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Abstract: - In this paper the similarity solutions of the Prandtl boundary layer equations describing a non-
Newtonian power law fluid past an impermeable flat plate, driven by a power law velocity profile

U =By° (B>0) have been investigated. It is shown that there are analytical solutions for any

n>0, n#2 and any —1/2< 0 <0. We give a method for the determination of the power series solutions

to the momentum equation and we estimate the convergence radius of the proposed solutions.
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1 Introduction
The problems of heat and mass transfer in two-
dimensional boundary layers on continuous
stretching surfaces, moving in a fluid medium, have
attracted considerable attention during the last few
decades. There are numerous applications in
industrial manufacturing processes, such as rolling,
wire drawing, glass-fiber and paper production,
drawing of plastic films, metal and polymer
extrusion and metal spinning.

For Newtonian fluids, the laminar boundary
layer to en exterior power law velocity profile of the

form U = By® was investigated by Weidman et al.
[23] for a large range of the power law parameter
O . An analytical solution of the momentum
equation in terms of Airy function was proposed for
the case o =—1/2. The power law velocity profile

form U =By® was proposed by Barenblatt [3]

for the mean velocity to fully developed turbulent
shear flows, and in [4] Barenblatt and Protokishin

proved that o =3/(2 1TnRe).

Recently, Magyari et al. [21] have examined the
effect of a lateral suction/injection of the fluid for
the existence of similarity solutions in the
Newtonian case. It was shown that while for
0 =-2/3 the flow over an impermeable plate to
power law shear is not possible, the presence of
suction allows for a family of boundary layer
solutions. In the case o =-1/2, the solutions
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were found both for suction and injection, and the
skin friction parameter is independent of the
suction/injection parameter.

For both Newtonian fluids [13] and non-
Newtonian fluids [14] Guedda has given a
theoretical analysis of the existence of the boundary
layer similarity flows for a range of exponents o
and B.

The study of non-Newtonian fluid flows has
considerable interests, this is primarily because of
the numerous applications in several engineering
fields. One particular non-Newtonian model which
has been widely studied is the Ostwald-de Waele
power law model, which relies the shear stress to the
strain rate by the expression

n-1 a_u
dy’

ou

= 1| — 1
7’-xy :any (D

where [y is a positive constant, and n >0 is

called the power law index. The case n<1 is
referred to pseudo-plastic or shear-thinning fluid,
the case n>1 is known as dilatant or shear-
thickening fluid. The Newtonian fluid is a special
case where the power law index n=1.
For Newtonian fluid with ¢ =0 the problem of
laminar boundary layer problem is described by the
famous Blasius equation [5].

Our interest has been motivated by the work of
Cossali [11]. In this paper the similarity flow over
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an impermeable flat plate driven by a power law
velocity profile for Newtonian fluid has been
considered, for which power series solutions were
found for all the allowed range of the parameter O .
The aim of the present paper is to present
analysis for the steady-state laminar boundary layer
flow, governed by the Ostwald-de Waele power law
model of an incompressible non-Newtonian fluid
driven by a power law velocity profile. A
generalization of the usual Blasius similarity
transformation is used to find similarity solutions.
Using a shooting method, we establish the existence
of analytic solutions, i.e., solutions are expandible in
convergent power series to the momentum boundary
layer equation under the general case of the power
law velocity profile, thus extending the classical
Blasius result for the shear driven case and Cossali's
results for non-Newtonian fluid flow when n #2.
Some properties of the solutions are discussed
depending on the viscosity power law index.

2 Derivation of the problem

Consider a steady two-dimensional laminar flow of
an incompressible fluid of density o, past a semi-
infinite flat plate. Let (x,y) be the Cartesian

coordinates of any point in the flow domain, where
Xx -axis is along the plate and y -axis is normal to

it. The continuity and momentum equations can be
simplified, within the boundary-layer
approximation, into the following equations [2]:

ou ov
—+—=0 2
8x+ay @

and

ou ou 1097y
—ty—=— ,
dy p Oy

3)

u
ox

where u and v represent the components of the
fluid velocity in the direction of increasing x and

Vo Tyy denotes the shear stress. Equations (2) and

(3) are accompanied by the boundary conditions

u(x,0)=0, v(x,0)=0 and lim u(x,y)=U,

y—>o0
“)
where U =By° as y-—oo. In term of the

stream-function ¥, which satisfies
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1 oy
= =—— 5
" (5)

equations (2) and ( 3) can be reduced to the equation

n—1 821/

ay2

821//

8y2

dy o’y dydy 9

dy ydx ax gy2 'y

b

(6)

where 4. = o/ p, withthe boundary conditions

Y (1.0)=0. ¥ (x.0)=0, %)
dy ox

and
im 2% (x.0)=U. ®)

To look for similarity solutions we define the stream
function ¥ and similarity variable 77 as

w=bx"%fap, n=axPy,
and f

determined, and f(77) denotes the dimensionless

stream function. Using (6) and (9) we find that the
profile function f satisfies

where a,b, are constants to be

’

pa— —_ V4 _1 ”
ﬂcaznﬂbznx (a+2B)n ﬁof |n I j
_a,a2b2x—2(06+ﬂ)—lﬁp//
+(a+ Batbix~2arh-1 2 — g
(10)

Equation (10) is an ordinary differential equation if
and only if

(2-n)a+(1-2n)p=1, (11)

a+ ,5 = M ; the scaling relation, i.e.,
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_ M(2n—1)—1’ _ M(2—n)+1’ 1)
n+l n+l
and the parameters a and b satisfy
wa? o2 =1, (13)
Moreover,
M=- g (14)

2-n)o+(@m+1)

So, function f satisfies the following boundary
value problem

’

(If”l”‘lf”] —off "+ Mf 2 =0, (15)
f(©0)=0, f/(0)=0, lim f'(m)=An°, (16)
n—>eo

where the prime denotes the differentiation with
respect to the similarity variable 77 , and

A=B/@" %), oc+l=—alB. (17

With the choice a =1 we get that

b=pl@ A=y px2 (18)

and the non-dimensional velocity components are
obtained by f as follows:

w(x,y) = pt M @y, )

v(x,y) = x " Dlara + ' op} - 20)

For o0 =0, equation (15) is referred to as
generalized Blasius equation [8] and for the
Newtonian case, equation (15) coincides with the
well-known Blasius equation

f”’+%ﬁ"’:0. (21)

If 0 =0, then (16) is reduced to
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f0)=0,f(0)=0, lim f'(n)=A.

70

(22)

The case n =2 is not considered in this paper. We
note that for o0=0 , n=2, numerical results

were obtained in [18] and [20].

3 Analytic solutions

The Blasius function is defined as the unique
solution to the boundary value problem (21)-(22)
with A=1. Blasius [5] derived power series
expansion which begins

I > 1 125 11 3 g
~—m? o +
Fm 27”7 2407/77 1612807/77
5 411
- ...,
42577927/ U
(23)

where ¥ is the curvature of the function at the

origin. A closed form for the coefficients is not
known. However, the coefficients can be computed
for

k k+1
oo 1\ Ay 3k
fm=n zkzo(_ij m’] ;
(24)

from the recurrence

k—1(3k—1 .
Ak :ij()( 3y JArAk—r—l’ if k=2,
(25)
with Ay =A;=1. Numerous papers were

published on the numerical determination of % .
E.g., Howarth [16] has obtained ¥ = 0.332057.

Abbasbandy [1] proposed an  Adomians's
decomposition method to the Blasius's problem and
obtained ¥ =0.333329 with a 0.383% relative

error, and Tajvidi et al. [22] used a modified rational
Legendre method, to show that ¥ =0.33209 with

a 0.009% relative error. By the fourth-order Runge--
Kutta  method Y is determined as

¥ =0.33205733621519630 (see [9]). A fully
analytical solution to the Blasius problem has been
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found by Liao [19] using the homotopy analysis
method.

Our objective is to show the existence of analytic
solutions to the boundary value problem (15)-(16)
and to determine the approximate local solution
f(n). We use the shooting method and replace the
condition at infinity by one at 77 =0. Therefore,

(15)-(16) is converted into an initial value problem
of (15) with initial conditions

fO=0, f(O=0 fO=y. (26

We suppose that n>0, n#2 and f~ is

positive in the neighborhood of zero. We consider
(15) as a system of certain differential equations,
namely, the special Briot-Bouquet differential
equations. For this type of differential equations we
refer to the book by Hille [15], and by Ince [17]. In
order to establish the existence of a power series
representation of f(77) about 7 =0 we apply

the following theorem:

Briot-Bouquet Theorem [10]: Let us assume that
for the system of equations

0;_? =u1(&,21(§), 22(£)),

dzy 27
fd_g =uy(&,21(£),22(5)),

where functions u#; and wu, are holomorphic

functions of &, z;(£), and z,(&) near the

origin, moreover

u1(0,0,0) = u5(0,0,0) =0, (28)

then a holomorphic solution of (27) satisfying the
initial conditions z;(0)=0, z,(0)=0 exists if
none of the eigenvalues of the matrix

o Juy

%10,0,00 9220,0.0) 29
duy ouy

91 10,0,0)  9221(0.0.0)

is a positive integer.
The Briot-Bouquet theorem ensures the existence
of formal solutions
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oo k oo k
9| :zk=0 akf > 2 = Zk=0 bkf 30)

to system (27), and also the convergence of formal
solutions.

This theorem and the method presented here have
been successfully applied to the determination of
local analytic solutions of different nonlinear initial
value problems (see [6]-[8]).

Let us consider the initial value problem (15)-(26),
and take its solution in the form

fa=n%0m°), ne (0, 7.), 3D

where function Qe C 2(0, n.) for some positive

value 7). . Substituting (31) into (15) one can get
537735—1Qw+ 352 (5+ 1)7725—1Q”
+8(5+D(+2n° 0
+4 (277Q + 5775+1Q’)2

[ZQ +8(5+3m°0 + 527725Q”]]_n
—%UZQ[ZQ +3+3m°0 + 5277%”]2‘” =0.
(32)

Let us introduce the new variable &  such as

&= 775 and function Q as follows

&) =ag+aré+aé*+2(5),  (33)

are real constants, and

ze C20.n2), 20)=0,  Z(0)=0,
2(0)=0. Then Q fulfills the following
properties 0(0)=qay, Q' (0)=aqy,
Q7(0)=2a,, Q7(&)=z"(£). From the initial
condition f”(0) =20(0) =y we have

where ap,ap,ay

with

ag = (34)

NSREC

We restate the third order differential equation in
(32) as a system of three equations
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u (626,22 53 =21 (6)
u3(6,21(6),22(6), 3(EN =6 22(&)p (35
u3(6.21(§). 228 53N =¢53(9)

with choosing

z1(8) = z($) 7(0)=0
(&) =7 with z,(0)=0F (36)
35 =2 0

as follows

U (59 <1 (é)’ %) (5)9 <3 (5)) = 5 or
uj (f, 4| (5)’ %) (5)9 <3 (5)) = g Z?,) >
us (5, 4| (5)’ 22 (g)’ <3 (g)) = f 23

3_
__455 2

)3

¢m4wn§+a2§2+zﬁfﬂK2ﬂ%§)
~3951 (20, + 15(¢)
—%¥@0+%§+%§2+Zﬂﬁy
—%%Lm4ﬂh§+az§2+Zﬂfﬁ
(a) +2a,¢ + 2, (£))

_%(al +2ay¢ + 25 (€))?

_M%(al +2a,& + 25 (E)).

5 (37)

where

K(&)=2ag + (S +1)(S +2)a &
+2(8+1)(26 +1)ay&? (38)
+22)(£) + 8(5+3)ézr () +67E7 239,

We apply the Briot-Bouquet theorem for the system
of three equations in (37). In order to satisfy
conditions

11(0,0,0,0) = u,(0,0,0,0) = u3(0,0,0,0) =0
(39
in the corresponding Briot-Boquet theorem the
following connection yields
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—-2=-1, 40
o “0

therefore & =3, and for the coefficients of & -1
and &0

a 2-n 4M 20
—ap|2a ——an——a =0, 41
27, %0(240) 2770 91 @b
2 41(2a9)* " (21-10n)
27n
(42)
_20M aya —Ea =0
27 10 g T2
respectively. Applying (34) for (41) and (42)
a =~ 2 _omp? | 3)
S\ n
ar =
8! n n
(44)

Therefore, the eigenvalues of matrix

aul /8z1 aul /822 al/ll /823
duy /0z; duy/dzy duy/0z3 (45)
duz/dz; duz/dz, duz/dz3

at (0,0,0) are 0. Since all three eigenvalues are

non-positive, referring to the Briot-Bouquet theorem
we obtain the existence of unique analytic solutions

Z1, Zo and z3 near zero. Thus, there exists a
formal solution

fay=n>3 agn, (46)
k=0

where the first three coefficients are known (see
(34), (43), (44)).

For the determination of coefficients a;, k>2,
we shall use the J.C.P. Miller formula (see [16]):

Lo P (p+1L .
D ckX = > di(p)x*, @
k=0 k=0
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where dg(p)=1 for c¢y=1, and

=
di(p)= n D Wp+Dk= )= jld j(p)eg— ;.
j=0
(k=1).
(43)

From (46)

2—n
[P = { > Bk +2)(3k + 1)akn3"}
k=0

_ z Ak773k ’
k=0

(49)

1-n
(7] = { > Gk +2)(3k + 1)ak773k}
k=0

— Z Cank ,
k=0
(50)

where coefficients A;, C; can be expressed in

terms of a; (k=0,1,...)-
equation (15) we get

(oo}

> 3k +5)3k +4)(3k +3)ag 7
k=0

_%kzz“oaknyc kgb Ak773k

Substituting them into

n

2
M [oe) oo
+—{77 D (3k+2)ak773"} 3 it =o.
k=0 k=0
(51)

Applying the recursion formula (48) for the
determination of Aj; and comparing the proper
coefficients in (51) one can have the necessary
values of @k for some given values of n, M,
« . We note that the coefficients obtained by this
method for n=1, o0 #0 are the same as the
coefficients of the power series approximation given
by Cossali [11]. Moreover, if n#1 and o0 =0,

coefficients dk are fully consistent with the result
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obtained in [8]. If n=1, o0=0,
coincide with the Blasius results given in (43).

the coefficients

4 Some special cases

In this section we show some numerical results
obtained for three different values of n (0.5, 1,
3) and three different values of o (—1/2,
—1/3, 0). Fig. 1-3 represent the effect of power-

law index on f (17)/n° c=-1/2,
o =-1/3, 0=0. Fig. 4-6 exhibit how the graph

for

of f ,(77)/ n°  changes for different values of n
(n=05,n=1,n=3). :

The power series approximations can be determined
as it was shown in Section 3. Using formula (51)
after the comparison of the proper coefficients one

can determine a; for k>0. -

(i.) For 0 =0, we refer to the paper [8], when ¥
is obtained by a method wusing Topfer-like
transformation from the initial value value problem

(g=8)

(lg//ln—lg//> n ni lgg// -0,

g(0) =0, g'(0) =0, g"(0) = 1.
(52)

Solving problem (52) numerically, one gets ¥ as

. — ’, i
V= [llmn—>oo g (U)T”“ (53)
(see Table 1.) Note, that for n=1 we get
¥ =0.332057 as it is known [5]. The radius of

Me

found by applying the ratio test. The first 10 terms
of the sequence were evaluated and the numerical

results for 77,. are presented in Table 1.

convergence for the series solution can be

For 0=0, can be

formulated as 1mm

coefficients a; and ap

3—n
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__21-10n_,5-2n

a =
2 2 (ne1)2

and further coefficients can be obtained from (51).

n 4 Ne

0.5 0.33123 | 3.579
1 0.33206 | 5.688
3 0.46243 | 10.225

Table 1. Case o =0

(ii.) We remark that the Topfer-like transformation
can be applied can be to (15) for the determination
of ¥ by solving

(Ig//lnflg//) _agg// +Mg/2 -0,

2(0)=0,g'(0)=0,g"(0) =1
(54)

for g(ﬁ) and

-3
n+l+0(2—n)

¥ =| limp —seo g_(;;)

n

(55)

Then one can find the similarity solution by
2n—1 2-n

fap=y 3 gy 3 m.

For ¢ =-1/3 the numerical results are presented
in Table 2 and

2 3—n

__ 2
W= Sy T,

_ 4
a2 = 2
81n” (4n+1)

TQR1=100)1° "2 + n(26 = 100)y* ™" +5n°9°]
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h 4 Ne
0.5 0.3975 |1011
1 0.3817 | 109
3 0.5087 |13

Table 2. Case o =-1/3

(ili.) Case o0 =-1/2 is a special case, when
1
Y= (%)Z (see [14]). Applying (43), (44) for the

determination of the coefficients aj from (51) we

obtain
3—n
a; =——1 (7/ +2n7/2j :
35102 7
1
6122
98n*

: ((21—10n)y5‘2” +4n(13-5n)y* " + 20n2;/3)

2,0

n=0.5

Figure 1. 0 =-1/2
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2,0 For some special values of n with 0 =—1/2 the
1 =3 following series approximations are valid:
| n=20.5;

1.5

» f(n)=n?%(0.8888883885 —0.8193872876-10" 7

M +0.1522200957 1017 - 0.3355516709-10~27°
+0.9224307230-10 252

rim) M
e —~0.2690360667-107>77')
0,5—: -1
£(n)=n?(0.33333333-0.3703703704 - 102 1’
004 | |  +0.5144032922-10~*77° - 0.4272260788 10~ °7”
o, P 40.4644272544 107312
Figure2. 6 =—1/3 ~0.5218400155-107'971%)

n=1.>5;

£(n)=n1%(0.2911934882 — 0.1804899031-10 27"
+0.1059595232-10"47% - 0.8568983478-10~8°
+0.1872900943 10710712
~0.5576286295-10"1371%)

2,0
' 1
\ 10 | o= -1
-0,2 - 1,5+ 1
Figure 3. 0 =0 ] ’_’0:_3_\
Fin) LO
n 7 nc ,nﬁ ag=10
0.5 1.7778 | 1.439 05
1 0.6667 |4.465
0,0 T T T T |
3 0.6057 |6.951 | 2 4 & g 10
J n
Table 3. Case ¢ =—1/2 Figure 4. n=0.5
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20 -1
] 9773

1,5 .
] gL

fin) *
,nU

0.5

00 ’ T T T T 1
] 2 4 6 2 10

|
Figure 5. n =1

2.0 - 1

Figure 6. n =3

4 Conclusion

In this paper a generalization of the usual Blasius
Transformation is applied to find similarity
solutions to non-Newtonian fluid flow over an
impermeable flat plate driven by a power law
velocity profile. We have generalized the power
series formulation of the similarity solution of the
Newtonian flow obtained by G.E. Cossali [11] to
non-Newtonian fluid flow with Ostwald de Waele
power law nonlinearity when for the power law
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index the condition n # 2 holds. The coefficients of
the more general problem coincide with the
coefficients obtained for problems related to special
values of the parameters. The effect of parameters
n and o are exhibited by numerical results.
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