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1 Introduction 
Progressive capillary-gravity waves on an irrotional 
incompressible inviscid fluid of constant density 
with surface tension in a two-dimensional channel 
of finite depth have been studied since nineteen cen-
tury. Assume that a coordinate system moving with 
the wave at a speed is chosen so that in reference to 
it the wave motion is steady. Let H be the depth of 
water, g the acceleration of gravity, T the coefficient 
of surface tension, and ρ the constant density of the 
fluid. Then there are two nondimensional numbers 
which are important and defined as )/(2 gHcF = , the 
Froude number, and )/( 2gHT ρτ = , the Bond number 

When F is not close to 1, the linear theory of 
water waves is applicable. But when F approaches 
to 1, the solutions of linearized equations of water 
waves will grow to infinity (Peters and Stoker [11]). 
Therefore for F close to 1 nonlinear effect must be 
taken into account and thus 1F = is a critical value. 
The first study of a solitary wave on water with 
surface tension is due to Korteweg and DeVries [10] 
after whom the K-dV equation with surface tension 
effect is named. A stationary K-dV equation with 
Bond number not near 1 3  can also be formally 
derived by different approaches. However, if τ is 
close to 1, the formal derivation of the stationary K-
dV equation fails. Thus 1 3τ = is also a critical value. 

It becomes apparent that the problems for F near 
1 and forτ near 1 3 depend on each other and are 
difficult because they are not only strongly 
nonlinear, but also very delicate. Since the full 
nonlinear equations for the water waves are too 

complicated to study, it is of interest to study model 
equations. In Hunter and Vanden-Broeck’s work [8], 
a fifth order ordinary differential equation 
considered as a perturbed stationary K-dV equation 
was obtained with the assumption that 2

21F F= + є , 

11 3τ τ= + є  and є is a small positive parameter. By 
integrating the fifth order ordinary differential 
equation once and set the con-stant of integration to 
be zero, then the model equation becomes 

2
2 1

3 12 + 0
2 45xx xxxxFη η τ η η− − =                (1) 

Equation (1) has been studied extensively by 
many authors [1-7, 9] and several types of solutions 
have been found, such as periodic solutions [1, 5, 6, 
7], solitary wave solutions [2-7], generalized solitary 
wave solutions (solitary waves with osciallatory tails 
at infinity) in the parameter region

1 0τ < and 2 0F >  
[1,9], etc. 

We add a bump )(xby = at the bottom of the 
two-dimensional ideal fluid flow and then derive a 
forced model equation (56), 

2
2 1

3 12
2 45xx xxxxFη η τ η η− + − = b . 

Equation (56) has been studied in [12-16] and 
several types of solutions have been found, such as 
unsymmetric solitary wave solutions [14], solitary 
wave solutions [15], and generalized solitary wave 
solutions [16].  

However, for Case 0,2,3 and 4 in section 3, the 
proof of existence of bounded solutions of (56) is 
not available at present; we construct asymptotic 
solutions in section 4 for these four Cases by 
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assumingη and bump b to be small. In section 5, we 
also construct unsymmetric solitary wave solutions for 
Case 1, 5, 6,7 and 8. 
 
 
2 Derivation of the model equation 
We consider the two-dimensional flow of an irrotional 
incompressible inviscid fluid of constant densityρ∗  with 
surface tensionT ∗ in a two-dimensional channel of finite 
depth. A rectangular coordinate system ( ,x∗  )y∗ is 
chosen such that the flow is bounded above by the free 
surface ( , )y x tη∗ ∗ ∗ ∗= and below by the rigid horizontal 
bottom with a bump ( )y H x∗ ∗ ∗= − +b . 

The governing equations are: 
In , ( )x H x y η∗ ∗ ∗ ∗ ∗−∞ < < ∞ − + < <b  

0
x x y y
φ φ∗ ∗ ∗ ∗
∗ ∗+ = ,                                  (2) 

at the free surface, y η∗ ∗=  

0
t x x y

η φ η φ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗+ − = ,                           (3) 

3
2

2
2 2

2

1 ( ) .
2 2(1 )

x x
t x y

x

T Bg
η

φ φ φ η
ρ η

∗ ∗

∗ ∗

∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
+ + + − =

+
        (4) 

at the bottom, ( )y H b x∗ ∗ ∗= − +  

0
y x x

φ φ∗ ∗ ∗
∗ ∗ ∗− =b                                  (5) 

Where ( , , )x y tφ∗ ∗ ∗ ∗ is the potential function, B∗ is an 
arbitrary constant, and H is the depth when the 
bump ∗b  is zero. In order to investigate long waves 
and derive asymptoyic solutions, it is conventient to 
introduce the following dimensionless variables: 

1
2

1
2

1
2

2

2

( )4

( , )

( )

( )

( / )

, , ( ) ,

( , ) ,

( , , ) ( , , ),

, ( ) ( ),
M

y gHx H
L H L L

x t B
A

gH

H

LA gH

H LT
HgH

x y t t

x t B

x y t x y t

x x

η

ρ

η

φ φ

τ

∗∗

∗ ∗ ∗ ∗

−∗

∗

∗

∗ ∗ ∗ ∗

∗ ∗

⎫= = = ⎪
⎪= = ⎪
⎬

= ⎪
⎪
⎪= = ⎭b b

    (6) 

where M is a positive integer to be chosen later. 
In terms of the nondimensional variables (6), (2)-(5) 
become: 

In , 1 ( )Mx x yβ αη−∞ < < ∞ − + < <b  

0,xx yyβφ φ+ =                                  (7) 

At the free surface, αη=y  
2 1 0,t x x yβ η αφ η β φ−+ − =                    (8) 

2 2 1 2( )
2t x y
αβ φ φ β φ η−+ + +

3
2

2

2 2
,

2(1 )
xx

x

Bβτη
αα βη

− =
+

       (9) 

at the bottom, 1 ( )My xβ= − + b  

1 0.M
y x xφ β φ+− =b                         (10) 

In (7)-(10), ,α β , and τ are nondimensional 
parameters 

2
2, ( ) , .A H T

H L gH
α β τ

ρ

∗

∗= = =              (11) 

We seek solutions for periodic water waves of 
wavelength λ∗ , and introduce the dimensionless 
wavelength 

,
L
λλ
∗

=                                  (12) 

The Froude number F is defined as 

1
2 0

.
( )

x
cF dx

gH

λα φ
λ

= = ∫                      (13) 

Since we are interested in small amplitude and 
shallow-water waves withτ near 1

3 , in (7)-(10), we 
take  

2 ,α β= =є є.                         (14) 
and expand , ,η φ τ , and B as 

2

2
0 1 2

2
0 1 2

21
1 23

2
0 1 2

2
0 1 2

Bx

B B B B

F F F F

η η η η

φ φ φ φ

τ τ τ

⎫= + + +
⎪

= + + + + ⎪
⎪

= + + + ⎬
⎪= + + + ⎪
⎪= + + + ⎭

L

L

L

L

L

є

є є

є є

є є

є є

є є

               (15) 

Substituting (14) and (15) into (7)-(10), taking M 
= 4 in (10), and expanding at the boundary condition 

0y = and 1y = − , we obtain in ,x−∞ < < ∞  − <1 y < 0  
2 3

0 1 2 0 1( ( )) (
xx xx xx yy yy

Oφ φ φ φ φ+ + + + +є є є є є             
2 3

2 ( )) 0,
yy

Oφ+ + =є є                          (16) 

at 0=y , 
2 2

0 1( ( ))t t Oη η+ +є є є  
2 3

2 0 1 2
02

( ){( ( ,0, ) ( ))}
x

B B B O x t Oφ+ + +
+ + +

є є єє є
є

2 3
0 1 2( ( ))x x x Oη η η+ + +є є є  

1 2 2
0 0 1 0{( ( ,0, ) ( ( )) ( ,0, )y yyx t O x tφ η η φ−− + + +є є є є  

2 2
1 0 1 1( ( ,0, ) ( ( )) ( ,0, )y yyx t O x tφ η η φ+ + + +є є є є
4 2 2 3

2 3( ))  ( ( ,0, ) ( )) ( ( ,0, )y yO x t O x tφ φ+ + + +є є є є  

2 4( )) ( ))}O O+ +є є = 0,                  (17) 

2 2
0 1( ( ,0, ) ( ,0, ) ( ))t tx t x t Oφ φ+ +є є є  
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2 32
0 1 2

2

( ) {{
2

B B B O+ + +
+

є є єє
є

 

2
0 0 0 1 ( ( ,0, ) ( ,0, )) ( ,0, )x xy xx t x t x tφ η φ φ+ + +є є  

2 3 2 1 2
2 0 0 1( ,0, ) ( )}  {( )x y yy yx t Oφ φ φ φ−+ + + + +є є є є є  

2 3 2 2 3
2 0 1 2( )} } ( ( ))y O Oφ η η η+ + + + + +є є є є є  

2 3 2
1 2 0 1 2

1 ( ( ))(
3 xx xx xxOτ τ η η η− + + + + +є є є є є є  

3 10( ))(1 ( ))O O+ +є є  
2 3 4 5 2

0 1 2 3 4
2

( ( )) ,
2

B B B B B O+ + + + +
=

є є є є є
є

   (18) 

at 1y = −  

2
0 1 2( ( , 1, ) ( , 1, ) ( , 1, )y y yx t x t x tφ φ φ− + − + −є є  

2 3
3 4 5 0 1 2

3 2

( )( , 1, ) ( ))  ( )y
B B B Ox t Oφ + + +

+ − + −
є є єє є є

є
 

 0 ( , 1, ) ( ))x xx t Oφ+ − + bє = 0.                  (19) 

From (16) to (19), we have 

1( )O −є : 

0 ( ,0, ) 0.y x tφ =                         (20) 
(1)O : 

0 ( , , ) 0,yy x y tφ =                        (21) 

0 0 1 ( ,0, ) 0,x yB x tη φ− =                        (22) 

0 0 0( ,0, ) 0,xB x tφ η+ =                        (23) 

0 ( , 1, ) 0.y x tφ − =                        (24) 

From (21) and by (22) or (24), it follows that 
0 0 00, ( , , ) ( , ).y x y t x tφ φ φ= =                (25) 

( )O є : 

0 1( , ) ( , , ) 0,xx yyx t x y tφ φ+ =                       (26) 

0 1 1 0 2 ( ,0, ) 0,x x yB B x tη η φ+ − =                       (27) 

0 1 1 0( ,0, ) ( ,0, )x xB x t B x tφ φ+                      
2
0 ( ,0, ) 1

1 02 3 0,y x t
xx

φ η η+ + − =                       (28) 

1 ( , 1, ) 0.y x tφ − =                       (29) 

From (26) and by (29), we found that 

 
1 0( , , ) ( , )( 1),y xxx y t x t yφ φ= − +                       (30) 

and 
2

1 0 1( , , ) ( , )( ) ( , ),
2x xxx x
yx y t x t y R x tφ φ= − + +      (31) 

From (22), (23), and by (30), we obtain 

0 1,B =                                  (32) 

0 0.xφ η= −                              (33) 

From (28) and by (25), (31), and (32), it follows 
that 

1 0 1 1 0
1( ,0, )
3xx xxx x xx t Bφ η η η= − +         (34) 

1 ( , ).xxR x t=                      (35) 

2( )O є : 

1 2( , , ) ( , , ) 0,xx yyx y t x y tφ φ+ =              (36) 

0 0 2 1 1 2 0 0( )t x x x xB B Bη η η φ η+ + + +               

0 1 3 0 at 0,yy y yη φ φ− − = =             (37) 
2
0 1

0 2 1 1 2 0 2 12 3t x x xxB B ηφ φ φ η η η+ + − + + −                     

1 0 0 at 0,xx yτ η− = =             (38) 

2 ( , 1, ) 0.y x tφ − =             (39) 

From (36), (39) and by (31), we found that 

2 0 1
1( , ) ( , ) ( , ),
3 xxxx xxR x t x t R x tφ= − −          (40) 

3 2

2 0( , , ) ( , )( )
6 2 3y xxxx
y y yx y t x tφ φ= + +  

2 ( , )( 1),R x t y+ +                      (41) 

and 
  

4 3 2

2 0( , , ) ( , )( )
24 6 6xxxx
y y yx y t x tφ φ= + +  

2

2 3( , )( ) ( , )
2
yR x t y R x t+ + +            (42) 

From (27) and by (32),(41) 

2 1 1 0( , ) .x xR x t Bη η= +              (43) 

From (37) and by (30),(32) ,(33), 

2 0 1 1 2 0 0 3( 2 ) ( ,0, )x t x x yB B x tη η η η η φ= − − − − +     (44) 

Differentiating (38) about x and by (33), (35), 
and (42) 

2 0 3 1 1 2 0 0( )x t xx xx xR B R Bη η η η= − − + −  

1 1 0
1 .
3 xxx xxxη τ η+ +             (45) 

By (34), (35), (40), and (43)  
1 0.=B                          (46) 

By (44), (45), and (46) 

1 0 2 0 0 0
1 2 2 3
3 xxx t x xBη η η η η= − − +  

1 0 3 3 ( ,0, )xxx xx yR x tτ η φ− + +      (47) 

( )O 3є : 

2 3( , , ) ( , , ) 0,xx yyx y t x y tφ φ+ =                  (48) 

3 0( , 1, ) .y xx t B bφ − =              (49) 
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From(48), (49) and by (42), we obtain 

3 0 2
1 1( , 1, ) ( , ) ( , )
45 3y xxxxxx xxx t x t R x tφ φ− = −              

3 3( , ) ( ,0, )xx yR x t x tφ+ +             (50) 

By (32), (33), (43), (46), and (50), we have 

0 2 0 0 02 2 3t x xBη η η η+ −
1 0 0

1 .
45xxx xxxxx xτ η η+ − = b   (51) 

The Froude number F is defined and expanded as  

( )F F O= + + +0 1 2
2 3єF є F є  

2 32
0 1 2

02

( )( ( ))
0 x

B B B O O dx
λ

φ
λ

+ + +
= + +∫

є є єє є
є

 

0 2 00
( ).xB B dx O

λ
φ

λ
= + + + +∫

2
2 3

1
єєB є є       (52) 

By (33) and the mean value of periodic solution 
over a period is zero, we found that 

0 00 0
0xdx dx

λ λ
φ η= − =∫ ∫ . 

If 0η is a solitary wave solution with the 
properity that 

0 00 0xdx dxφ η
∞ ∞

= − < ∞∫ ∫ ,                 (53) 

then, withλ = ∞ , the term 

00

1
xdx

λ
φ

λ ∫
 

in (52) will be zero. We shall see that all the solitary 
wave solutions discovered in the following chapters 
will satisfy (53). 

Therefore, we have 

0 0B F= , 1 1B F= , 2 2B F= . 

and then (51) becomes 

0 2 0 0 0 1 0 0
12 2 3
45t x x xxx xxxxx xFη η η η τ η η+ − + − = b .    (54) 

Next, we assume 0 0tη = in equation (54), 
integrate (54) once and set the constant of 
integration to be zero, then we have the following 
model equation 

2
2 0 0 1 0 0

3 12
2 45x xx xxxxFη η τ η η− + − = b .     (55) 

In the following sections, we shall useη for 0η in 
equation (55), that is, 

2
2 1

3 12
2 45xx xxxxFη η τ η η− + − = b .    (56) 

and disscuss the solutions of the model equation (56). 
 
 
3 Problem Formulation  
We follow Zufiria [17] to construct a Hamiltonian 
associated to (56). 

When 0=b , we rewrite (56) as 
2

1 2
13545 90 0

2xxxx xx Fη τ η η η− − + = .       (57) 

We multiply xη− to (57) and integrate the 
resulting equation, then equation (57) has first 
integral as 

2 2 2 3
2 1

1 45 4545
2 2 2x x xxx x xH Fη η η η τ η η= + − + − ,    (58) 

where H is a constant. Introducing the change of 
variables 

1 1 1

2 2

45xxx x ,

xx x ,

q , p
q , p

η η τ η
η η

= = − ⎫⎪
⎬= = ⎪⎭

 

then (58) becomes 

( ) 2 2
1 2 1 2 2 1 2

1, =45
2

H q q , p , p F q q+  

2 3
1 2 1 2 1

45 45
2 2

p p p qτ− − − ,     (59) 

and we have 

( ) ( ) ( , )z
dz J H z Az g z f z
dx

μ= ∇ = + ≡ ,          (60) 

where 2
1 2( , )Fμ τ= ∈R , 

1

2 4

1

2

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

q
q

z , J
p
p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= ∈ =
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟

−⎝ ⎠⎝ ⎠

R
,         (61) 

and 

1
2135

2 12

0 0 0 1 0
0 0 1 45 0

( ) =
90 0 0 0
0 1 0 0 0

A , g z
F q

τ
−⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠

.    (62) 

Therefore (59) is a two degree of freedom 
Hamiltonian with two parameters 1τ and 2F . Because 
different parameters 1 2( , )Fτ in (59) give rise to 
different eigenvalues λ  for the linearized system of 
(60) at the origin, we divide the parameter 
plane 1 2( , )Fτ into following nine cases  

Case 0 1 2( 0 0): =0,0,0,0,Fτ λ= = . 
Case 1 

1 2( 0): = , ; , 0,F r wi r wτ λ∈ > ± ± >R . 
Case 2 1 2( 0 0): =0,0, ; 0,F wi wτ λ< = ± > . 
Case 3 2

1 2 1 2( 0 0  (45 ) 360 0): ,F , Fτ τ< < + >  

1 2 1 2, ; 0w i w i w wλ = ± ± > > . 
Case 4 2

1 2 1 2( 0 0  (45 ) 360 0):,F , Fτ τ< < + =  
, ; 0wi wi wλ = ± ± >  

Case 5 2
1 2 1 2( 0, (45 ) 360 0):,F Fτ τ∈ < + <R  

= ; , 0a bi a bλ ± ± >  
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Case 6 2
1 2 1 2( 0 0, (45 ) 360 0):,F Fτ τ< + =>  

= , ; 0r r rλ ± ± >  
Case 7 2

1 2 1 2( 0 0, (45 ) 360 0):,F Fτ τ< + >>  

1 2 1 2= , ; 0r r r rλ ± ± > >  
Case 8 1 2( 0 0): =0 0 ; 0,F , , r rτ λ= ± >> . 

We construct asymptotic solutions in Case 0,2,3, 
and 4. 
 
 
4 Problem Solution  
In this section, we rewrite (56) as follows, 

2
1 2

345 90 45( ( )) ) ,
2xxxx xx F x fη τ η η η− − = − + ≡b  (63) 

and assume that there exist small-norm bounded 
solutions of equation (63) with small-norm bump 

1bδ=b in Case 0,2,3 and 4, and then construct its 
asymptotic solutions by expanding the solution as 

2
1 2( ) ( ) ( ) ...x x xη δη δ η= + +                 (64) 

where δ is a small parameter. Substituting (64) in 
(63), we obtain 
O ( )δ : 

1 1 1 2 1 145 90 45 ,
xxxx xx

F bη τ η η− − = −               (65) 
and 
O ( )nδ : 
 

1 245 90
xxxx xxn n nFη τ η η− −      

1
2

2

2

1
1

1 21
1 2

135( )         , odd

135( ) , even

n

n

n

i i n i

i i n i

n

n

ηη

ηη η

+ −
= −

−
= −

⎧− Σ⎪= ⎨
− Σ +⎪⎩

       (66) 

Where n = 2,3 
In the following, we shall construct bounded 

solutions for the first approximation
1η . 

 
 
4.1 Case 0  
In Case 0, 01 =τ and 2 0.F = Thus, equation (65) becomes 

1 145 .
xxxx

bη = −                              (67) 

We solve the initial value problem of (67) subject to 

1 1 1 1( ) , ( ) ,
x

x P x Qη η= =   
1 1 1 1( ) , ( )

xx xxx
x R x Sη η= =    (68) 

Where P, Q, R, S are constants and obtain 
2 3

1 1 1 1
1( ) (6 6 3 )
6

x P Qx Rx Sxη = − + −  

2 2
1 1 1

1 1(2 2 ) ( )
2 2

Q Rx Sx x R Sx x+ − + + −  

   
1

3
1( , )( 45 ( ))

6
x

x

S x G x t b t dt+ + −∫            (69) 

where 
31( , ) ( )

6
G x t x t= −                         (70) 

is the causal Green’s function of (67) subject to (68) 
with 0P Q R S= = = = .  

For 1( )xη to be bounded for 1x x≤ , the only case is 
that 1( )x Pη = for 1x x≤ with 0.Q R S= = = The integral 
term in (69) is bounded since

1( )b x is compact on the 
interval 1 2[ , ].x x Therefore, to have

1( )xη to be bounded 
for

2x x≥ , we also need
1( )xη to be a constant, that is, 

1 2 1 2 1 2( ) ( ) ( ) 0.x x xη η η′ ′′ ′′′= = = After some algebra, we obtain 
2

1
1( ) 0,

x

x
b t dt =∫

2

1
1( ) 0,

x

x
tb t dt =∫

2

1

2
1( ) 0

x

x
t b t dt =∫ . ( 7 1 ) 

Thus, if the bump 1( )b t satisfies (71), then we can 
rewrite bounded 1η as 

( )
1

2

1

1

1 1 1 2

2 1 2

,   ,

( , )( 45 ( )) ,   ,

( , )( 45 ( )) , ,

x

x

x

x

P x x

x P G x t b t dt x x x

P G x t b t dt x x

η

⎧
≤⎪

⎪⎪= + − < <⎨
⎪
⎪ + − ≤⎪⎩

∫

∫

(72) 

which is constant for
1x x≥ and 2x x≤ .There are infinitely 

many
1b that satisfy (71) and 1 1( 1) (1) 0b b− = = . 

 
 
4.2 Case 2  
In Case 2, 1 0τ < and 2 0F = . Thus, equation (65) 
becomes 

1 1 1 145 45
xxxx xx

bη τ η− = − .                    (73) 

We solve the initial value problem of (73) subject to 
initial conditions (68) and obtain 

2

1 2

( )( ) R S Qw ax P
w

η − +
= + 2 2( ) ( ( ))S RQ x cos w x a

w w
+ + − −  

3 ( ( )) ( , )
x

a

S sin w x a G x t
w

− − + ∫ 1( 45 ( ))b t dt−       (74) 

where 

2 3

( ( ))( , ) x t sin w x tG x t
w w
− −

= − .              (75) 

is the causal Green’s function of (73) subject to (68) 
with 0P Q R S= = = = . 

The integral term in (74) is bounded since
1( )b x is 

compact on the interval 1 2[ , ]x x . Therefore, to have 

( )1 xη to be bounded for all x a≥ , we need the 
cofficient of x term in (74) to be zero, thus 

2 0Qw S+ = .                            (76) 
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In addition, R must be zero if we require 1( )xη to be 
bounded when a →−∞ . Now, we rewrite the bounded 

1η as 

3

3

3

1

1 1 1 2

2 1 2

( ( )) , ,

( ) ( ( )) ( , )( 45 ( )) , ,

( ( )) ( , )( 45 ( )) , ,

S
w

x
S

w a
x

S
w a

P sin w x a x x

x P sin w x a G x t b t dt x x x

P sin w x a G x t b t dt x x

η

⎧ − − ≤
⎪
⎪= − − + − < <⎨
⎪
⎪ − − + − ≤⎩

∫
∫  (77) 

which is periodic for
1x x≥ and 2x x≤ and satisfy the  

initial conditions at x = −∞ with the following 
properties : 

2
1 1( ) ( ) 0wη η′ ′′′−∞ + −∞ = ,

1( ) 0η′′ −∞ = ,          (78) 
and

1( ) Pη −∞ = , an arbitrary constant. 
 
 
4.3 Case 3 with 1 2w w rational  
In this subsection, the eigenvalues of linearization of 
equation (63) in Case 3 are

1w i± and
2w i± and we 

assume that the ratio
1 2 1 2w w n n= is a rational 

number with 1 2( , ) 1n n = , 1 2,n n N∈ . To obtain an 
asymptotic solution, we solve the initial value 
problem of (65) subject to initial conditions (68) and 
obtain 

1
1 1( ) ( ) ( , )( 45 ( ))

x

x
x Y x G x t b t dtη = + −∫ .          (79) 

Where 
2 2( ) ( ) ( )Y x Acos w x Bsin w x= + 1 1( ) ( )Ccos w x Dsin w x+ +  

1 1
2 22

1 1 1 2( (45 ((45 ) 360 ) ))w Fτ τ= − − +  

1 1
2 22

2 1 1 2( (45 ((45 ) 360 ) ))w Fτ τ= − + + , 

{ }2
1 2

2 2 21 2

( ) ( ) 21
1 2( )

( ) ( ) ,Qw S sin aw
ww w

A Pw R cos aw− +

−
= + +

{ }2
1 2

2 2 21 2

( ) ( ) 21
1 2( )

( ) ( ) ,Qw S cos aw
ww w

B Pw R sin aw+

−
= + +

{ }2
2 1

2 2 11 2

( ) ( ) 21
2 1( )

( ) ( ) ,Qw S sin aw
ww w

C Pw R cos aw+

−
= − +

{ }2
2 1

2 2 11 2

( ) ( ) 21
2 1( )

( ) ( )Qw S cos aw
ww w

D Pw R sin aw− +

−
= − +  

and the causal Green’s is 

{ } 2 2
2 1 1 2 2 1 2 1( , ) ( ( )) ( ( )) ( ( )).G x t w sin w x t w sin w x t w w w w= − − − −  

Note that
1( )xη in (79) is bounded since

1( )b x is compact on 
the interval 1 2[ , ]x x . 

Now, we rewrite the bounded 1η as 

1

2

1

1

1 1 1 2

2 1 2

( ) , ,

( ) ( ) ( , )( 45 ( )) , ,

( ) ( , )( 45 ( )) , ,

x

x

x

x

Y x x x

x Y x G x t b t dt x x x

Y x G x t b t dt x x

η

⎧
≤⎪

⎪⎪= + − < <⎨
⎪
⎪ + − ≤⎪⎩

∫

∫

   (80) 

which is periodic for 1x x≥ and 2x x≤ with period 

1 1 2 22 = 2 .T n w n wπ π=  
 
 
4.4 Case 4  
In Case 4, we solve the initial value problem of (65) 
subject to initial conditions (68) and obtain 

1
1 1( ) ( ) ( , )( 45 ( )) .

x

x
x Y x G x t b t dtη = + −∫             (81) 

where 
     ( ) ( ) ( ) ( ) ( )Y x A Bx cos rx C Dx sin rx= + + +  

with 

{ }

{ }

{ } 

1

1 1

2
2 1 1

1 1

2
2 1 1

2 2
1

2 2 2
1

   45 2
  ( ) ( )

  ( ) ( ) ( ) ( )

  ( ) ( )

  ( ) ( ) ( ) ( )

 ( ) (2 )

 ( ) (2 ) ( ) 2

r ,
A M cos x r N sin x r ,

B Qr S cos x r r Pr R sin x r r ,

C M sin x r N cos x r ,

D Qr S sin x r r Pr R cos x r r ,

M P x Qr S r ,

N Qr S r x Pr R Q r ,

τ= −

= −

= − + + +

= +

= − + + +

= + +

= + − + +

 

and 
3( , ) ( ( ( )) ( ) cos( ( ))) (2 ).G x t sin r x t r x t r x t r= − − − −  

The integral term in (81) is bounded since b1(x) 
is compact on the interval 1 2[ ]x ,x , To have 
bounded ( )xη in (81), we need B = D = 0. After 
some algebra, we obtain 

R + r2P = 0,   S + r2Q = 0.              (82) 
Now, we rewrite the bounded 1η as 

1

2

1

1

1 1 1 2

2 1 2

( )   , ,

( ) ( ) ( , )( 45 ( ))    , ,

( ) ( , )( 45 ( ))   , ,

x
x

x
x

Y x x x

x Y x G x t b t dt x x x

Y x G x t b t dt x x

η

⎧ ≤
⎪⎪= + ∫ − < <⎨
⎪

+ ∫ − ≤⎪⎩

    (83) 

which is periodic for x1 ≥ x and x2 ≤ x if (82) is satis-
fied. 
 
 
5 Unsymmetric solitary wave solutions 
for Case 1, 5, 6, 7, and 8 
In this section, we shall construct unsymmetric solitary 
wave solutions of the model equation (63) for Case 1, 5, 
6,7 and 8. 

Our idea is to investgate the solutions of equation (63) 
on three different intervals

1 1 2( , ),[ , ],T T T−∞ − −  and 

2( , ),T ∞ where T1 and T2 are positive constants and will be 
specified later. On intervals

1( , )T−∞ − and 
2( , ),T ∞  we try 
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to show that equation (64) with initial values at x = – T1 
on

1( , )T−∞ − and initial values at x = T2 on
2( , )T ∞ has 

bounded solutions ( )L xη  and  respectively, which decay 
to zero exponentially at negative and positive infinity by 
using a theorem from [6]. On

1 2[ , ],T T− we shall use 
Schauder fixed point theorem to prove there exist 
bounded solutions ( )C xη  of equation (64) subject to 
initial values 1( ( ),L Tη −  

1( ),L Tη′− −   
1( ))L Tη′′′− −  at 1.x T= −  

Then we combine ( ),C xη ( ),L xη and ( )R xη to obtain a 
solution of equation (63). 

 
 

5.1 Solutions on 1( , )T−∞ − and 2( , )T ∞   
On interval

2( , ),T ∞ we rewrite (64) as a system of 
first order differential equations, 

( ),dz Az g z
dx

= +                       (84) 

where ( ) ( ( ), ( ), ( ), ( )) ,tz x x x x xη η η η′ ′′ ′′′=  

2 1

0 1 0 0
0 0 1 0
0 0 0 1

90 0 45 0

A

F τ

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and 

  

2135
2

0
0

( , ) .
0

45b( )

g x z

xη

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
− −⎝ ⎠

                   (85) 

In the following, we shall use a theorem from [6] 
to prove that (84) with some restriction on the initial 
values at x = T2 has bounded solutions. The theorem 
is stated as follows : 

We consider the asymptotic behavior of the so-
lutions of equation 

( , ),dz Az f x z
dx

= +                      (86) 

where A is a constant matrix and f is a continuous 
vector function defined for

0x x≥ , | |z < c. Then the 
underlying vector space X can be uniquely 
represented as the direct sum of three suspaces 

1X −
,

0X ,
1X  invariant under A on which all 

characteristic roots of A have real parts respectively 
less than, equal to, greater than μ. We shall denote 
by Pi the corresponding projection of X onto 

( 1,0,1).iX i = −  
 
 

Theorem 1 Suppose that at least one characteristic 
root of A has real part 0μ < and  

( , ) (| |)        ,  | | 0f x z o z for x z= →∞ →          (87) 

holds. 

Then there exist positive constants k, K 
depending only on A and positive constants T, ρ 
depending also on f such that if x T∗ ≥ and if 

1 1 0 0,X Xξ ξ− −∈ ∈ satisfy 

1 0 0| | | |,     0 | |
2

k
K
ρξ ξ ξ− ≤ < < ,                 (88) 

then the equation (86) has at least one solution z(x) 
for x x∗≥ satisfying 

1 1 0 0( ) ,     ( )P z x P z xξ ξ∗ ∗
− −= = ,               (89) 

| ( ) |  z x for x xρ ∗≤ ≥ and 
1lim | ( ) |

x
x log z xμ −

→∞
= .                    (90) 

For each of Case 1, 5, 6, 7, and 8, there exists at 
least one eigenvalue with negative real part and g(x, 
z) in (85) satisfies (87) since b(x) is compact on 

1 2[ , ]x x . Hence, by Theorem 1, there are bounded 
solutions ( )Rz x of equation (84) subject to the initial 
values

2( )Rz T that satisfy (88) and (89) with 2T T≥ . 
Then we have ( )R xη , the first component of ( )Rz x , as 
the solution of (63) subject to the initial 
values

2( )Rz T = 2( ( ),R Tη 2( ),R Tη′ 2( ),R Tη′′ 2( ))t
R Tη′′′ on 

interval
2( , )T ∞ . 

For interval
1( , )T−∞ − , we let ˆ x x= − and put it in 

(63), then equation (63) does not change except that 
the independent variable is replaced by x̂ . Thus, by 
Theorem 1 again, there exist bounded solutions 

ˆ( )Lz x of equation (84) subject to the initial value 

1 1 1 1 1( ) ( ( ), ( ), ( ), ( ))L L L L Lz T T T T Tη η η η′ ′′ ′′′= that satisfy (88) and 
(89) with 1T T≥ . Hence, by substituting ˆ x x= − , we 
obtain ( )L xη , the first component of ( )Lz x , to be the 
solution of (63) subject to the initial values 

1 1( ) ( ( ),L Lz T Tη− = − 1( ),L Tη′− − 1( ),L Tη′′ − 1( ))t
L Tη′′′− − on 

interval 
1( , )T−∞ − . 

Next, we shall prove there is a bounded solution 
( )C xη of (63) subject to initial value 1( ( ),L Tη −  

1( ),L Tη′− − 1( ),L Tη′′ − 1( ))L Tη′′′− − at 
1x T= − on interval 

1 2[ , ]T T−  and the end point value, 
2( ( ),C Tη 2( ),C Tη′  

2( ),C Tη′′ 2( ))C Tη′′′ , which also satisfies (88) and (89). 
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5.2 Solutions on 1 2[ , ]T T−   
From (63) and posing initial values at 1x T= − , we 
have: 

23
1 2 1245 90 45( ( ) ) ( ),   ,xxxx xx F x f x Tη τ η η η η− − = − + ≡ ≥ −b

1 1( ) ,     ( ) ,xT P T Qη η− = − =  

1 1( ) ,   ( ) ,xx xxxT R T Sη η− = − =                   (91) 
where 1 1 1 1( ), ( ), ( ), ( ).L L L LP T Q T R T S Tη η η η′ ′′ ′′′= − = − − = − = − −  

To analyze the solutions of (91), we transform 
the ordinary differential equation (91) to an integral 
equation. First we solve the homogeneous equation 
of (91) : 

1 2 145 90 0,         xxxx xxY Y F Y x Tτ− − = ≥ −  

1 1 1( ) ,  ( ) ,  ( ) ,x xxY T P Y T Q Y T R− = − = − = 1( )xxxY T S− =   (92) 
Next, we use ( )Y x in (92) and let S Yη = + to 

convert equation (91) as follows :  

1 2 145 90 ,       xxxx xxS S F S f x Tτ− − = ≥ −  

1 1 1( ) 0,  ( ) 0,  ( ) 0,x xxS T S T S T− = − = − = 1( ) 0xxxS T− = .   (93) 
Let the causal Green’s function of equation (93) be 
G(x, t), then we have  

1

( ) ( , ) ( ( ))
T

S x G x t f t dtη
∞

−
= ∫                 (94) 

Thus we transform the differential equation (91) to 
the integral equation : 

1

( ) ( ) ( )
x

T
x Y x G x tη

−
= + −∫   

2345( ( ) ( )) ( )( )
2

t t dt Q xη η⎧ ⎫− + =⎨ ⎬
⎩ ⎭

b    (95) 

To prove the existence of a bounded solution of 
equation (63) initiating at

1x T= − on the interval 

1 2[ , ]T T− , we need to show that the operator defined 
by the right-hand side of (95) has a fixed point. In 
other words, we try to find a function η̂ such 
that ˆ ˆ( )( ) ( )Q x xη η= for all 

1 2[ , ]x T T∈ − . We take the 
domain of Q to be 

{ }1 2 1 2([ , ]; )  | ( ) |  [ , ] ,K C T T x M for x T Tη η= ∈ − ≤ ∈ −R         (96) 

where M is some positive real number and should be 
chosen in such a way that Q maps K into itself. 

It is clear that the function ( )( )x Q xηa is conti- 
nuous. In order to prove that Q maps K into itself it 
remains only to analyze the size of ( )( )Q xη . If Kη∈ , 
then we have for all

1 2[ , ]x T T∈ −  
23| ( )( ) | ( )

2Y G xQ x M M M M Mη ≤ + +b
           (97) 

where 

[ ] [ ]1 2 1 2, , ,
max | ( ) |,    max | ( , ) |Y Gx T T x t T T

M Y x M G x t
∈ − ∈ −

= =  

and 

[ ]1 2

2 1
,

,     sup | ( ) |x
x T T

M x x M x
∈ −

= − =b b . 

If we assume that the right-hand side of (97) M≤ , 
then we have 

3 ( )( ) 0
2 GM M M M M+ −− − ≤  

where 
1
21 (1 6 ( ))

3
G x G x Y

G x

M M M M M MM
M M

± ± − +
= b    (98) 

and 
(1 6 ( )) 0.G x G x YM M M M M M− + ≥b

     (99) 
The inequality (99) can be satisfied if we choose 

bump b and the initial values in (91) such that both 
Mb

and YM are sufficiently small. Hence, if we 
take [ , ]M M M− +∈ and inequality (99) is also 
satisfyied, then ( )( )Q x Mη ≤ for all

1 2T x T− ≤ ≤ , and Q 
maps K into itself. 

The set K is a bounded, closed, and convex subset 
of the Banach space

1 2([ , ])C T T− . To apply Schauder’s 
theorem it suffices, therefore, to show that Q is a 
compact map of K into itself. By the Arzelà-Ascoli 
Theorem and by what we have already proved, this 
amounts to showing that the set { ( ) | }Q Kη η∈  is 
equicontinuous. The following simple estimate acco- 
mplishes the task. Let 1T xξ− ≤ ≤ , then 

| ( )( ) ( )( ) |   | ( ) ( ) |Q x Q Y x Yη η ξ ξ− ≤ −  

| ( ) ( ( )) |
x
G x t f t dt

ξ
η+ −∫  

1

| ( ( ) ( )) ( ( )) |
T

G x t G t f t dt
ξ

ξ η
−

+ − − −∫  

| ( ) ( ) |Y x Y ξ≤ − +  

{ }0
sup | ( ) | | ( ) |

x

M f G x t dt
ξ

η η ξ
−

≤ − − +∫  

{ }1

0
sup ( ) ( ) ( )) .

T

M f G x t G t dt
ξ

η η ξ
+

≤ − + −∫  

Since the function Y and G are continuous, we 
conclude that the set{ ( ) | }Q Kη η∈ is equicontinuous on 

1 2[ , ]T T− . An application of the Schauder Theorem tells us 
that there exists a fixed point

Cη of Q. 
To combine ( ), ( )L Cx xη η and ( )R xη to be a solution 

of equation (63), it requires that the end point 
values,

2 2 2 2( ( ), ( ), ( ), ( ))C C C CT T T Tη η η η′ ′′ ′′′ which will be 
used as the initial values of ( )Rz x on 2( , )x ∞ , satisfy 
(88) and (89) in Theorem 1. This needs the right 
hand side of (97) to be small and this could be done 
by having ,YM Mb

 and M sufficiently small. 
Observing (98), the positive number M − could be as 

def
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small as we want by choosing sufficiently small Mb
 

and YM , and thus M could be as small as required. 
Therefore, we obtain an unsymmetric solitary wave 
solution of (63) in Case 1, 5, 6, 7, and 8. 
 
 
6 Numerical Experiment 

In this section, we shall give asymptotic solution 
numerically of equation (63) by using classical fourth-
order Runge-Kutta method. (See Figure 1-3).  

 
Figure 1: An asymptotic solution of equation (63) 

obtained by using classical fourth-order Runge-Kutta 
method in equation (67) for Case 0 with compact bump 

)3107(10)( 356 xxxxb +−= −  on interval )1,1(− . 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: An asymptotic solution of equation (63) 

obtained by using classical fourth-order Runge-Kutta 
method in equation (73) for Case 2 with ,11 −=τ  02 =F , 
and compact bump 510)( −=xb 35 107( xx −   )3x+  on 
interval )1,1(− . 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: An asymptotic solution of equation (63) 
obtained by using classical fourth-order Runge-Kutta 
method in equation (65) for Case 3 with ,11 −=τ  

793.4169/8102 −≈−=F which such that 2/3/ 21 =ww is a 
rational number, and compact bump exp10)( 5−=xb  

))1/(1( 2 −x on interval )1,1(− . 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 4: An asymptotic solution of equation (63) 
obtained by using classical fourth-order Runge-
Kutta method in equation (65) for Case 4 with 

,11 −=τ  625.58/452 −=−=F , and compact bump 
exp10)( 5−=xb  ))1/(1( 2 −x  on interval )1,1(− . 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: An unsymmetric solution of equation 

(63) for Case 1 with ,11 −=τ  12 =F , and compact 
bump exp10)( 18−=xb  ))1/(1( 2 −x  on interval )1,1(− . 
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Figure 6: An unsymmetric solution of equation 

(63) for Case 5 with ,11 −=τ  62 −=F , and compact 
bump exp)( =xb  )sin())1/(1( 2 xx −  on interval )1,1(− . 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: An unsymmetric solution of equation 

(63) for Case 6 with ,11 =τ  625.58/452 −=−=F , and 
compact bump exp)( =xb )sin())1/(1( 2 xx −  on interval 

)1,1(− . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: An unsymmetric solution of equation 

(63) for Case 7 with ,11 =τ  793.4169/8102 −≈−=F , 
and compact bump exp)( =xb )sin())1/(1( 2 xx −  on 
interval )1,1(− . 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: An unsymmetric solution of equation 

(63) for Case 8 with ,11 −=τ  02 =F , and compact 
bump exp10)( 19−=xb )sin())1/(1( 2 xx −  on interval 

)1,1(− . 
 
 

7 Conclusion  
We constructed asymptotic solutions and 
unsymmetric solutions of model equation (56) for a 
sufficiently smooth compact bump b(x) and has a 
compact support on the inteval [x1, x2] with b(x1) = 
b(x2) = 0. The numerical experiment in section 6 
confirm the the constructed asymptotic solutions and 
unsymmetric solutions in section 4 and 5. 
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