it) 

belonging to contact border. The normal for the node 

containing markers of three and more substances is 

there as well. 

And, at last, with the purpose of increasing of 

accuracy of definition of borders orientation the 

averaging of normal in the next boundary nodes 

separately for nodes on contact and on free borders is 

spent. The usual condition of tension vector equality 

to zero is put on free border. For described gas 

dynamical variant of a method it means, that in nodes 

belonging to free border, the pressure is necessary 

equal to zero. 

Sliding of materials along contact borders is 

provided as follows. At definition of spatial 

derivative, velocities in a particle in nodes of contact 

border recalculated so that their component (normal to 

border) remains without changes, and tangential one 

becomes equal to appropriate component of a particle 

velocity: 
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Here Uij, Vij are components of velocity in node 

with index i, j, belonging to contact border, ijij VU
−−

,  

are appropriate recalculated values, Nz, Nr are the 

components of an individual normal vector in node (i; 

j), calculated on the described above algorithm, UN, 

VN  are the components of velocity in a particle with 

number N. 

At excess by dragging out tension in node on 

contact border of some critical value р*, appropriate 

node is announced as one belonging to free border. 

The value of its pressure is necessary equal to zero, 

and velocity is equal to one of a particle, considered at 

the same instant. It achieved an opportunity of 

division of materials along contact border. The choice 

of р* is arbitrary enough. As a rule, the good results 

turn out at value р* two order of magnitude smaller on 

absolute size than characteristic tensions arising in a 

flow field. 

 

 

4 Numerical decisions of some 

problems 
Consider some applications of the method for 

the solution of physical problems. 
1. Let’s consider the problem of initiation of gas 

detonation in tube with generation of cellular structure 

of detonation wave (DW).  
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The research area represents the plane channel 

with the closed left end and open right one. Width of 

the channel (diameter) L0 is variable. Length of the 

channel is supposed to be sufficient for an 

establishment of self-supported mode of a detonation 

wave. Thin flat or semispherical layer of explosive 

substance settles at the closed end of the tube. The 

other part of the tube is filled with gas mix 2H2 + O2. 

The explosion of the layer at instant t = 0 generates a 

shock wave (SW), propagating within the area. The 

walls of the channel are assumed to be rigid. The 

simulations have been executed within the framework 

of model of non-stationary two-dimensional flow of 

ideal compressible medium. The main equations of 

motion are based on the conservation laws of mass, 

pulse and energy without taking into account the 

dissipation effects (1)-(6). Some details could be 

found in [8]. Energy release in the reaction zone of 

DW was described according to two-stage model of 

chemical kinetics, using the equation for mean 

molecular mass of gas mix. The problem was solved 

numerically. 

In fig. 3 the pressure maps for 2H2+O2 gas mix are 

submitted at t > 0. More dark tones correspond here to 

higher meanings of pressure p in the range from 0,8 

bar up to 40 bar. L0=100 mm, initial radius of the 

initiator is 5mm, the energy of initiation E* = 435 

J/m, initial pressure p0 = 0,8 bar. The area 1 is gas 

before SW, area 2 is the induction zone behind SW, 

where no chemical reaction occur, body 3 is the zone 

of chemical reactions, body 4 is a gaseous products of 

initiating explosive, continuous line 5 is a front of a 

flame. At first stages the flame lags behind SW, and 

length of the induction zone grows, achieving the 

maximal size 48mm in the middle of the channel by 

instant t = 58 µs. The velocity of leading SW thus 

passes through a minimum value. For this meaning of 

energy of initiation the simulations show attenuation 

of a detonation in boundless area. The presence of 

walls changes a situation: the gas is ignited in Mach 

waves reflected from them and powerful transverse 

waves of detonation appear (cadres 3-8 in the figure). 

The last ones collide, generating the area with high 

values of pressure and temperature (body 6 in cardes 

8,9). Overdriven wave of a detonation (macrowave) 

occurs in the middle of the channel as a result of 

collision (cadre 10). For the subsequent intervals all 

stages of process repeat. At instant t = 58 µs the 

velocity of a shock wave in the middle of the channel 

is less than 1,5 km/s, and at t = 120 µs exceeds 3,5 

km/s. Thus, a pulsing mode of detonation is 

temporarily established in the channel. With course of 

time the intensity of such cross waves decreases, and 

after 4 - 7 pulsations the detonation structure is 

transformed to a usual mode with auto oscillatory 

micro-cells of detonation. The irregular cross structure 

of microwaves always occurs (more precisely, 

becomes visible) on the macrowave, as soon as 

pressure values in a vicinity of flame front decreases 

down to meanings, less than 30 bar (for example, area 

8 on the cadre 9). 

When cross macrowaves move from walls, the 

areas of not reacted gas are involved in the burned 

down gas (spots 7 in cadres 5-9), where they slowly 

burn, penetrating deep in area 3 and disappearing by 

instant t = 115 µs. The existence of such spots is 

shown experimentally. The size of spots found out in 

that experiment and caused by transverse waves 

(microwave), is comparable with the one of a 

detonation wave cell. The spots submitted in fig. 3 

appear owing to geometry of an initiating charge and 

are formed by powerful cross macrowaves, and the 

size of spots exceeds length of a detonation cell. In 

fig. 3 (cadre 8), for example, one of spot achieves 6 

mm of length. The computations show, that they occur 

in the following cases: (1) for the curved front of a 

flame interacting with a transeverse wave, (2) at the 

wall, when reflection of a shock wave occurs, (3) after 

collision of transverse waves. In the latter case they 

arise, if the waves are not too intensive (that is for 

microwaves). According to cadres 5-9 in fig. 3 the 

longitudinal velocity of a flow at the spots can be 

negative in laboratory system of coordinates because 

of waves collision (gas velocity in spots generated by 

cross microwaves remain positive, that becomes 

cleare due to their displacement in the figure). The 

number of fluctuations of the pulsing mode of 

detonation increases with reduction of the cross size 

of the channel L0, and their amplitude decreases as 

well. If L0 is comparable with the size of a detonation 

cell, the mode becomes self supported without 

pulsations with parameters appropriate to a detonation 

with cellular structure. As a whole, at a variation of L0 

the map of wave interactions and formations of not 

reacted gas spots are similar. The formation of 

detonation structures with several powerful 

fluctuations at energies of initiation close to critical, 

growth of the wave velocity up to values much 

exceeding stationary value DCJ, subsequent deep 

failures of the velocity and then exit to selfsupported 

mode is experimentally confirmed.  
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At E* = 400 J/m there is also a pulsing detonation 

mode, the minimal velocity at the centre of the 

channel achieves 1100 m/s, the front of ignition lags 

behind SW, but after several fluctuations there is an 

attenuation of the wave. The critical value of energy 

E*min = 420 J/m. With the further reduction of E* the 

ignition of gas at the walls of the channel stops. The 

maps of the process at E* = 380 J/m shows that that 

for the same instants, as in fig. 3, there is no ignition 

of a mix at walls of the channel yet. When the mix 

ignites, the formed transverse waves are too weak to 

excite a detonation. The variation of the diameter of 

the channel L0 and radius of initiating charge r have 

shown, that the values of the critical energy of 

initiation at L0 > 9b and r > b is well correspond to the 

formula (within 6 % range) under condition of instant 

allocation of energy of initiating charge: 

,
150

*

2

0

0min 







= bpaE

ξσν
  ξ = 1 ÷ 2, aν ∼ 1. Here σ0  - 

degree of compression in leading SW, b - longitudinal 

size of a detonation cell.  

2. Next interesting problem is one of bubble 

detonations. 

Let’s consider the following physical problem. 

There is a horizontally located tube having diameter 

L0 and filled with water. In the center of the tube on 

its axis of symmetry a bubble having diameter d0 with 

a gas mix 2H2+O2, is situated. The system liquid / gas 

is in a condition of dynamical balance at temperature 

T0=300 K and initial pressure in a liquid p0=1 bar. The 

acoustic complex, consisting of a wave of 

compression (its length L1, amplitude P=115 bar) and 

the following wave of rarefaction of the same length 

and amplitude, begins to move from the left closed 

end of the tube to the right one at instant t0=0. The 

pressure profile in the complex has sine wave 

character. Such initial pulse is created by the 

electromagnetic generator of shock waves. At some 

instant the acoustic complex passes through the 

bubble vicinity, the flow leaves a equilibrium state, 

and there is a complicated current with deformation of 

interface border and formation of secondary waves. 

Theoretical research is carried out within the 

framework of model non-stationary two-dimensional 

motion of ideal compressible media in case of axial 

symmetry. The current in a liquid (water) was 

described by laws of conservation of mass, pulse and 

the ratios, specifying  shock adiabatic curve of water. 

Current in gas was modeled on the basis of laws of 

conservation of mass, pulse and energy supplied with 

the equation of state of ideal gas. Chemical reactions 

in a gas phase were described by two-stage model of 

chemical kinetics when at achievement of some 

minimal temperature in a particle readout of a 

chemical ignition delay began, the subsequent energy 

release was determined by the kinetic equation for 

average molecular mass of gas. Interface borders were 

considered as contact surfaces where a condition of a 

continuity of normal to a surface component of a flow 

velocity vector and a continuity of normal component 

of tension tensor were satisfied in view of effects of a 

superficial tension on interface border. Completely the 

mathematical model of flow motion is formulated in 

paper [9]. 

The numerical simulations of the problem have 

shown, that a single bubble dynamics essentially 

varies depending on initial parameters of the flow. At 

d0 less than critical value, the bubble is quickly 

compressed in a falling wave of compression till the 

sizes of one particle in a numerical cell without 

appreciable distortion of the form (quasi-spherical 

collapse). At increase of d0, a cumulative water jet is 

formed on the left bubble wall, directed inside the 

bubble; it reaches opposite wall of the bubble, the 

latter one gets the toroidal form with subsequent 

collapse. At the further growth of d0 the cumulative jet 

stops inside the bubble, subsequent unloading comes 

in a falling rarefaction wave at the left bubble wall, so 

the gas bubble arises on the left wall, directed towards 

to the wave of rarefaction. Then the jet fragmentation 

occurs, generating ob micro bubbles with significantly 

smaller (the order of magnitude) size, than the initial 

bubble. The last two cases we shall name as jet 

deformation of a bubble. As calculations confirm, a 

transitive zone between different scripts of a bubble 

deformation is very narrow. In fig. 4 the calculated 

changes of a bubble dynamics is submitted depending 

on values of initial flow parameters. The curve 1 in 

fig. 1 divides areas with spherical and non-spherical 

deformations of a bubble in an initial stage after 

passage of a compression wave, the curve 2 separates 

the area appropriate to a bubble collapse in a falling 

wave, from the area of its deformation without the 

collapse. Thus, area I corresponds to quasi-spherical 

collapse, II - to spherical deformation without a 

collapse, III - to jet deformation of a bubble without a 

collapse, IV - to jet deformation with the subsequent 

collapse. 

If the acoustic complex passes through the group 

of nearby located bubbles their mutual influence 

generates more complicated wave structure and 
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facilitates the occurrence of jet deformation. In fig. 5 

the field of pressure in a vicinity of originally 

spherical bubbles (their initial diameter d0 = 800 

microns, the channel diameter L0 = 4 mm) is 

submitted. More dark of tone in figure corresponds to 

waves of compression, light ones- to waves of 

rarefaction. In the top figure (t=9,2 us) it is visible, 

that the first bubble from the left side is deformed 

with formation of gas get, the second one- with 

formation of cumulative water jet inside the bubble, 

the third is compressed and gets a plate form, the 

fourth is punched by the cumulative jet and has the 

toroidal form. At the subsequent instant (the bottom 

figure, t=12,0 us) the first bubble is fragmented, micro 

bubbles are appears; at the second bubble a gas jet 

arises; the third keeps its form; the fourth bubble is in 

a condition of a collapse and is not distinct in the 

figure. In course of time the distance between the 

bubbles enlarges. 

Thus, in a bubble cluster a jet deformation of 

bubbles and their crushing takes place. If for 

explosion of a spherical bubble (taking place at initial 

pressure of 1 bar), reduction of its diameter more than 

in 3 times is necessary, at jet deformation the ignition 

begins in jets or nearby micro bubbles at more great 

values of average bubble diameter. Therefore the 

explosion of a single bubble is possible in a weak 

acoustic wave and even in the single waves of 

rarefaction providing jet deformation of a bubble.  

Micro explosions of not spherical bubbles may 

result in propagation of a of self-supported detonation 

wave sliding along a bubble chain. In fig. 6 a bubble 

detonation wave velocity is shown depending on 

initial volumetric concentration of a gas phase in a 

mix β0. A shaped curve in the figure is the data of 

experiment, continuous curve are the results of 

calculations. It is visible, that the model describes 

adequately enough the parameters of a detonation in 

bubble media. 

3. Consider of the method application to problems 

of cosmogony. 

The group of explosive hypotheses explains an 

origin of some celestial bodies by a nuclear explosion 

inside Proto-planets which fragments became germs 

of celestial bodies with unusual characteristics and 

abnormal chemical composition. According to some 

data, near a planet core there may appear an active 

layer, consisting of particles of dioxides and carbides 

of uranium, wheighed in liquid iron. Possible collision 

of large asteroid with a planet may result in nuclear 

explosion in a planet interiors. Modeling of the 

consequences of such an explosion was executed. Full 

statement of the problem is made in [10]. Some results 

are represented in fig. 7. Here body 1 is a planet core, 

2 is a stony shell, 3 is asteroid, 4 is a products of a 

nuclear explosion (plasma), 5 – dusty plum, 6 – 

vacuum. The system of basic equations was solved 

numerically inside each body for the case of particle 

self-gravitation. The boundaries between bodies are 

time-dependant contact discontinuity surfaces, where 

conditions of pressure equality on both sides and 

continuity of velocity vector component (normal to 

boundary) are valid. In the figure we can see the 

generation of cumulative jet at nuclear explosion near 

to a planetary core due to gravitation forces. 

Depending on explosion energy it may penetrate in 

interplanet space or remain inside a planet. Anyway 

the jet promotes planet partial fragmentation with 

generation of planet fragments with unusial 

characteristics. The value of the energy of explosion 

here is equal to 3⋅10
21

 MJ. The instant t=0 meets here 

the moment of the impact of the planet with the 

asteroid also. The profiles of velocity u along r-axis 

(Fig.7b, z=17500km) and z-axis (Fig7c, r=0) at the 

moment t=1327s show, that the flow velocity in the 

jet is much higher than in other regions of the planet. 

It achieves 7km/s. It is not enough for the emission of 

substance from the core into the interplanetary space. 

By instant t=2302s the velocity u in the jet falls up to 

zero, and it begins to be involved back in the core. 

Nevertheless, here again the products of the nuclear 

explosion break off the shell of the planet, and part of 

its substance comes off the planet, that it is visible in 

Fig.7. 

 

 

5 Conclusion 
In summary we list some specific features of the 

described method. Its basic difference from the 

scheme of a method GAP [4] consists in a way of 

integration of the equation of mass conservation and 

procedure of definition of pressure in nodes of 

Eulerian grid. Offered method of computation besides 

elimination of the decision strong fluctuations results 

in the following consequences: 

1). The problem of pressure calculation in the so-

called "mixed" cells [1, 3] is removed, that is in cells 

of Eulerian grid, in which there are particles of 

various substances. In the described method the 

pressure is calculated in a particle, and then it is 

interpolated on a grid. 
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2). The computation is possible to do with one 

particle on a cell. 

3). For calculation of the next step on time, only 

the information on particles is necessary, since after 

interpolation "grid - particle " grid information is 

possible to wipe out. This property of algorithm 

allows rather simply solving a problem of memory. 

Useful property of algorithm is that he easily 

allows parallel numerical modeling. 
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Fig. 1. Interpolation "particles - grid". 

 

 
 

Fig. 2. Marking of grid nodes. 
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1. t = 0,26 µs    2. t = 13 µs 

          

3. t = 32 µs    4. t = 45 µs 

        

5. t = 58 µs    6. t = 72 µs 

       

7. t = 80 µs    8. t = 93 µs 

         

9. t = 106 µs    10. t = 120 µs 

         

Fig. 3. Initiation of detonation in a tube 
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Fig. 4. Bubble dynamics dependence on values of initial flow parameters. 

 

 

   

 

 

Fig. 5. Pressure maps in a vicinity of originally spherical bubbles. 
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Fig. 6. Bubble detonation wave velocity dependence on initial volumetric concentration of a gas phase. 
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Fig. 7. Dynamics of formation of the cumulative jet in interiors of the planet and its influence on the process of 

the fragmentation. 
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