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Abstract:  - This paper presents modeling and large eddy simulation of pressure coefficient distribution of the flow 

of air over ridges of circular, parabolic and rectangular shapes at different Reynolds numbers using computational 

fluid dynamics (CFD) code FLUENT. The simulated results are compared and discussed with the experimentally 

measured pressure distributions. The experiments were done in an open circuit blower type wind tunnel. This study 

found that the pressure coefficient distributions over the three ridges are not unique in character at zero angle of 

attack for same Reynolds number and its magnitude depends on the geometry of the ridges. The typical potential 

flow equations are not applicable to predict the distance of pressure dissipation in the downstream direction of the 

flow. 
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1  Introduction 
It is widely known that when fluid flows externally 

past an immersed body, the body experiences a 

resultant force due to the interaction between the body 

and the fluid surrounding it. The resultant force can be 

expressed as the theory of drag, the numerical theory 

of drag is weak and inadequate because of flow 

separation. The boundary layer theory can predict the 

separation point but cannot accurately estimate the 

pressure distribution in the separation region. The 

difference between the high pressure in the front 

stagnation region and the low pressure in the rear 

separated region causes a large drag contribution call 

pressure drag. With the advances in computational 

fluid dynamics (CFD) simulation software, modelling 

and simulation of this resultant force has become 

possible.  

The purpose of this study is to simulate pressure 

distribution of fluid flow over ridges of circular, 

parabolic and rectangular shapes using CFD code 

FLUENT. There have been many numerical and 

experimental studies on the fluid flow over ridges. 

However, it should be noted that using CFD does not 

necessarily ensure accurate results [1, 2]. Therefore 

the results obtain from CFD simulation should be 

verified with measured data. This paper presents large 

eddy simulation of pressure distribution of fluid flow 

over ridges of circular, parabolic and rectangular 

shapes using CFD code FLUENT. The simulated 

results are then compared with measured data and 

discussed. 

2 Simulation of Pressure Distribution 

Over Ridges  
The basic method for creating CFD simulation is 

represented in six main stages, as illustrated in Fig.1. 

These stages can be divided into three processes; pre-

processing, solving and post-processing. 

2.1 Gambit details 
Gambit is a geometric and meshing software package 

that has seen designed to provide the capabilities to 

build and mesh models for import into CFD software. 

To determine the pressure coefficient distribution for 

comparison, the three ridges has been modelled in a 

wind tunnel. The geometry of this wind tunnel used 

was 5.04 × 0.3 × 0.2 metres. The ridges are each 

located 4 metres from the entrance of the wind tunnel. 

The geometry for the circular, parabolic and 

rectangular ridges are shown in Figs. 2, 3 and 4 

respectively. Once the three ridges geometry was 

created in Gambit the next stage was to mesh it and to 

determine whether the models are mesh dependent or 
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independent. The initial mesh sizes used were; for 

circular 31,310; for parabolic 40,672 and for 

rectangular 90,272. The initial mesh for rectangular 

ridge is shown in Fig. 5. These mesh sizes (for all 

ridges) were later approximately doubled in Fluent, to 

produce more accurate results.  

2.2 Governing Equations and Simulation 

Techniques 
The governing equations of fluid flow represent 

mathematical statements of the following conservation 

laws of physics [4]: 

o The mass of a fluid is conserved 

o The rate of change of momentum equals the 

sum of the forces on a fluid particle  

(Newton’s second law) 

o The rate of change of energy is equal to the 

sum of the rate of heat addition to and the rate 

of work done on a fluid particle (first law of 

thermodynamics). 

The Naiver-Stokes equations and the Continuity 

equation which describe the dynamics of fluid flow 

are derived from the basic principles described above. 

The Continuity equation can be derived from the 

Divergence theorem developed by Carl Friedrich 

Gauss in 1813. 
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The fluid is considered to be incompressible, thus the 

mean density will not change, and as a result the 

dynamic viscosity and kinematic viscosity are also 

considered constant. The continuity equation noted 

above can be expressed in Cartesian coordinates as, 
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Since it has been assumed that the fluid is 

incompressible, density is not a function of time or 

space [5]. Therefore 0



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 and density can be taken 

outside the divergence operator. 

 

Incompressible continuity equation can be written as, 
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Fig. 1: Fluent CFD simulation process [3] 

 
Fig. 2: Geometry of circular ridge 

 
Fig. 3: Geometry of parabolic ridge 
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Fig. 4: Geometry of rectangular ridge 

 

Fig. 5: Mesh size of parabolic ridge 

 

Navier-Stokes equation in Cartesian coordinates in the 

x, y and z direction can be given by [6], 
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arge eddy simulation (LES) is a numerical technique 

used to solve the partial differential equations 

governing turbulent fluid flow. The turbulent flows 

are characterized by eddies with a wide range of 

length and time scales. The largest eddies are typically 

comparable in size to the characteristic length of the 

mean flow. The smallest scales are responsible for the 

dissipation of turbulence kinetic energy. In LES, large 

eddies are resolved directly, while small eddies are 

modelled. The rationale behind LES can be 

summarized as follows: 

o Momentum, mass, energy and other passive 

scalars are transported mostly by large eddies. 

o Large eddies are more problem-dependent. 

They are dictated by the geometries and 

boundary conditions of the flow involved. 

o Small eddies are less dependent on the 

geometry, tend to be more isotropic and are 

consequently more universal. 

o The chance of finding a universal turbulence 

model is much higher for small eddies. 

The Smagorinsky-Lilly model is a form of LES. This 

model was first proposed by Smagorinsky. In the 

Smagorinsky-Lilly model the eddy-viscosity is 

modeled by
2

t sL S  where Ls is the mixing length 

for sub grid scales and 2 ij ijS S S . In Fluent Ls is 

computed using
1/3min( , )s sL kd C V where k is the von 

Kármán constant, d is the distance to the closet wall, 

Cs is the Smagorinsky constant and V is the volume of 

the computational cell [3].  

 

2.3 Fluent Details 
Fluent is a state of the art computer program for 

modelling fluid flow and heat transfer in complex 

geometries. Using the six stages mentioned above, the 

following steps were used for achieving simulation 

results [3]: 

 Import mesh from Gambit 

 Check mesh 

 Selection of the solver 

 Choose the basic equations to be solved 

 Specify material properties  

 Define operating condition 

 Specify boundary conditions 

 Define grid interfaces 

 Change residual monitors 

 Initialize 

 Iterate 

 Examine results 

The boundary conditions for the inlet of the wind 

tunnel were set for three different tests with Reynolds 

numbers (Re) of 30000, 60000 and 90000. The 

respective velocities at the inlet of the simulation of 

the fluid flows were found using the Reynolds number 

equation given below, 



VL
Re   
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The fluid density and viscosity of air used were 1.225 

kg/m
3
 and 1.79 × 10

5
 kg/m-sec respectively. The 

calculated inlet velocities are 1.76 m/s for Re of 

30,000; 3.52 m/s for Re of 60,000 and 5.28 m/s for Re 

of 90,000. The turbulence model used was Large Eddy 

Simulation with a Smagorinsky constant of 0.1; this 

was then iterated until the residuals converged. 

2.4 Model Validation with Data Available for 

Circular Ridge 

Initially the simulation was done for circular ridge and 

was verified against data found from literature. If the 

viscous forces are neglected, the pressure coefficient 

can be calculated numerically using the inviscid flow 

theory given below [7, 8], 

θ4sin1C 2

P        

Where,   is angular coordinate which can only satisfy 

ideal fluid flow. The fluid inside the boundary layer 

has less momentum than the fluid outside the 

boundary layer. The affect is noticeable on the rear of 

the circular where the pressure does not rise but is 

approximately constant. This can be seen from the 

results of the fluid flow over the centre of the circular 

ridge at three Reynolds numbers, 30000, 60000 and 

90000, with the two levels of mesh density, in Figs. 6, 

7 and 8 respectively. The graphs of the pressure 

coefficient are expressed as a function of X/C, where 

X denotes the distance measured from the lead edge of 

the surface and C is the width of the corresponding 

surface. The pressure coefficient results using inviscid 

theory mentioned above are in good agreement with 

the simulation results at Reynolds number of 60,000 

and thus it is fair to say that the simulation is valid at 

this Reynolds numbers and/or at 3.52 m/s velocity. It 

is also to be noted that the results are mesh 

independent as there is no or negligible difference in 

the simulated results.  

3 Experimental Versus Simulation 

3.1 Experimental  
The experimental data for parabolic and rectangular 

ridges was measured by Rasul et al. [9] in wind 

tunnel. The wind tunnel used was an open circuit 

blower type, driven by a 2.7 hp induction motor at 

2900 rpm, with 90x30x20 cm working section. The 

flow was straightened using flow straightner made of 

glass tubes (honey comb) in the upstream of the wind 

tunnel. Two ridges as shown in Fig. 9 (parabolic) and 

10 (rectangular), were tested in the wind tunnel [9]. 

The dimension of rectangular ridge was 30 cm long, 4 

cm wide and 2 cm high. The height of parabolic ridge 

was same as rectangular ridge i.e. 2 cm. A total of 19 

probes were introduced on the surface of rectangular 

ridge: 4 probes on the front surface, 11 probes on the 

top surface, and 4 on the rear surface. A total of 11 

probes were introduced on the surface of parabolic 

ridge. It is to be pointed out that the equal number of 

probes was introduced on the surface of the parabolic 

ridge and top surface of the rectangular ridge.  The 

probe positions were equally spaced and the head of 

the probes was meshed with the surface of the models 

(ridges) in order to avoid the disturbance of the flow 

over the models. Probes were placed diagonally on 

each surface.  Some of the probe positions are shown 

in Figs. 8 and 9. It was assumed that the boundary 

layer is uniform along the length of the model at each 

probe position.  

Pressure distribution were monitored over the 

ridges by using pitot static tube connected to 

manometer by flexible plastic tube at different 

Reynolds numbers which was controlled by two wing 

butterfly valve of the wind tunnel. The Reynolds 

numbers have been calculated using the height, B, of 

the ridges as an equivalent geometric dimension. The 

pressure coefficient, Cp, for bluff bodies can be 

calculated from measured pressure distribution over 

the ridges using a formula given below [10, 11],  

C
P

U

P P
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where,   P is the pressure difference (Pa), P is the 

pressure on the surface of the ridges (Pa), Po is the 

pressure in the undisturbed stream of flow (Pa),   is 

the density of air  (kg/m
3
),  and U0 is the free stream 

velocity (m/s). 

The Cp was experimentally determined by Rasul 

et al [9] for three different Reynolds number for both 

of the ridges. These Reynolds numbers were adjusted 

by keeping butterfly wing approximately full open, 

half open and three-quarter open. The measured 

pressure distribution (measured Cp) of parabolic ridge 

as a function of dimensionless parameter X/C is 

shown in Fig. 11, where X denotes the distance 

measured from the leading edge of the surface and C 

is the width of the corresponding surface. It can be 

seen from Fig. 10 that the pressure distribution, in 

general, is positive on the front surface and negative 

on the rear surfaces of the ridge, as expected. At the 

incidence, the pressure is positive and then starts 

decreasing. The pressure reaches maximum in the 

negative direction at X/C of 0.5 i.e. at the middle of 

surface. But, the pressure never reaches positive and 

not even the atmospheric at the trailing edge. 
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Separation starts before the flow reaches the middle of 

the surface and thus creating vortex or recirculation 

zone behind the object. The larger is the vortex, the 

longer it will take the flow to develop fully. The 

negative pressure distribution at the trailing edge 

indicates the presence of vortex and its magnitude 

indicates the relative size of the vortex. 

 

Fig. 6: Pressure coefficient distribution on the circular ridge for a Reynolds number of 30000 

 

Fig. 7: Pressure Coefficient distribution on the circular ridge for a Reynolds number of 60000 

 

Fig. 8: Pressure Coefficient distribution on the circular ridge for a Reynolds number of 90000 
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Fig. 9: Schematic views of parabolic ridge 

 

 
 

Fig. 10: Schematic views of rectangular ridge 

The pressure distribution over a rectangular ridge is 

shown in Fig. 12. From the figure it is seen that the 

pressure distribution is positive on the front surface 

and negative on both top and rear surfaces of the 

ridge. The pressure distribution over a rectangular 

ridge is even more complicated but essentially 

interesting. The leading face displays almost reverse 

i.e. inverted bucket shape negative pressure 

distribution. However, the general trend has remained 

same as the parabolic ridge. The peculiar shape of 

pressure distribution in the leading surface of the 

rectangular ridge may be explained as follows. Along 

the streamline in the plane of symmetry, which leads 

to the stagnation point, there is a considerable pressure 

increase in the direction of flow. On the face, no 

separation occurs because no wall friction is present. 

But, the flow is diverted up and down once it strikes 

the surface. The downward flow meets the base plate 

giving rise to high pressure at the bottom most point. 

In this case, the separation starts as soon as the top 

horizontal surface is approached. 

 
Fig. 11: Pressure distribution on the parabolic ridge 

 

Fig. 12: Pressure distribution on a rectangular ridge 

 

3.2 Simulation 
The contour of the pressure coefficient distribution, at 

three different flow rate of fluid, for parabolic ridge is 

shown in Figs. 13, 14 and 15. The pressure is positive, 

in general, on the front of the ridge and negative on 

the top and rear. It can also be seen that the pressure is 

more negative in the corners of the ridge than it is in 

the centre. It is interesting to see that as the fluid flow 

rate increases, the pressure at the centre of the rear of 

the ridge increases. The separation point does appear 

to be affected by this increase. The reason for this is 

that at higher Reynolds number (14), the pressure drag 

is less dependent on the Reynolds number. 
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Fig. 13: Pressure coefficient distribution for fluid flow 

over the parabolic ridge at 1.76 m/s 

 

Fig. 14: Pressure coefficient distribution for fluid flow 

over the parabolic ridge at 3.52 m/s 

 

Fig. 15: Pressure coefficient distribution for fluid flow 

over the parabolic ridge at 5.28 m/s 

It is also interesting to see that the width of the 

pressure drop on the top of the parabolic ridge is 

thinner near the centre. This is due to the affect of the 

walls on the velocity magnitude. Therefore the 

velocity is greater at the centre on the ridge. This 

effect was further studied by the pressure distribution 

in the fluid outside of the boundary layer as it flows 

past the ridge (Fig. 16). This flow was at the Reynolds 

number of 30,000 and the slices at the increments of 5 

millimeters from front edge to the rear edge. These 

graphs start at X/C of 0 and proceed to 1 with interval 

of 0.125. It can be seen from Fig. 16 that the pressure 

distribution in the z-direction is not consistent but 

symmetrical about the centre. At the rear of the ridge, 

two pools of pressure drop can be seen. As the fluid 

flows over the parabolic ridge, the boundary layer 

protrudes before the fluid particles in the boundary 

layer loss their momentum. Thus in the pools of 

pressure drop, the fluid particles are losing more 

energy than the fluid particles flowing over the centre 

of the ridge. This could be due to the effects of the 

wall.   

The pressure coefficient distribution over the 

rectangular ridge is similar to the parabolic ridge; the 

pressure is positive on the front and negative on the 

top and rear. This is shown in Figs. 17, 18 and 19. It is 

seen from Figs. 17, 18 and 19 that the pressure drop 

which happened on the top of the parabolic ridge, does 

not happen the same way on the rectangular ridge. 

This pressure drop only happens on the corner on the 

front edge and then reduces to an approximately 

constant pressure for the rest of the top and rear 

surfaces. This happens because this point is the flow 

separation location, the fluid inertia becomes more 

important and at the separation location the fluid’s 

inertia is such that it cannot follow the path after the 

separation location [11]. As the Reynolds number 

increases the pressure coefficient drops. This is the 

same effect which happens to the parabolic shape.  

The pressure coefficient distributions for both the 

parabolic and rectangular ridges at the centre are 

shown in Figs. 20 and 21 respectively. It can be 

clearly seen that, though the trend is similar, there are 

differences in magnitude for both rectangular and 

parabolic ridges in pressure distributions between 

experiments and CFD simulations. In comparing the 

results between CFD simulation and experiment for 

rectangular ridge, the main difference is that the 

pressure drop is in a different location. In the 

experiment pressure drop happens at the rear corner 

whereas in the CFD simulation the pressure drop 

happens till just after the top corner. In another word, 

in the experiment the fluid particles in the boundary 

layer on the rectangular ridge gain energy at the rear 

corner of the ridge. In CFD simulation the fluid 

particles lost most of their energy at this point. This 

could be due to an unknown element interfering with 

the wind tunnel experiment. The pressure distribution 

on the parabolic ridge in the wind tunnel experiment 
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has a steep pressure drop at the top of the ridge, 

whereas in the CFD simulation this pressure 

distribution is less steep. The reason for this could be 

the accurate dimensions for the parabolic ridge in the 

experiment were not known; only height and width 

were known. It can be seen from Fig. 9 that the top of 

the ridge is steeper; this may have accounted 

differently in CFD simulation. Although, the text book 

information fairly supports the pressure distribution of 

the CFD simulation, further study is recommended in 

order to find out the reason for variation between 

experimental results and CFD simulation results. 

 

 

 

Figure 16: Pressure distribution contours for parabolic ridge at different X/C intervals 
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Fig. 17: Pressure coefficient distribution for fluid flow 

over the rectangular ridge at 1.76 m/s 

 

Fig. 18: Pressure coefficient distribution for fluid flow 

over the rectangular ridge at 3.52 m/s 

 

Fig. 19: Pressure coefficient distribution for fluid flow 

over the rectangular ridge at 5.28 m/s 

4 Conclusions 
This study has shown that a bluff body submerged in 

fluid experiences a pressure distribution with respect 

to the bodies shape. The simulation of both the 

parabolic and rectangular ridges in Fluent has shown 

that there are differences in the results between CFD 

simulation and wind tunnel experiments. One of the 

reasons for these differences could be due to the fact 

that the inlet distance was increased by 3m for the 

CFD simulation and therefore the flow would be more 

developed. The wall roughness was also not taken into 

consideration for the CFD simulation, which could 

have an influence on the boundary layer flow. 

 

 

Nomenclature 
P Pressure (Pa) 

V  Fluid flow velocity vector 

{u,v,q} Fluid flow velocity components 

{x,y,z} Cartesian coordinates 

  Time 

  Density (kg/m
3
) 

g Gravitational force (m/s2) 

Cp Pressure coefficient (-) 

ΔP Pressure difference (Pa) 

Po Pressure in undisturbed stream of flow (Pa) 

Uo Free stream velocity (m/s) 
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Fig. 20: Simulated pressure co-efficient distribution for rectangular ridge 

 

Fig. 21: Simulated pressure co-efficient distribution for parabolic ridge 
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