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Abstract: - The first order by time partial differential equation (PDE) is used as models in applications such as 

fluid flow, heat transfer, solid deformation, electromagnetic waves, and many others. In this paper we propose 

the new numerical method to solve a class of the initial-boundary value problems for the PDE using any known 

space discrete numerical schemes and a Taylor series expansion by time. Derivatives by time are got from the 

outgoing PDE and its further differentiation (for second and higher order derivatives by time).  

By numerical solution of the PDE and PDE arrays normally a second order discretization by space is applied 

while a first order by time is sometimes satisfactory too. Nevertheless, in a number of different problems, 

discretization both by temporal and by spatial variables is needed of highest orders, which complicates the 

numerical solution, in some cases dramatically. Therefore it is difficult to apply the same numerical methods 

for the solution of some PDE arrays if their parameters are varying in a wide range so that in some of them 

different numerical schemes by time fit the best for precise numerical solution.  

The Taylor series based solution strategy for the non-stationary PDE in CFD simulations has been proposed 

here that attempts to optimise the computation time and fidelity of the numerical solution. The proposed 

strategy allows solving the non-stationary PDE with any order of accuracy by time in the frame of one 

algorithm on a single processor, as well as on a parallel cluster system. A number of examples considered in 

this paper have shown applicability of the method and its efficiency.  

 

Key-Words: - Non-stationary, First Order by Time; Navier-Stokes Equations; Taylor Series; Numerical; 

Fractional Derivative 

 

1 Introduction 
The second order PDE have found extensive 

applications in the study of problems in fluid 

mechanics, flow in porous media, heat conduction, 

etc. [1-4]. A large number of numerical methods 

have been proposed for solving the second order 

PDE, which are mainly the first order in time and 

second order in space, in a CFD simulation.  

A key issue is the need to effectively use the high 

performance numerical methods [5-12] and 

computers including parallel clusters [13] to 

complete analysis in time frames. In designing CFD 

software tools the author has attempted to build an 

essentially open single software framework, that 

enables arbitrarily complex non-stationary 3-D PDE 

array to be represented, which run efficiently on 

modern computers and allow simple increasing of 

accuracy in numerical simulation by time.  

The features of the above approach are that it 

employs Taylor series expansions to compute 

solution of the PDE by time without temporal 

discretization of the PDE. The idea of using the 

Taylor series expansions for numerical solution of 

non-stationary boundary problems has arisen from 

original use of a Taylor series described in [14, 15] 

as an efficient procedure for parametric study in 

complex problems where a number of typical 

computations was replaced by Taylor series 

approximations. 

 

 

2 Problem Formulation 
 

2.1 Strategy for solution of the non-

stationary PDE 
The strategy for the numerical solution of the non-

stationary 3-D PDE (or PDE array) using Taylor 

series by time has been proposed as follows: 
• Numerical solution starts as usually with a 

spatial discretization of the numerical domain 

and with development of an appropriate 

numerical grid 
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• Discretization of PDE by space is done by one 

of the known methods, which fits the best to the 

PDE and physical domain given 

• The temporal derivatives are computed up to the 

desired order by time for the numerical solution 

sought based on the outgoing PDE and its 

differentiation by time  

• Using computed temporal derivatives the 

numerical solution sought is found from the 

Taylor series using the temporal derivatives at 

each spatial point of the numerical grid. 

 

2.2 The idea of the combined numerical 

method using a Taylor series by time 

Conventionally numerical solution of any initial-

boundary problem for PDE or PDE array with one 

of the known numerical methods is going as 

follows: 

1. Discretization of the numerical domain and 

development of the appropriate numerical grid. 

2. Discretization of the PDE by space and time 

with further transformation of the outgoing PDE 

to its approximation, for example algebraic 

finite-difference equations by space and time. 

3. Numerical solution of the approximate (e.g. 

algebraic finite-difference) equations by space 

and time by explicit or implicit algorithm. 

4. Testing the numerical solution obtained and 

validation of it against the known data (the other 

numerical solutions, analytical solutions for 

limit cases of the PDE stated, experimental 

results, etc.).  

 

2.2.1 Peculiarity of the method 

Highly important peculiarity of the above described 

any numerical method is discretization of the PDE 

(step 2) performed according to the accuracy of the 

numerical solution by space and time required as far 

as this predetermines further steps and methods 

selected for the numerical solution.  

If any changes to the requirements of solution 

accuracy are requested, then a step 2 changes, thus, 

the numerical algorithm changes totally.  

Our strategy proposed here replaced the steps 2, 

3 of the above common algorithm, which trasforms 

to the following one: 

1. Spatial discretization of the numerical domain 

and development of the appropriate numerical 

grid. 

2. Discretization of the PDE by space with further 

transformation of the outgoing PDE to its 

approximation, for example, algebraic finite-

difference equations by space. 

3. Numerical solution of the approximate (e.g. 

algebraic finite-difference) equations by space. 

4. Computing the temporal derivatives using the 

outgoing PDE or PDE array with further 

calculation of the numerical solution in time 

based on the Taylor series expansion of the 

solution sought by time. 

5. Testing the numerical solution obtained and its 

validation against the known data (other 

numerical solutions, analytical solutions for 

limit cases of the PDE stated, experimental 

results, etc.).  

Thus, in short, it may be said that the strategy 

proposed is based on replacement of the non-

stationary boundary-value problem for PDE by 

consecutive stationary problems, calculation from 

PDE the temporal derivatives up to desired order 

and finally computation of the Taylor series by time. 

The algorithm starts with the initial data and goes 

step-by-step by time as mentioned.  

 

2.2.2 Examples illustrating the idea of method 

Let us start with a few simple examples showing the 

idea of the proposed strategy. For this, first consider 

the following one-dimensional non-stationary 

equation (describing, for example 1-D flow) along 

with the corresponding initial and boundary 

conditions: 

 

            
2

2

x

U

x

U
U

t

U

∂

∂
=

∂
∂

+
∂
∂

                      (1) 

 

    ( ) ( )00, , ,t U U x x U U tΓ= = ∈Γ = .      (2)  

 

We do not specify the boundary condition (2) yet 

because it is no matter for explanation of the 

proposed method.  

Supposed 
xt

U

tx

U

∂∂
∂

=
∂∂

∂ 22

, the equation (1) is 

rewritten in a more convenient form  

                                       
2

2
( )

U U U
U f x

t x x

∂ ∂ ∂
= − + =

∂ ∂ ∂
,                  (3) 

where from, differentiating the last equation by 

time, results  

 

   

( )

2 2 2

2 2 2

2

2

U U U U
U

t t x x x t

U U U f
U fU

t x x t x x

 ∂ ∂ ∂ ∂ ∂ ∂ = − = +   ∂ ∂ ∂ ∂ ∂ ∂  

∂ ∂ ∂ ∂ ∂ ∂ − − = − ∂ ∂ ∂ ∂ ∂ ∂ 

.   (4) 
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2.2.3 Taylor series by time 

Now a Taylor series with a second order accuracy 

by time (introduce t∆  as the time step in numerical 

solution), accounted (3), (4) yields the following 

approximation of the solution to the equation (1) 

                     

( )
2

2 2

0 0 2

0

1 ( )
( ) ( ) ,

2!

f fu
U U f t t o t

x x

 ∂ ∂
= + ∆ + − ∆ + ∆ ∂ ∂ 

                                                                               (5) 

Where U0 in eq. (5) is the known initial data, and 

                     

( )
22
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0 0 02 2

0

( ) ,
U UU U

f U U o t
t x x x

  ∂ ∂∂ ∂ = − = − + ∆   ∂ ∂ ∂ ∂  
                                                                               (6) 

is easily computed by the known function U0(x). In 

a similar way, 

2 42

0 0 0 0

2 2 4

0

22
20 0 0

0 0 02 2

( )( ) f f U Uf fU

x x x x x

U U U
U U U

x x x x x

  ∂ ∂ ∂∂ ∂
− = − = + ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂∂ ∂ − − −  ∂ ∂ ∂ ∂ ∂   

. (7) 

Then substitution of the equations (6), (7) into a 

Taylor series (5) results in 
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      (8)                                                                                                                                             

and so on. Evidently, one can continue this 

procedure to get any desired order of accuracy by 

time. The transformation of the procedure from any 

n–th layer by time to the (n+1)-th layer by time is 

similar to the stated in the equations (5), (8) above: 

( )
2

2 2

1 2

1 ( )
( ) ( )

2
n n n

n

f fU
U U f t t o t

x x
+

 ∂ ∂
= + ∆ + − ∆ + ∆ ∂ ∂ 

 

(9) 

where n=0,1,2,…,N.  

 

2.3 Substitution of the temporal derivatives 

with the spatial ones 

Thus, the right hand of the equations (5), (9) is 

always a function of the coordinates at the current 

moment of time. Thus, neither explicit, nor implicit 

approximations by time are applied; no difference 

equations by time are needed!  

As the equation (9) shows, the second order by 

time approximation in the equation (1) requests all 

spatial derivatives of the function sought up to the 

4-th order. Adding the next term in the time series 

requires the corresponding term twice differentiated 

by space. If computing the highest order derivatives 
ii tf ∂∂ /  is analytically complicated, it is done 

numerically.  

Consequently, instead of a solution of a 

difference (or any discrete) equation, computation 

of the spatial derivatives with the accuracy stated is 

proposed. Then the numerical solution sought is 

computed from the Taylor series by time.  

 

2.4 The examples of application of a Taylor 

series by time in numerical solutions 
 

2.4.1 Example 1  

In case of a simple wave equation with the 

following initial and boundary conditions 

 

                    
x

u

t

u

∂
∂

=
∂
∂

;          

                                                                            (10) 

   ,0=t  xxuu == )(0 ; x=0, ttuu == )(                                               

 

an analytical solution of the boundary problem (10) 

is known as a wave spreading with the velocity 1 

countercurrent to the axis x, )( txfu += .  

According to our strategy, the numerical solution 

of the boundary problem (10) is done with a first 

order accuracy by time as follows: 

( ) 2

0 0
/ (( ) )u u u t t O t= + ∂ ∂ ∆ + ∆ , where from with 

account of the above-mentioned yields txu ∆+= . 

The solution obtained does not change with an 

increase of accuracy because the first order solution 

coincides here with the exact analytical solution. 

 

2.4.2 Example 2 

The one-dimensional non-linear equation 

                   

2

2
,

U U U
U

t x x
ν

∂ ∂ ∂
+ =
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             (11) 
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with the following initial and boundary conditions 

  

 

2

2
0, 1; =0,     0, 0

U U
t U x

x x

∂ ∂
= = = =

∂ ∂
,     (12) 

is solved according to the proposed strategy as 

follows 
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where from is got 
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in a first order approach by time, or 
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  ∂ ∂ ∂
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in a second order approach by time.  

The first order approach by time gives here the 

same result as any higher order approaches, which 

is: 1U = . 

 

 

3 Solution of the Navier-Stokes 

equations with the proposed method 
 

3.1 Numerical algorithm for NSE 
Consider numerical algorithm for the solutions to 

the equations of 3-D non-stationary motion of heat-

conducting incompressible viscous fluids: 

    divv
�

=0,     fvpvv
t

v �

���

�

+∆+∇−=∇+
∂
∂

υ
ρ
1

,  

                                                                             (13) 

      ( )1T
v T div T

t c
λ

ρ
∂

+ ∇ = ∇ +Φ
∂

�

,                     

 

where { }zyx vvvv ,,=
�

, { }
zyx ffff ,,=

�

 are the 

velocity and external force vectors, respectively.  

The Cartesian coordinates x,y,z are implied here, 

then λµρ ,,  are the density, dynamic viscosity 

coefficient, and heat conductivity coefficient, 

correspondingly, υ  is the coefficient of kinematic 

viscosity and с is the specific heat capacity, and 

∆∇,  denote the gradient and Laplace operators, 

respectively. Finally, Ф is the dissipate function,   

          Φ=













+∇

2

2
2

µ
τ

ρ
µ

v
c

�

,            

 

2 22 2

y yx x z z
v vv v v v

y x z x z y

τ
µ

∂ ∂   ∂ ∂ ∂ ∂ = + + + + +    ∂ ∂ ∂ ∂ ∂ ∂    
. 

 

The partial differential equation array (13) thus 

obtained has to be supplemented with the 

corresponding initial conditions: 

 

   0=t , ),,(0 zyxvv
��

= , ),,(0 zyxpp = ,  

     ),,(0 zyxTT = ,   Ω∈),,( zyx                     (14) 

as well as with the corresponding boundary 

conditions (Dirichlet, Neumann, mixed, etc.) at the 

boundary Γ∈),,( zyx . They are not specified here 

because it has no matter for the proposed strategy of 

the numerical solution, which is applicable by any 

boundary conditions.  

To apply the above described numerical strategy 

to the Navier-Stokes equation (NSE) array (13) with 

the initial conditions (14), rewrite these equations in 

the form: 

 

       divv
�

=0,      ,
1

),,( pfvvF
t

v
∇−∇=

∂
∂

ρ

�

��

�

�

  

(15) 

      ),,,( vTTvF
t

T
T

��

∇∇=
∂
∂

,                              

where is  
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( , , , )TF v T T v div T v T

c
λ

ρ
∇ ∇ = Φ + ∇ − ∇

� � �

,     

                    

( ),
,

x y z
F F F F=
�

 is the vector of the right hand of 

the momentum equation excluding the pressure 

gradient.  

Thus, all right hands of the equations (16) are 

known at the initial moment of time from the initial 

data (14), and then all temporal derivatives of the 

velocity vector and the temperature are computed 

from the PDE array (15).  

Consequently, the velocity and the temperature 

fields are calculated at the next time step from the 

Taylor series: 
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Here t∆  is the temporal step chosen for the 

generated numerical grid.  

 

3.2 Accuracy of the approximate numerical 

solution by time and space for the NSE 
The approximate numerical solution (17) is 

computed with a required order of accuracy by time 

(here it is up to the third order terms for example).  

It is very important that at the first temporal step 

computed by equations (17) the pressure distribution 

is unknown and continuity equation has not been 

used yet.  

Surprisingly, the velocity and temperature fields 

do not depend on the pressure distribution at the 

first time step.  

This numerical scheme in a first order by t∆  

(when only the terms up to t∆  are kept in (17)) 

completely coincide with the simplest first order 

explicit numerical scheme. But these two methods 

differ completely afterwards.  

For example, the well-known numerical schemes 

of a second order by time are very time-consuming 

and cumbersome while, in the strategy proposed 

here, the numerical solution procedure in a second 

order by time (as well as in any higher order by 

time) is nearly the same as in the first order by time.  

Moreover, any highest order numerical solution 

is got similarly and, what is very important, does not 

request more computer resources than the first order 

solution. All what is needed for this procedure is 

just an easy computation by equations (15), (16) 

with a further substitution of the results into the 

Taylor series (17).  

 

3.3 Numerical solution of a second order 

accuracy by time for the NSE 
The numerical solution of a second order accuracy 

by time requests, in contrast with the first order 

approximation, calculation of the derivatives of 

pressure, because the equation array (13) transforms 

to the following one 
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Here are 
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2 22 2

1 y yx x z z
F FF F F F

y x z x z y

τ
µ

∂ ∂   ∂ ∂ ∂ ∂ = + + + + +    ∂ ∂ ∂ ∂ ∂ ∂    
. 

 

And then it results in a calculation of the following 

next expressions by the right hands of the outgoing 

PDE similar to the previous ones: 
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Then transformation of the first equation in the 

equation array (18) to the form div 







∂
∂

t

v
�

=0, with 

further substitution of the components 
t

v

∂
∂
�

 from the 

equations (15), yields 

 

                 div 







∂
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t

v
�

= 0)(
1

=∇− pdivFdiv
ρ

�

, 

where from finally goes the following equation for 

calculation of the pressure distribution inside the 

numerical domain 

                         Fdivp
�

ρ=∆ .                             (20) 

 

3.3.1 The Poisson equation for the pressure 

The Poisson equation (20) thus obtained allows 

computing the pressure distribution in the numerical 

domain by the known values of the vector F
�

, which 

have been computed from the equation (16) based 

on the first order approximation for the velocity 

field (described above).  

This equation (20) is solved comparably easy 

and further numerical algorithm does not request 

solution of any equation, because all needed is 

computed of the spatial derivatives from the 

functions in the numerical domain. The second 

order approximation to the numerical solution is got 

afterwards simply from the Taylor series (17).  

 

3.3.2 Final closed equation array 

Finally, the closed system of the equations (18)-(20) 

has been got here for the computation of the second 

order by time numerical approximation to the 

outgoing Navier-Stokes equation. Importantly, any 

difference equations are absent here, except the one 

well-known Poisson equation (20) for the pressure.  

Only the spatial derivatives are to be computed 

with the required accuracy, which is much easier 

than solution of the difference equations and it does 

not complicate the algorithm in a second order 

approach. 

 

3.4 Numerical solution of a third order 

accuracy by time for NSE 
Now differentiating the partial differential equations 

(18) by time, accounting to (19), the third order 

accuracy by time is got: 
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2

2
p

t

∂
∇

∂
 is computed based on the first and 

second approximations by time, which were got for 

the pressure and its derivative by time including the 

initial data as described above.  

Obviously, the second order derivative for the 

pressure by time can be computed only with the first 

order accuracy because the first order derivative has 

been computed with the first order accuracy, and 

afterwards the second order derivatives were 

computed also with the first order accuracy as 

derivative from the first order derivative. This 

important question is subject for a separate detail 

investigation.  

Here are  
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the equations according to (19). 

 

 

3.4.1 Final third order equation array 

Finally the equations for the third order accuracy by 

time (21) result in 
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where are: 
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Here the temporal derivative 

2

2

f

t

∂
∂

�

 has to be known.  

It is just a derivative from an external force stated. 

The last one is most often constant (e.g. gravitation) 

or known (stated electromagnetic force in a 

conductive media, vibration acceleration, etc). 

Consequently, the equations (22) give the third-

order accuracy solution by time for the outgoing 

equations (15) using equations (17). The pressure 

distribution in third-order accuracy is got from a 

solution of the Poisson equation (20) after 

substitution of the computed velocity field.  

Obviously, there is no problem to implement the 

proposed method to the case of variable physical 

properties of continua and to some other more 

general cases.  

It must be noted that an increase of accuracy of 

the approximations by time requires computing the 

temporal derivatives of the pressure, which needs to 

keep a few temporal layers in a computer memory. 

Therefore this question still needs some separate 

deep study more in detail.  

Nevertheless, this preliminary analysis has 

shown high efficiency and simplicity of the strategy 

proposed for the numerical solution of the non-

stationary non-isothermal equations of the Navier-

Stokes type, as well as many other partial 

differential equation arrays of the first-order by 

time.   

 

3.4.2 Application of the algorithm at every time 

step by Taylor series 

The same strategy described above is applied 

consequently at the each and every time step, so that 

the transformation from any n–th layer by time to 

the (n+1)-th layer by time ( 1n nt t t+ = + ∆ ) is similar 

to the stated in the equations (17): 
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where is n=0,1,2,…,N.  
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Certainly, the time steps t∆  and the number of 

iterations at the each time step may vary from one 

time step to another time step; therefore there is the 

subject for additional investigation concerning 

optimization of the numerical algorithm proposed 

here. 

 

 

4 Comparison of the proposed strategy 

with method of fractional differentials 

Let us consider an example from [16] on 

computation of a heat flux by the known 

temperature distribution using an analytical method 

of the fractional differentials.  

The method of fractional differentials allows 

obtaining an analytical solution for the heat flux at 

the boundary for any non-linear PDE; therefore it 

gives good possibility for the validation of our 

algorithm. 

 

4.1 Equation of heating of the semi-infinite 

domain 
The task on heating of the semi-infinite domain is 

modeled by the following boundary-value problem 

for PDE: 
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The heat flux is computed here as 

0)/( =∂∂= xs XTq .  

According to [16], the differential operator in the 

PDE (24) is represented in the form:  
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Now consider the equation presented by the right 

multiplayer of (25): 
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4.2 Analytical solution of the non-linear 

equation 
The solutions to the equation (26) are also solutions 

to the equations (25) because the operator applied to 

a zero results in zero. Thus, solutions to the equation 

(26) are solutions to the equation (24) as well.  

The equation (4) written for х=0 gives 

immediately the solution of the task stated, namely 

the temperature gradient at the boundary of the 

domain: 
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Note that the temperature gradient (27) has been 

found without solution of the task for temperature 

distribution (24). This is why the method of the 

fractional differentials is also called the non-field 

method. It allows computing analytically a heat flux 

at the boundary of domain directly through such 

comparably simple transformation of the outgoing 

differential equation. 

 

4.3 Comparison of the methods for simple 

linear equations 
Let us analyze the simple linear equation to compare 

solutions of the boundary problems by the method 

of fractional differentials with solution by the 

method proposed here. For this, except solution 

(27), consider also a general solution to the 

boundary problem (24) [17]:  
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where the temperature ( )tTs  is kept by x=0 for all 

τ  from 0 till t. 

Then from (28), (29) follows 
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Introducing in (30) the new variable 
τ

ξ
−

=
t

x

2
 

results in  
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which gives solution to the task (24). By х=0, the 

solution (31) satisfies to the boundary condition 

(24). 

Now the value of  –
0=









∂
∂

−=
x

s
X

T
q  can be got 

from (31) or directly from (30) using the rule of 

differentiation of the integral by parameter [18]: 
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Comparing the equations (32) and (27), one can 

observe that they completely coincide because from 

the equation (27) follows 
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here 0)( =τsT  until .τ=t  Thus, both solutions, 

(32) and (33), coincide.  

With the above, it was proven that the solutions 

obtained by the method of fractional differentials 

and the exact analytical solution of the boundary 

problem (24) completely coincide.  

 

4.3.1 Heat flux at the boundary by our numerical 

method 

Now this heat flux at the boundary will be got ones 

more following to our algorithm. For this, first the 

temperature profile is computed through the Taylor 

series: 
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where 0)0,(0 == xTT  according to (24). 

Therefore from (34) follows 
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Replacing here 
t

T

∂
∂

 through 
2

2

x

T

∂

∂
 in accordance 

with (24) results further on from the equation (35) 
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Then the Taylor series expansion (35) with account 

of the (36) can be rewritten up to arbitrary order by 

t∆ : 
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for the constant time step t∆  starting from 

0=t (actually, time step may be chosen variable, 

which does not affect the proposed method). 

The Taylor series (37) represents the algorithm 

for numerical solution of the boundary problem (24) 

using approximations by time up to the desired 

accuracy. All needed for this is spatial derivatives 

by x  in the domain x . According to (35): 
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Now compute derivatives by x  using the exact 

analytical solution (30) of the outgoing boundary 

problem (24) and substitute it into (38).  

Differentiating by x  yields from (30): 
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The approximate numerical solution is given by 

the recurrent formulae (37), therefore the analytic 
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expression for derivatives (39) in equation (38) are 

satisfactory only for an initial small time step: 
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4.3.2 First and second order accuracy by time 

Now the heat fluxes in a first and second approach 

by time are, respectively: 
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where t  is small. 

 

4.3.3 Comparison of the numerical solution with 

the exact solution 

To compare (41) with the exact solution, let us take 

also the third order approximation by t  
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The approximate solution (35) with accuracy by 

third order terms by time is as follows: 
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To estimate the approximate solution (43) 

obtained by our strategy and compare it with the 

exact analytical solution of the problem, the new 

variable 
τ

ξ
−

=
t

x

2
 is introduced in (43) 
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 is an approximate 

solution for the equation (43). In a first order 

approach by time from the equation (44) follows 
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with a small exponential inaccuracy. By x=0, 
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In a first order approach by time t: 
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where from by x=0, t=0 it results exactly zero: 0-0-

0=0 and 1-1-0=0.  

Accounting the equations (46) and (45), in a first 

order approach by time the following inaccuracy is 

got: 
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In a second order approach by t, accordingly: 
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where from follows that in a first order approach by 

time inaccuracy of numerical solution is 
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small value due to small x. 

 

4.3.4 The case of complete coincide with the exact 

analytical solution 

By x=0, ,0=∆T  then by t=0, 0=∆T , and we got 

complete coincide with the exact solution. The 

second approach (49) decreases accuracy by t 

adding the term ,

2
3

t

x

e
tt

x −
 of order 

t
x

2

 

comparing to the first order solution.  

Obviously, by fixed x and small t this can 

decrease accuracy, which is good in a first order 

approach. In (46) the following integrals were 

computed: 
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Surprisingly all terms of a negative power by x are 

mutually omitted, the same as integrals, then only 

the exponent and arguments 
t

x
, 

t

x 2

 are kept.  

By x=0 the numerical solution by our method 

completely coincides with the exact analytical 

solution in a first order approach.  

By fixed x the accuracy is high (deficiency 

decreases exponentially by time). By small x 

inaccuracy can grow, therefore it is important to 

choose right steps by x and t nearby the boundary 

x=0. 

 

5 Numerical simulation  
The proposed numerical algorithm described and 

studied in detail above was applied for the 

numerical simulation of the heat transfer process 

around a particle in a fluid flow. 

 

5.1 Heat transfer for a particle in a flow 
The process of a heat transfer for a particle in a flow 

is described by the boundary problem presented 

below.  

Let us consider some particle in a fluid flow 

using the polar coordinate system ,ρ ϑ , where ρ  

and ϑ  are respectively coordinates by radius and 

angle, ρ =0 is the center of the moving particle and 

ρ =1 is its surface, τ  is time. Then two-

dimensional energy equation is written as follows 

[16]: 

 

 

2

2 3

2

2 2 2 3

2 3 1
cos 1

2 2 2

sin 3 1
1 0

2 4 4

T T Pe T

T ctg Pe T

ϑ
τ ρ ρ ρ ρ ρ

ϑ ϑ
ρ ϑ ρ ρ ρ ρ ϑ

  ∂ ∂ ∂
− − − − + −  ∂ ∂ ∂  

  ∂ ∂
− + − − =  ∂ ∂  

 (51) 

 

where 
r

R
ρ = , 

2

at

R
τ =  and 

2UR
Pe

a
=  are 

dimensionless coordinate, time and Peclet number, 

correspondingly, T  is a temperature, R  is a 

radius of a particle, U , a - flow velocity and 

heat diffusivity coefficient in a fluid flow.  

The domain of fluid flow is considered as 

1 ρ< > ∞ , 0 ϑ π≤ ≤ , 0 τ< < ∞ . The next 

boundary and initial conditions for the partial 

differential equation (51) are stated 

                    00, T Tτ = = ,                      (52) 

   1ρ = ,  ( , )sT T ϑ τ= ;   ρ = ∞ ,  0T = .       (53)  

 

A few selected simulation results to show the 

efficacy of the method in a first order approach by 

time are given in the Figs 1-4 below.  

 

 

5.2 The results of numerical simulation 
By the method described above the boundary 

problem for PDE (51)-(53) was solved numerically 

and the results are presented here. For example, 

solution of the problem for the uniform initial 
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(τ =0) temperature distribution shown in Fig. 1 is 

presented in Fig. 2- Fig.4 for Pe=10: 

 

 

 

Fig. 1. Initial temperature distribution in the domain 

 

  

Fig. 2. Temperature distribution in the particle and 

fluid flow around it for τ = 2.41 

 

The fidelity of computations was taken here as 

ε=10
-4

. A picture around a sphere is symmetrical. 

For the initial-boundary value problem (51)-(53) 

there were not found any remarkable difference 

between computation results in the second and in 

the third order by time (for higher orders as well) 

despite diverse boundary conditions proven in the 

numerical simulation. In this case even the first and 

second order calculations are very close as seen in 

Fig. 4 and Fig. 5. 

It was considered a case when particle has 

higher temperature than fluid flow in surroundings 

around particle, for example, radioactive fuel drop 

or particle during severe accident at NPP [1, 2]. As 

shown in Figs 1-5, first fluid flow does not heat up 

from particle, then temperature behind the particle is 

slightly growing and afterwards temperature is front 

of particle increases. 

 

 

Fig.3. Temperature distribution in the particle and 

fluid flow around it for τ = 10.0 

 

  

Fig.4. Temperature distribution in the particle and 

fluid flow around it for τ = 15.0 

 

 

Fig.5. Temperature for τ = 15.0, second order 

approximation by time 
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Numerical simulation performed for a number of 

a different boundary temperature distribution 

( ),sT θ τ  has shown that the second and the third 

order by time solutions nearly coincide so that 

normally for this problem no higher than a second 

orders by time is needed. A computation time 

among the first-fifth order by time does not reveal 

remarkable difference but by the sixth order by time 

it starts to grow substantially. 

A few selected simulation results to support the 

efficacy of the method are given in the Table below: 

 

 

 

 

Table. Computation of a temperature distribution ( ), ,T r θ τ  in a Stokes flow around a sphere for a time 

dependent temperature on the sphere (r=1) ( ), cos exp(100 )sT θ τ θ τ=  

 

1
st
 

order 

τ =0.03 

θ = 

r = 0.0000 0.6283 1.2566 1.8850 2.5133 3.1416 3.7699 4.3982 

1 20.08554 16.24954 6.206772 6.206772 16.24954 20.08554 16.24954 6.206772 

2 0.081860 0.115846 0.061748 0.060168 0.105751 0.178708 0.105759 0.059840 

5 0.012018 0.012017 0.012013 0.012007 0.012003 0.012000 0.012003 0.012007 

8 0.007506 0.007506 0.007504 0.007501 0.007499 0.007498 0.007499 0.007501 

2
nd

 θ  

1 20.08554 16.24954 6.206772 6.206772 16.24954 20.08554 16.24954 6.206772 

2 0.081728 0.115994 0.061897 0.060317 0.105899 0.179139 0.105907 0.059987 

5 0.012078 0.012077 0.012073 0.012067 0.012063 0.012060 0.012063 0.012067 

8 0.007544 0.007543 0.007541 0.007539 0.007537 0.007536 0.007537 0.007539 

3
rd

 θ  

1 20.08554 16.24954 6.206772 6.206772 16.24954 20.08554 16.24954 6.206772 

2 0.081728 0.115994 0.061897 0.060318 0.105900 0.179140 0.105907 0.059988 

5 0.012078 0.012077 0.012073 0.012068 0.012063 0.012060 0.012063 0.012068 

8 0.007544 0.007543 0.007541 0.007539 0.007537 0.007536 0.007537 0.007539 

 

A picture around the sphere is symmetrical, 

therefore the three points after θ =4.3982 are 

omitted just to save a place in the Table.  

For the initial-boundary value problem 

considered there any remarkable difference between  

 

 

 

computation results in the second and in the third 

order by time (for higher orders as well) were not 

found despite the diverse boundary conditions has 

been proven in the numerical simulation. 

Many different cases were tested in these 

computational experiments including oscillating 
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temperature distribution on the particle surface, 

huge gradients, etc. In all cases the methods wrked 

fine. 

 

 

5.3 Numerical experiment by particle in a 

fluid flow 
Many parameters were varied for the boundary 

problem studied. An influence of Peclet number, 

initial time step, fidelity of calculation, etc. were 

experienced [19-21] for different orders of accuracy 

by time, diverse temperature distributions on the 

particle’s surface, and so on. 

For example, the results of computer experiment 

by Pe=0.1, Dt=1 are presented in Fig. 6- Fig. 9 with 

respective matrices of computations to see the small 

differences in computations: 

 
r=1.000000  q=0.0000  q=0.6283  q=1.2566  q=1.8850  

q=2.5133  q=3.1416  q=3.7699  q=4.3982  q=5.0265  q=5.6549   

r=1.000000  1.000000  1.000000  1.000000  1.000000  

1.000000  1.000000  1.000000  1.000000  1.000000  1.000000   

r=2.000000  0.100363  0.100363  0.100363  0.100363  

0.100363  0.100363  0.100363  0.100363  0.100363  0.100363   

r=3.000000  0.007364  0.007364  0.007364  0.007364  

0.007364  0.007364  0.007364  0.007364  0.007364  0.007364   

r=4.000000  0.000396  0.000396  0.000396  0.000396  

0.000396  0.000396  0.000396  0.000396  0.000396  0.000396   

r=5.000000  0.000016  0.000016  0.000016  0.000016  

0.000016  0.000016  0.000016  0.000016  0.000016  0.000016   

r=6.000000  0.000001  0.000001  0.000001  0.000001  

0.000001  0.000001  0.000001  0.000001  0.000001  0.000001   

r=7.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=8.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=9.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

 

 
 Fig. 6. Results for accuracy 0.01, n=1, t=1.250 

 

 

r=1.000000  q=0.0000  q=0.6283  q=1.2566  q=1.8850  

q=2.5133  q=3.1416  q=3.7699  q=4.3982  q=5.0265  q=5.6549   

r=1.000000  1.000000  1.000000  1.000000  1.000000  

1.000000  1.000000  1.000000  1.000000  1.000000  1.000000   

r=2.000000  0.014893  0.014893  0.014893  0.014893  

0.014893  0.014893  0.014893  0.014893  0.014893  0.014893   

r=3.000000  0.000163  0.000163  0.000163  0.000163  

0.000163  0.000163  0.000163  0.000163  0.000163  0.000163   

r=4.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=5.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=6.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=7.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=8.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=9.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

 

 
Fig. 7. Results for accuracy 0.01, n=2, t=1.031 

 
r=1.000000  q=0.0000  q=0.6283  q=1.2566  q=1.8850  

q=2.5133  q=3.1416  q=3.7699  q=4.3982  q=5.0265  q=5.6549   

r=1.000000  1.000000  1.000000  1.000000  1.000000  

1.000000  1.000000  1.000000  1.000000  1.000000  1.000000   

r=2.000000  0.066300  0.066300  0.066300  0.066300  

0.066300  0.066300  0.066300  0.066300  0.066300  0.066300   

r=3.000000  0.003277  0.003277  0.003277  0.003277  

0.003277  0.003277  0.003277  0.003277  0.003277  0.003277   

r=4.000000  0.000125  0.000125  0.000125  0.000125  

0.000125  0.000125  0.000125  0.000125  0.000125  0.000125   

r=5.000000  0.000004  0.000004  0.000004  0.000004  

0.000004  0.000004  0.000004  0.000004  0.000004  0.000004   

r=6.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=7.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=8.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=9.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

WSEAS TRANSACTIONS on FLUID MECHANICS Ivan V. Kazachkov

ISSN: 1790-5087 66 Issue 1, Volume 6, January 2011



  
Fig. 8. Results for accuracy 0.01, n=3, t=1.156 

 

 
r=1.000000  q=0.0000  q=0.6283  q=1.2566  q=1.8850  

q=2.5133  q=3.1416  q=3.7699  q=4.3982  q=5.0265  q=5.6549   

r=1.000000  1.000000  1.000000  1.000000  1.000000  

1.000000  1.000000  1.000000  1.000000  1.000000  1.000000   

r=2.000000  0.115972  0.115972  0.115972  0.115972  

0.115972  0.115972  0.115972  0.115972  0.115972  0.115972   

r=3.000000  0.010848  0.010848  0.010848  0.010848  

0.010848  0.010848  0.010848  0.010848  0.010848  0.010848   

r=4.000000  0.000801  0.000801  0.000801  0.000801  

0.000801  0.000801  0.000801  0.000801  0.000801  0.000801   

r=5.000000  0.000048  0.000048  0.000048  0.000048  

0.000048  0.000048  0.000048  0.000048  0.000048  0.000048   

r=6.000000  0.000002  0.000002  0.000002  0.000002  

0.000002  0.000002  0.000002  0.000002  0.000002  0.000002   

r=7.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=8.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000   

r=9.000000  0.000000  0.000000  0.000000  0.000000  

0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

   

 
Fig. 9. Results for accuracy 0.01, n=4, t=1.313 

 

 

It is clearly observed that by small time intervals 

calculations with any order of accuracy by time 

from n=1 to n=4 are nearly the same. Exact 

comparison is difficult to perform due to application 

of the automatically corrected time step. 

The results in Figs 6-9 and Figs 10-12 differ 

from the ones presented in Figs 1-5 because the 

Peclet number is ten time lower (1 comparing to the 

previous 10), so that convective and conductive heat 

transfer is of the same order here. 

There are revealed some questions to investigate 

more in detail, e.g. growing of the inaccuracy of 

computation by large time values (after 100-200 

depending on the parameters) when unphysical data 

are got, e.g. temperature far from particle exceeds 

the particle temperature, which is impossible. 

Also by increasing the temporal approximations, 

the number of the grid points by space is growing 

(every additional term in Taylor series by time 

means increase of the order of spatial derivatives by 

2), and the difference between spatial derivatives 

inside the numerical domain and outside of it 

becomes more and more substantial. 

 

 
Fig. 10. Results for accuracy 0.01, n=1, t=50,9 

 

 
Fig. 11. Results for accuracy 0.01, n=2, t=56,0 
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Fig. 12. Results for accuracy 0.01, n=4, t=48,3 

 

Figs 10-12 show ones more that for this task all 

four first approximations by time give close results. 

 

 

6 Conclusion 
The examples considered here have clearly 

demonstrated an effectiveness and simplicity of the 

strategy proposed for the numerical solution of the 

non-stationary non-isothermal Navier-Stokes 

equations, as well as any other first-order by time 

partial differential equation array. An order of the 

equations by spatial variables has no matter.  

The strategy is based on application of a Taylor 

series by time for the computation of the solution 

sought by its temporal derivatives. These temporal 

derivatives of the functions are expressed from the 

outgoing equations through their spatial derivatives.  

The highest-order temporal derivatives used in 

the Taylor series for computation of the 

approximate solution are computed by 

differentiating the outgoing partial differential 

equations by time.  

Only the one Poisson equation has to be solved 

numerically in case of the full Navier-Stokes 

equation array. All the other computation are just 

based on the computation of the spatial derivatives 

and corresponding temporal derivatives through 

them directly using the equations obtained in the 

strategy proposed here.    

The strategy of such numerical solution of the 

boundary problems for the partial differential 

equations has been considered for a few diverse 

examples.  

The efficiency and simplicity of the method is 

achieved through a substitution of a solution of the 

finite-difference (or finite-element, etc.) equations 

in the known numerical methods with a simpler 

procedure of the spatial differentiation and further 

computation of the Taylor series.  

Proposed strategy is going to be proved on 

different boundary problems for the partial 

differential equations to study all the pros and cons 

for its further implementation into a practice.  

Important to underline that the proof of the 

method proposed was successfully done also 

through the comparison of the numerical solution 

with the exact analytical solution got for one case 

using the method of fractional differentials. 
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