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Abstract: The two-dimensional problems of thin body motion in fluid parallel to the boundary at a distance, 
comparable with the length of the body, are regarded. In particular, resistance and lift forces in thin body 
motion parallel to free surface and parallel to rigid surface are determined and compared with existing solutions 
for resistance and lift forces in case of an infinite space. The solution is determined under the assumption of 
fluid being ideal and compressible. The Chaplygin-Zhukovsky hypothesis of rear-edge-limited solution is taken 
into consideration.  

In case of moving near free surface the solution is obtained for a problem of infinite span wing. The solution 
allows determining drag and lift forces in the limiting cases. It was shown that on Mach number tending to 
unity both forces infinitely increase. For relatively thin fluid layer above the moving wing the resistance force 
depends on the distance to the free surface, inclination and Mach number, while for relatively thick fluid layer 
the force depends on wing length, inclination angle and Mach number as well. 

In case of moving near rigid surface the solution of a problem is reduced to the Fredholm equation, which is 
solved numerically. The generalization of Zhukovski solution was obtained, which provides the lift force 
dependence on the altitude of the flight. The behavior of the lift force is very peculiar: it increases on 
decreasing altitude above the rigid surface. The screen effect becomes essential on moving wing altitude being 
smaller than the wing’s length. The effect was detected experimentally before and gave birth to construction of 
a special flying vehicle named “ecranoplan”. It is shown in the paper that the lift force could increase several 
orders of magnitude. This effect could be used in developing flying high-speed vehicles, which could be used 
in the territories of smooth surface: steppes, deserts, lakes, swamps, etc. 
 
Key-Words: wing, compressible fluid, analytical function, Fredholm equation, Dirichlet problem, lift and 
resistance forces. 
 
1 Introduction 

The problem of a wing moving near free surface 
is relevant to surface or underwater high velocity 
gliding of a thin wing, which is often used to reduce 
the resistance of the glider. The current problem has 
many practical applications, such as determining 
resistance and lift forces being the function of the 
depth in underwater motion of a bullet or shell. 

The problem of gliding near free surface of water 
of infinite and finite depth was regarded within the 
frames of linear [1-4] and non-linear [5, 6] 
statements, and found its generalized classical 
solution in [7]. Solutions for motions of plates at big 
attack angles in unbounded incompressible fluid 
were obtained in [8]. High-speed streaming flows 
accounting for fluid compressibility were 
investigated in [9-11]. 

At the beginning of the XX century it was 
observed that the lift force of a wing moving near 
flat surface increases strongly in comparison with 
free flight. An article about screen effect by B.N. 

Juriev [12] was published in 1923 in the USSR. 
That fact was used in creation of new flying devices 
– screen-flights, which got the Russian name 
“ekranoplan”. In 1932 Grohovsky constructed a 
full-scaled model of a new marine flying device – 
catamaran. At the same time Finnish engineer T. 
Kaario proceeded to test his flying apparatus that 
used a screen effect. Then (1963 – 1976) a Soviet 
constructor R.L. Bartini created a screen-flight 
project SVVP-2500 that took off in 1974. The first 
Soviet manned jet screen-flight SM-1 was created in 
collaboration with R. Alekseev in 1960 – 1961 [13]. 
Giant screen-flight KM was finished by 1966 and 
“Orlyonok” type screen-flights were built from 1974 
to 1983. Designing of new flying devices continues 
in many countries. 

L.I. Sedov obtained an analytical solution for the 
lift force in terms of Weierstrass functions [7] using  
the theory of a complex variable. Approximate 
analytical solution of the problem of non-steady 
plane moving near rigid surface was obtained by 
K.V. Rozjdestvensky [14] with the help of 
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asymptotic expansion. Theoretical investigation of a 
wing moving near rigid surface was made by A.N. 
Panchenkov [15, 16], but the obtained solutions 
incorporated free constants. Experimental results are 
shown in [17].  

The problem of theoretical investigation of a 
wing’s behavior near a surface is still far from being 
finalized. The present paper provides a theoretical 
solution for the two-dimensional linearized problem 
of a thin wing motion near free and rigid surfaces in 
compressible fluid. 
 
2 Problem Formulation 

The two-dimensional problem of compressible 
fluid streaming thin body in the presence of free and 
rigid surfaces is regarded. The coordinate system 
and flow scheme in case of the presence of a rigid 
surface are shown in Fig.1. The coordinate system 
and flow scheme in case of the presence of a free 
surface are shown in Fig.2 and Fig.3. 
 
 

 

   
Fig.1 Schematic picture for thin wing motion above 
rigid surface 

 
Fig.2 Schematic picture for thin wing motion near 
free surface with positive angle of attack 

 
Fig.3 Schematic picture for thin wing motion near 
free surface with negative angle of attack 

 
Fluid is assumed to be ideal, mass forces – 

negligibly small, flow field – plane. Velocity field in 
fluid is assumed to be potential 

!
V =

!
V0 + grad ! ,                       (1) 

fluid will be regarded as linear compressible 

P = P0 + a
2 (! ! !0 ) ,                    (2) 

where !(x , y ,t ) !  disturbance velocity potential, 
,P ρ −  fluid pressure and density, 0 0,P ρ − 

pressure and density in quiescent fluid, a −  sonic 
velocity.  

Fluid flow satisfies the continuity equation  

d !
dt

+ ! div
!
V = 0 ,                     (3)                                                                    

pressure is determined by the Cauchy-Lagrange 
integral  

2( ) ( )
2

grad dP c t
t
ϕ ϕ

ρ
∂ + + =
∂ ∫ .           (4)                                                      

Flow induced variations of density and velocity 
are considered small values.  

!! / ! = (! " !0 ) / !!1; 

Vx /V0 !1;V y /V0 !1 , 

where ,x yV V −  disturbance velocity components. 
Then it follows from continuity equation (3), 

integral (4) and relationships (1), (2), neglecting 
small values of the orders higher than one, flow 
potential ϕ  under the condition of steady-state flow 
satisfies the equation  
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2 2 2
2 2
0 2 2 2V a
x x y
ϕ ϕ ϕ⎛ ⎞∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂⎝ ⎠

,              (5)                                            

and fluid pressure is determined in the following 
way: 

0 0 0P P V
x
ϕρ ∂− =
∂

.                      (6)                                                 

Boundary conditions should be satisfied on the 
rigid surface, on the free surfaces and on the body 
surface contacting fluid. On the rigid surface normal 
velocity component is equal to zero, on the free 
surfaces constant pressure is assumed, on the fluid-
body contact streaming condition of the equality of 
normal velocity component. 

on the body boundary !v ! !n =
!
V ! !n ;

on the rigid surface v y = 0;

on the free surface P " P0 = 0.
 

The obstacle being thin and inclination angle being 
small all disturbances could be considered small and 
boundary conditions take the form 

for body moving near rigid surface: 
 

0, 0 : sin

0, : 0,

y h x L V
y

y x
y

ϕ θ

ϕ

± ∂= < < =
∂
∂= −∞ < < ∞ =
∂

 

 
for body moving near free surface: 

00, 0y P P= − =;                   (7) 
with positive angle of attack: 

0, 0 0y h x P P−= < − =; 

0, 0 sinyy h x L u V
y
ϕ θ+ ∂= < < = = ⋅
∂

 

0, 0y h L x P P+= < − =; 
with negative angle of attack: 

y = h + , 0 < x P ! P0 = 0 ; 

y = h ! , 0 < x < L u y =
"!
"y

= !V0 #sin! 0  

y = h ! , L < x P ! P0 = 0  

Thus equation (5) with boundary conditions (7) 
presents a closed form statement of the problem.  
 
3 Problem Solution 
3.1 Problem Solution in Case of a Wing 
Moving near Rigid Surface 

We assume the flow to be subsonic. A plate is 
regarded so that ! = !" . Then on introducing 

dimensionless parameter 21 Mα = − , where 

0 /M V a= − Mach number, and dimensionless 
functions and variables 

 

p * =
P ! P0
!0V0

; x * = x
L
; y * = ! y

L
,          (8) 

equations (5),(6) and boundary conditions (7) take 
the form 

!2!
!x "2+

!2!
!y *2

= 0 , p ! = 1
L
"!
"x ! , 

y * = !h ±

L
, 0 < x <1: !!

!y *
=
V0!
" 2

L

y * = 0, "# < x < # : !!
!y *

= 0,

   (8) 

sin dytg
dx

θ θ≈ = , tg ! = 1
"
dy *

dx *
= #
"

 

 
In successive derivations star in dimensionless value 
symbols will be omitted. 

The solution will be developed in the form of a 
real part for the analytical function of a complex 
variable ( , ) Re ( ),x y z z x iyϕ = Φ = + . 
Then the solution is reduced to the following 
boundary problem: 
 

y = h
±

L
, 0 < x <1: Im!' (x ) =

V0!
" 2

L

y * = 0, "# < x < # : Im!' (x ) = 0.
    (9) 
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Boundary conditions should be supplemented 
with function behavior at the infinity for the 
uniqueness of the solution. The demand for function 
behavior at the infinity is reduced to the following 
formula, as it is shown in [18]: 

, ( ) lnz z z const→∞ Φ ≈ + . 

The solution for the problem will be determined 
in the form of the Cauchy integral [19] 

!" (z ) = 1
2!i

g11(t ) # i f11(t )

t # z # i !h
L

$
%&

'
()

dt +
0

1

*

+ 1
2!i

g11(t ) + i f11(t )

t # z + i !h
L

$
%&

'
()

0

1

* dt .

 

This expression satisfies the condition on the axis 
0, Im ( ) 0y x z′= −∞ < <∞ Φ = . Boundary 

condition on the body contour still needs to be 
satisfied. The value of function on the boundary 

y = !h ±

L
 is 

0 < x <1, !" (x + i !h
±

L
) =

= ± 1
2
g11(x ) # if11(x )( )+

+ 1
2!i

g11(t ) # if11(t )
t # x

dt
0

1

$ +

+ 1
2!i

g11(t ) + i f11(t )

t # 2i !h
L

# x
dt

0

1

$ ,

Im !" (x + i !h
±

L
) =

= ! 1
2
f11(x ) #

1
2!

g11(t )
t # x

dt
0

1

$ #

# 1
2!

(t # x )g11(t ) # 2
!h
L
f11(t )

%

&
'

(

)
*dt

(t # x )2 + 4(!h
L
)20

1

$ ,

 

 

Re !" (x + i!h
±

L
) = ± 1

2
g11(x)#

1
2

f11(t)dt
t # x0

1

$ +

+ 1
2!

2"h
L
g11(t)+ (t # x) f11(t)

t # x( )2 + 4(!h
L
)2

dt
0

1

$ ,

as # i(t # x + 2i!h
L
)(g11 + if11) =

= 2!h
L
g11 + (t # x) f11 # i g11(t # x)# 2

!h
L
f11

%
&'

(
)*
.

 

Integrals from the right part of the formula do not 
depend on the contour side. Therefore the function 
satisfies the following condition on the contour 

y = !h
L

±

, 0 < x <1 Im !" (x )#$ %& = ' f11(x ) . 

Im !" (x + i !h
L

±

) = ±
V0!
" 2

L # 1
2!

g11(t )
t # x

dt
0

1

$ #  

! 1
2!

(t ! x )g11(t ) + 4
V0! h
!

"

#
$

%

&
'dt

(t ! x )2 + 4(!h
L
)20

1

( .  

Boundary condition on the upper surface of the 
body should be satisfied for the definition of 
function 11( )g x  

!
V0!
" 2

L =
V0!
" 2

L ! 1
2!

g11(t )
t ! x

dt
0

l

" !

! 1
2!

(t ! x )g11(t ) + 4
V0! h
!

#

$
%

&

'
(dt

(t ! x )2 + 4(!h
L
)20

l

" .

 

Finally we get the singular integral equation with 
the Cauchy center [19] 
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1
!

g11(t )
t ! x

dt
0

1

" = 4
V0!
" 2

L ! 1
!

(t ! x )g11(t )dt

(t ! x )2 + 4(!h
L
)20

1

" !

!4
V0! h
!"

dt

(t ! x )2 + 4(!h
L
)20

1

" .

 

The determined solution will be limited at the rear 
edge of the wing (the Chaplygin-Zhukovsky 
hypothesis [20]). In this case regularizing of the 
singular equation can be fulfilled that reduces it to 
the Fredholm equation 

g11(x ) !
2
!
("h
L
)2 g11(! )
0

1

"
1! x
x
K (! ,x )d ! =

=
V0!
" 2

L 1! x
x
(1+ q (x )),

 

where 

K(! , x) = 1

R cos! 1!"( )2 + 4(!h
L
)2"

#$
%
&'

(

(
R2 (1!! ) 1! x( )! R! (1! x) 2cos2! !1( )
R2 1! x( )2 + x2 ! 2x 1! x( )Rcos2!

!

! R! (1! x)! x!
R2 1! x( )2 + x2 ! 2x 1! x( )Rcos2!

,

 

q(x) = 1
! 0

1

!
1

R sin! 1""( )2 + 4(!h
L
)2#

$%
&
'(

)

)
R2 1" x( )+ R(1" x)" x + xR " 2xRcos2!

R2 1" x( )2 + x2 " 2x 1" x( )Rcos2!
d! ,

 

R2 =
! 2 + 4("h

L
)2

1!!( )2 + 4(!h
L
)2
,

! = 1
2
arctan

2"h
L
!

"

#

$
$
$

%

&

'
'
'
+ arctan

2"h
L

1!!

"

#

$
$
$

%

&

'
'
'

(

)

*
*
*

+

,

-
-
-
.

 

The Fredholm equation was determined numerically 
[21]. The obtained solution allows the pressure 
function and the lift force to be determined: 

p ± (x ) = !0V0 Re ± g11(x ) ! i f11(t )( )!" #$ +

+!0V0 Re
1
2"i

g11(t ) ! i f11(t )
t ! x

dt +
0

1

"

+!0V0 Re
1
2"i

g11(t ) + i f11(t )

t ! x + 2i !h
L

!
"#

$
%&

0

1

' dt ,

 

Fy = ! ( p + ! p ! )dx
0

L

" =

= !0V0
1! x
x

1
!

t
1! t

g11(t )dt
t ! x0

1

"
#

$
%
%

&

'
(
(
dx

0

1

"
 

Fig.4 represents the dependence of the 

dimensionless lift force of a flat wing F

!"0
V0
2!
"
L

 

upon the relative distance from the wing to the 

motionless surface h
L

. It is seen that the screen 

effect practically disappears for distances equal to 
two times the length of the wing. The lift force 
increases greatly when the distance is lower than the 
length of the wing. If the altitude above the surface 
surpasses the wing’s span and the fluid is regarded 
as incompressible the lift force tends to its value in 
an unbounded space determined by the classical 
solution for thin wing lift force in incompressible 
fluid and unbounded space [23]: 

2
0 0F V Lπρ γ=  

Fig.5 represents the dependence of the 

dimensionless pressure function P = !p
!0V0

 upon 

the length of the wing /x L  for / 0,1h L = . The 
center of applied resultant lift force shifts to the 
front edge of the wing as the distance /h L  
decreases because the singularity on the front edge 
increases. 
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The obtained results fully correspond to the 
experiment described in [13]. 

Fig.4 Dependence of dimensionless lift force of a 

flat wing F

!"0
V0
2!
"
L

 on the relative distance from 

the wing to the flat surface h
L

 

 

Fig.5 Dependence of dimensionless pressure 

function P = !p
!0V0

 upon the length of the wing 

/x L  for / 0,1h L =  

 
3.2 Problem Solution in Case of a Wing 
Moving near Free Surface 

We assume the flow to be subsonic. Then on 

introducing dimensionless parameter 21 Mα = − , 
where 0 /M V a= − Mach number, and 
dimensionless functions and variables 

*

ah
πϕϕ = ; * 0

2
0

P Pp
aρ
−= ; Ll

h
π
α

= ;  

* *;x yx y
h h

π π
α

= = ,                 (10)             

equations and boundary conditions take the form 

2 2

2 2 0
x y
ϕ ϕ∗ ∗

∗ ∗

∂ ∂+ =
∂ ∂

, Mp
x
ϕ

α

∗
∗

∗

∂=
∂

, 

0, 0y
x
ϕ∗

∗
∗

∂= =
∂

;  

in case of  positive angle of attack 

, 0 0y x
x
ϕπ

∗
∗ − ∗

∗

∂= < =
∂

;          (11) 

y ! = ! + , 0 < x ! < l "" !

"y ! = M ## (x !)
$

 ;     

, 0y l x
x
ϕπ

∗
∗ + ∗

∗

∂= < =
∂

; 

in case of negative angle of attack 

y ! = ! + , 0 < x ! "! !

"x ! = 0 ; 

y ! = ! " , 0 < x ! < l #" !

#y ! = "M $# (x !)
$

 ;     

y ! = ! " , l < x ! #! !

#x ! = 0 ; 

In successive derivations star in dimensionless value 
symbols will be omitted. The problem is reduced to 
developing analytical function in the domain 0y >  
with a cut , 0y xπ= > , satisfying boundary 
conditions (11). The solution will be developed in 
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the form of a real part for the analytical function of 
a complex variable  

( , ) Re ( ),x y z z x iyϕ = Φ = + . 
 
In case of positive angle of attack: 

0, Re ( ) 0y x′= Φ =;  

, 0 Re ( ) 0y x xπ − ′= < Φ =; 

y = ! + , 0 < x < l Im !" (x ) = #M $" (x )
#

;

, Re ( ) 0y l x xπ + ′= < Φ = . 
 

In case of negative angle of attack: 

0, Re ( ) 0y x′= Φ =;  

y = ! + , 0 < x Re !" (x ) = 0 ; 

y = ! ! , 0 < x < l Im "# (x ) = M $" (x )
#

;

y = ! ! , l < x Re "# (x ) = 0 . 
 

Using the conformal mapping of the semi-space 
0y >  with a cut , 0y xπ= > , the development of 

the analytical function is reduced to the Riemann – 
Hilbert problem. The conformal mapping is given 
by the following function:  

 
ln 1, Im 0,z i w w w w u iv= π + − − > = + . 

 
The transformation of the boundary is shown in 
picture Fig.6. 

 

 
Fig.6 The new boundary after the use of conformal 
mapping 

Thus u0
±  are the roots of algebraic equation (Fig. 7) 

0 0ln | | 1l u u= − − . 

 

Fig.7 The plot of the function 
( ) ln 1, 0f u u u u= − − >  

 
For a special function type 

!" (w ) = w #1
w #u0

± Q (w )  the Riemann – Hilbert 

problem is reduced to the Dirichlet problem. The 
solution for the Dirichlet problem is given by the 
Schwarz integral  

1( ) Re ( ) dtQ w Q t iC
i t wπ

∞

−∞

= +
−∫ . 

In case inclination angle is constant this integral can 
be taken in elementary functions.  
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The projections of forces acting on a wing with 
singularity at the front edge are given by the 
following formulas: 
 

for positive angle of attack:  
 

X =
!a2hM 2" 0

2 ( u0
+ !1)2

2# 2 ;  

 

Y =
!a2hM 2" 0 ( u0

+ !1)2

2#
;  

 
for negative angle of attack:  

 

X =
!a2hM 2" 0

2 ( u0
! !1)2

2# 2 ;  

 

Y =
!a2hM 2" 0 ( u0

! !1)2

2#
;  

The projection X represents the drag force, and 
projection Y – lift force, where u0

±  are the roots of 
algebraic equation 

0 0ln | | 1l u u= − − . 

Analysis of obtained results shows the 
asymptotic behavior of the forces depending on the 
ratio of body length, fluid layer thickness and 
inclination angle. 

In case fluid separation takes place from the 
upper side of the body the front edge separation case 
has the following asymptotic solutions: 

1) / 0h L→ : 

2 2 2
20

2 ( 1)
2
a hM LX

h
ρ γ π

α α
= − ;  

2 2
20 ( 1)

2
a hM LY

h
ρ γ π

α α
= − − ;    

2) h L→∞: 

2 2 2
0

3

1
2
a M LX ρ γ π

α
= ;  

2 2
0

2

1
2
a M LY ρ γ π

α
= − . 

Approximation formulas for dimensionless 

forces depending from parameter 
Ll
h

π
α

=  were 

developed: 

3
0,7

2 2
0 0

1 2
2

l
X

XF e
V L

α ππ
ρ γ

−⋅= = −;  

2
0,7

2
0 0

1 2
2

l
Y

YF e
V L

α ππ
ρ γ

−⋅= = − +. 

Diagrams of relation between the force XF  and 
dimensionless parameter 1/ l  obtained numerically 
and using approximation formula are shown on 
picture Fig.8. 

 

Fig.8 Relation between the force XF  and 
dimensionless parameter 1/ l  obtained numerically 
and using approximation formula in case flow 
separation from the upper side of the body having 
singularity on the front edge. 
 

In case fluid separation takes place from the 
bottom of the body the front edge separation case 
has the following asymptotic solutions: 

1) / 0h L→ : 

 
2 2 2

0
22

a hMX ρ γ
α

= ; 
2 2

0

2
a hMY ρ γ

α
= ; 

2) h L→∞ : 
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2 2 2
0

34
a M LX πρ γ
α

= ; 
2 2

0
24

a M LY πρ γ
α

= . 

Approximation formulas for dimensionless 

forces depending from parameter 
Ll
h

π
α

=  were 

developed: 

( )
3

0,5 0,7

2 2
0 0

1 0,11 2
2

l
X

XF l e
V L

α π

ρ γ
−⋅= = − ;  

( )
2

0,5 0,7

2
0 0

1 0,11 2
2

l
Y

YF l e
V L

α π

ρ γ
−⋅= = −  

Diagrams of relation between the force XF  and 
dimensionless parameter 1/ l  obtained numerically 
and using approximation formula are shown on 
picture Fig. 9. 

 

Fig.9 Relation between the force XF  and 
dimensionless parameter 1/ l  obtained numerically 
and using approximation formula in case flow 
separation from the bottom of the body having 
singularity on the front edge. 

The solution in the case, when fluid separation 
takes place from the upper side of the body, for the 
depth h being exactly equal to zero gives the 
following formulas: 

2 2
0 0

2 32( 1 )
V LX

M
ρ γ π=

−
, ( )

2
0 0

22 1
V LY
M

ρ γ π= −
−

, 

which for incompressible fluid ( 0M → ) provides 
exact matching with classical solution for a gliding 
plate [7]. 
 
4 Conclusion 

The solution was obtained for a problem of body 
motion in compressible fluid at a depth, constant 
velocity and inclination angle. Both cases of 
positive and negative inclination were regarded, 
which means flow separation from the upper side 
and bottom side of the wing. The solution allows 
determining drag and lift forces in the limiting 
cases. 

The theoretical solution for the problem of the 
wing lift force determination under the conditions of 
streaming by ideal compressible fluid in the vicinity 
of rigid plane is reduced to Fredholm equation, 
which is developed numerically. 

The behavior of the lift force and the point of its 
application evolution depending on the distance 
from the rigid surface are examined. It is shown that 
the lift force increases with the decrease of the wing 
distance from the plane surface. If the altitude above 
the surface surpasses the wing’s span the screen 
effect practically disappears and the lift force tends 
to its value in an unbounded space determined by 
the classical Zhukovsky solution.  

The center of applied resultant lift force on the 
wing profile shifts to the front edge of the wing as 
the altitude above the rigid plane decreases due to 
increase of the front edge singularity.  

The obtained solution evidently shows, that the 
increase of lift force near the screen in the orders of 
magnitude allows developing flying vehicles 
carrying much more cargo at lower fuel 
consumption.  

The obtained solution would be useful for 
designing giant high-speed screen-flight vehicles, 
because it is necessary to take into account the 
essential variation of lift force application center 
and its value depending on altitude.  
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