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Abstract: - In this paper, Proper Orthogonal Decomposition (POD) is applied to the analysis of the unsteady rotor-
stator interaction in a low-pressure centrifugal compressor. Numerical simulations are carried out through finite 
volumes method using the Unsteady Reynolds-Averaged Navier-Stokes Equations (URANS) model. Proper 
Orthogonal Decomposition allows an accurate reconstruction of flow field using only a small number of modes; 
therefore, this method is one of the best tools for data storage The POD results and the data obtained by the Adamczyk 
decomposition are analyzed. Both decompositions show the behavior of unsteady rotor-stator interaction, but the POD 
modes allow quantifying better the numerical errors.  
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1   Introduction 
In the centrifugal compressors the fluid flow has a very 
complicated due the unsteady and turbulence effects, 
having time scales that vary considerably. This 
complexity makes difficult, both experimental and 
numerical, analysis. Usually, in the practical 
applications, in the reference frame linked to the studied 
row, a steady flow is assumed. Furthermore, one can 
decompose the flow in two components: the main flow 
and the secondary flow respectively. The first flow 
corresponds to the physical flow with non-zero rotor 
velocity. In the secondary flow, vortices generate the 
losses due to the entropy increase, leading to three-
dimensional behavior of the flow. 
     C. Dano [1] indentifies the sources of unsteady 
phenomena in turbomachinery flows. Because the rotor-
stator interaction can affect dramatically the 
turbomachinery performance, we paid it a special 
attention in this paper. The majority of researchers that 
studied this interaction from the numerical point of 
view focused their research on transonic 
turbomachinery; therefore, there is very few 
information about the rotor-stator interaction for low 
velocity turbomachinery. Moreover, a recent study [2] 
showed important discrepancies between experimental 
and numerical results for a low-pressure centrifugal 
stage. Unfortunately, this study did not succeed to 
identify the effects that caused the major discrepancies 
between experimental and numerical results.  
     Up to now, the Fourier transform is a common tool 

for the analysis of periodic and non-periodic signals [3, 
4, 5]. Some recent studies [6, 7] clearly showed that 
POD is a more efficient method to extract the dominant 
modes involved in unsteady flow field. Unfortunately, 
these studies applied POD only for one-dimensional 
decompositions. In order to take the full advantage of 
POD method, we have applied it for decomposition of 
full three-dimensional flow field. 
    For this reason, we have considered that it is useful to 
study the rotor-stator interactions in a low-pressure 
centrifugal stage, using both Adamczyk and proper 
orthogonal decomposition. 

 
 

2   Nomenclature 
e internal energy (J/kg) 
fe external acceleration (m/s2) 
Fx, Fy, Fz vectors of convective components of 
flux 
Gx, Gy, Gz vectors of diffusive components of flux 
h static enthalpy (J/kg) 
I rothalpy (m2/s2) 
p static pressure (Pa) 
r radius (m) 
R gas constant (J/(kg⋅K)) 
S vector of source term 
T static temperature (K) 
t time (s) 
u, v, w  Cartesian components of velocity (m/s) 
V absolute velocity (m/s) 
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W relative velocity (m/s) 
κ thermal conductivity (W/(m⋅K)) 
µ dynamic viscosity (kg/(m⋅s)) 
µt eddy viscosity (kg/(m⋅s)) 
θ azimuthal (circumferential) angle (rad)  
ρ static density (kg/m3) 
τ shear stress tensor (Pa) 
Ω angular velocity (rad/s) 
Subscript 
R rotor 
t turbulent 
Superscript 
eff effective (laminar + turbulent) 
 
 

3   Governing Equations 
For a three-dimensional rotating Cartesian coordinate 
system, the unsteady Reynolds-averaged Navier-Stokes 
equations using the Favre averaging (a mass-weighted 
averaging) could be written in the conservative form as 
[8, 9] 
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where energy E and rothalpy I are defined by: 
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where ijkε  is the Levi-Civita symbol. 

     According to the Boussinesq hypothesis and Stokes 
postulates and hypothesis for a Newtonian fluid, the 
shear stresses τeff may be written as: 
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     The Sutherland’s formula could be used to determine 
the dynamic viscosity µ as function of temperature, 
while the eddy viscosity µt is computed with a 
turbulence model. 
     For gases, the external force fi due to the 
gravitational acceleration is very small, therefore it can 
be neglected. Moreover, we can assume that the thermal 
conductivity is the single heat source.  
     The pressure is obtained from the equation of state, 

Rp T= ρ                                                                     (8) 
 

4   Turbulence Model 
In 1992, P. Spalart and S. Allmaras [10] publish an 
original turbulence model. The model includes one 
differential transport equation for turbulent viscosity. 
To include the wall effects, the apparent viscosity is 
affected by a damping function:  

ν=ν ~
1vt f                                                                      (9) 

and the transport equation for ν
~
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The first term in the right hand represents the 
production term: 
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where κ  este Kármán’s constant ( 0.41κ = ), d is the 
wall distance and: 
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     The second term in the right hand: 
2
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quantifies the viscous dissipation in the wall vicinity. 
The model dumping functions are:  
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The boundary conditions for the transport equation (10) 
refer to the vanishing of the turbulent viscosity at the 
wall: for 0=d , 0~ =ν . 
     The wall friction stress is obtained by imposing the 
law of the wall in the nearest grid points (Fig. 1). 
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Fig. 1. Computational grid near the wall 
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     Applications and detailed analyses of the Spalart-
Allmaras model can be found in the papers of: W.H. 
Jou and all [11], P.R. Spalart and  S.R. Allmaras [12], 
E. Shima and all [13], V.A. Sai and F.M. Lutfy [14], 
C.L. Rumsey and all [15], H.Y. Wong [16] etc. 
Improvements concerning the model accuracy for 
different applications are published by L. Lee şi G.C. 
Paynter [17], S. Catris and B. Aupoix [18] and J. 
Dacles-Mariani and all [19] The last ones propose for 

the component S  in the source term (12): 
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and prodC is a closure constant, 0.2prod =C .  

So, including the rotation effect the diminishing of the 
total production is obtained. 

 

 

5 Numerical Simulation 
The numerical simulations of the three-dimensional 
viscous flow were carried out on a centrifugal 
compressor designed, manufactured and tested by 
COMOTI, with commercial CFD code FLUENT that is 
based on finite volume method where each unknown 
takes an average value on each discretization cell. The 
computational domain generated in Gambit was split 
into eight blocks to facilitate the building of a fully 
structured mesh as shown in Fig. 2. The mesh for 
which, the results are given, has about 253 000 
hexahedral cells for the impeller passage and 127 000 
hexahedral cells for the vaned diffuser passage. 
     In order to decrease the computational time, 
impressively, the time discretization is made with a 
backward implicit first order scheme and multigrid 
technique is used. To take into account the physical 
properties of flow, the convective fluxes are discretized 
with the Roe scheme, which is a Godunov-type scheme 

[8, 9]. Because the turbulence is not a critical issue of 
this study, we used the Spalart-Allmaras model, which 
is a one-equation turbulence model. 
     At the inlet, a uniform stagnation pressure (96 310 
Pa) and temperature (300 K) are imposed, turbulent 
viscosity ratio µt/µ is 10 and the flow is normal to inlet. 
At the outlet, a uniform static pressure (156 000 Pa) is 
imposed. At the left and right sides of computational 
domain, the rotational periodic boundary conditions are 
imposed. All the walls have been assumed adiabatic. 
The shaft speed of impeller is 14 915 rpm. 

 
Fig. 2 Computational domain of centrifugal compressor 

 
 

6   Adamczyk Decomposition 
Non-uniformities and unsteadiness due to the rotor-
stator interaction introduce major complexity in the 
analysis of the turbomachinery flow field. This problem 
can be considerably simplified if we apply the method 
of Adamczyk [7, 20] that proposed the decomposition 
of an arbitrary field variable u associated to a 
turbomachinery in four contributions through the 
successive application of averaging operators: 
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           (21) 

     Starting from an arbitrary field u expressed in an 
inertial reference frame attached to the stationary row, 
the first averaging has as objective to extract the 
axisymmetric field independent by time and azimuthal 
coordinate. The second averaging is a time averaging in 
the inertial reference frame and it extracts from the 
remained field, the flow structures attached to the 
stationary row while the third averaging also is a time 
averaging but in the rotating reference frame and it 
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extracts from the remained field, the flow structures 
attached to the rotating row. Therefore, the third 
contribution is steady in the rotating reference frame. 
Finally, after three averaging, the residual field (fourth 
contribution) represents the unsteady part of initial field 
u in the inertial and rotating reference frame associated 
to stationary and rotating row, respectively. This 
contribution characterizes purely unsteady phenomena 
of turbomachinery flow. In order to understand better, 
the unsteady rotor-stator interaction, the fourth 
contribution was decomposed with POD technique as 
shown in the next section. 
     As it follows, we will give some results for some 
control points placed in a section at mid height of blade 
of vaned diffuser, at the middle distance between the 
blade and the right periodic as shown in Fig. 3. The 
numbering of these control points is from upstream to 
downstream.  
 

 
Fig. 3 Placement of control points 

 

 
Fig. 4 First component of Adamczyk decomposition for 
static pressure normalized by inlet static pressure and 

absolute velocity normalized by inlet absolute velocity  
 

     The first component of Adamczyk decomposition for 
static pressure and absolute velocity, at considered 
control points is shown in Fig. 4. One sees that the 
compression process is smooth while the absolute 
velocity has big variations especially in the first part of 
vaned diffuser where the strong deceleration triggers a 
huge jet-wake region accompanied by boundary layer 
separation on suction side of vaned diffuser blade. These 
phenomena generate huge nonuniformities in the 
absolute velocity field as shown in Figs. 5 and 6, which 
induce important total pressure losses. For this reason, 

the compression process is very slow in the last part of 
vaned diffuser. Furthermore, the rectangular trailing 
edge of vaned diffuser blade generates additional   
nonuniformities, which are shown in Fig. 6 and losses. 
The homogenization process of flow begins after the 
trailing edge of vaned diffuser blade and it is 
accompanied by significant total pressure losses. For this 
reason, the air compression is very weak downstream of 
the trailing edge. The second component of Adamczyk 
decomposition for static pressure clearly shows the 
stagnation point, the rarefaction near leading edge, as 
well as the interaction among the blades of vaned 
diffuser in the region where the distance among blades is 
small as shown in Fig. 7.  
     The Adamczyk decomposition clearly shows that this 
classical vaned diffuser with circular arc blades 
generates a huge jet-wake zone and important pressure 
losses because the channel is extremely divergent in the 
first part of vaned diffuser. In order to obtain better 
compressor performance, it is necessary to renounce 
single circular arc vaned diffuser. 
  

 
Fig. 5 Second and third component of Adamczyk 

decomposition for static pressure normalized  
by inlet static pressure and absolute velocity  

normalized by inlet absolute velocity 
 

 
Fig. 6 Isolines of second and third component of 

Adamczyk decomposition for absolute velocity in the 
section from the middle height of vaned diffuser 
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Fig. 7 Isolines of second and third component of 

Adamczyk decomposition for static pressure in the 
section from the middle height of vaned diffuser 

 
 

7   Proper Orthogonal Decomposition 
     In the field of fluid mechanics, two approaches have 
been used for the POD. Historically the method of 
Continuous POD (or the classical method) of Lumley 
[21] proceeded by the Snapshot POD of Sirovich [22]. 
More information regarding the application of the 
proper orthogonal decomposition in the analysis of 
turbulent flows together with a detailed bibliography 
are given in [23, 24]. In this paper, we used the 
Snapshot POD because it is much more efficient from 
the numerical point of view. 
     The POD is a method that reconstructs a data set 
from its projection onto an optimal base. Besides using 
an optimal base for reconstructing the data, the POD 
does not use any prior knowledge of the data set. It is 
because of this that the basis is only data dependent and 
this is reason that the POD is used also in analyzing the 
natural patterns of the flow field.  
     For the reconstruction of the dynamic behavior of a 
system the POD decomposes the data set in two parts: a 
time dependent part, ak(t), that forms the orthonormal 
amplitude coefficients and a space dependent part, 
ψk(x), that forms the orthonormal basis. The 
reconstructed data set is:  

( ) ( ) ( )
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,
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k k
k

u x t a t xψ
=

= ⋅∑                                            (22) 

where M is the number of time instant observations in 
the data set. 
     We denote the error of the reconstructed data set as:  
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     The base from which the data set is reconstructed is 
said to be optimal in the sense that the average least 
squares truncation error is minimized for any given 
number (m M≤ ) of basis functions over all possible 
sets of orthogonal functions:  

( ),mε ε ε=                                                               (24) 

where the . is the ensemble average and ( ).,. is the 

standard Euclidian inner product. 
     It was shown that the minimization condition for 
error ε(x,t) translates into maximum condition for: 
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     This maximization can be proven to take place if the 
time independent base functions ψ(x) are obtained from 
the Fredholm integral equation: 
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ij j i
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where Rij is the correlation kernel. In this way, we 
transform this into an eigenvalue problem and λk is the 
eigenvalue corresponding of the eigenvector ψk. 
Because we can consider the inner product as being the 
equivalent of an “energy”, the value of λk is linked to 
the energy contained in mode ψk and the optimization 
process involved can be summarized as: the data set is 
projected onto a basis that maximizes the energy 
content. While in the classical approach of Lumley [21], 
the correlation matrix is constructed as a space 
correlation matrix and solving the eigenvalue problem, 
we obtain directly the eigenvectors as the spatial modes 
and then use them in order to obtain the time-dependent 
coefficients  

( ) ( ) ( )( ), ,k ka t u x t xψ=                                               (27) 

in the Snapshot POD of Sirovich [22], the correlation 
matrix is a time correlation matrix: 

( ) ( )1
, , '

V

C u x t u x t dV
V

= ⋅∫                                          (28) 

which is of the size of the square of the number of 
snapshots. From the time correlation matrix, we get the 
eigenvalues λk and time dependent eigenvectors φk(t). 
The spatial eigenmodes that are time independent, are 
computed according to the formula: 

( ) ( ) ( )1
,k k

k t

x t u x t dtψ φ
µ

= ∫                                        (29) 

where 

k kµ λ=                                                                   (30) 

     For the reconstruction of u(x,t), we take into account 
only a small number of modes that contain the most 
energy: 

( ) ( ) ( )
1

,
m

k k k
k

u x t t xµ φ ψ
=

=∑                                          (31) 

     The processed data are the variations of absolute 
velocity magnitude and static pressure fields, which 
represent the fourth term of Adamczyk decomposition 
according to Eq. 21. These variations were obtained 
from numerical simulations using the commercial CFD 
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code Fluent. For each period, we took 20 snapshots and 
the time between adjacent snapshots is of ∆t = 
9.5781µs; therefore, the Snapshot POD of Sirovich 
yields 20 eigenmodes for each considered field. 
     The very high efficiency of the proper orthogonal 
decomposition is clearly underlined by Table 1. The 
sum of the first two modes represents 90.5% and 95.5% 
of the total energy, respectively for the variations of 
static pressure and absolute velocity magnitude fields 
while the sum of modes 6 to the last mode represents 
only 0.163% and 0.236% of the total energy, 
respectively for the variations of static pressure and 
absolute velocity magnitude fields. Therefore, both 
variations of static pressure and absolute velocity 
magnitude fields can be accurately reconstructed using 
only the first four modes. Furthermore, these results 
confirm that the base from which the data set is 
reconstructed is indeed optimal. 
 

Table 1 Fraction of total energy  
for the most energetic modes 

Mode Fraction of total 
energy for variation  

of static pressure 

Fraction of total 
energy for variation  
of absolute velocity 

1 6.40E-01 5.49E-01 
2 2.65E-01 4.06E-01 
3 6.63E-02 2.13E-02 
4 1.72E-02 1.58E-02 
5 8.97E-03 5.73E-03 
6 1.41E-03 7.57E-04 
7 6.29E-04 4.50E-04 
8 1.60E-04 8.52E-05 
9 4.58E-05 7.30E-05 
10 4.02E-05 5.25E-05 

 

 
Fig. 8 The first four most energetic modes of  

variation of static pressure field 
 

 
Fig. 9 Isolines of mode 1 for variation of static pressure 
in the section from the middle height of vaned diffuser 

 

 
Fig. 10 Isolines of mode 2 for variation of static pressure 
in the section from the middle height of vaned diffuser 

 
     The sum of the first three most energetic modes of 
variation of static pressure field is 97.1% of the total 
energy. These modes are physical because they show 
how the potential and wake effects affect the flow, 
especially in the impeller region. More exactly, the first 
mode that contains 64% of the total energy shows 
especially the potential effects that affect the flow in the 
impeller region. For this reason, the peak of this mode 
is located on the interface between impeller region and 
vaned diffuser region as shown in Figs. 8 and 9. The 
second mode contains 26.5% of the total energy and it 
shows especially, the interaction between the wakes due 
to the circumferential Coriolis force and blunt trailing 
edge of impeller blade and potential effects. The peak 
of this mode is also placed near the interface between 
impeller region and vaned diffuser region as shown in 
Figs. 8 and 10 because, at the middle distance between 
rows, this interaction is usually maximal. The third 
mode has 6.6% of the total energy and it represents 
mainly, the potential effects and the interaction between 
the wakes due to the circumferential Coriolis force and 
blunt trailing edge of impeller blade and potential 
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effects that cannot be captured by the first two modes. 
The last modes contain only 2.9 of the total energy and 
represent mainly, the numerical errors that occur at the 
interface between rotating region and stationary region 
and due the rotational periodicity condition that is not 
too correct. Fortunately, they contain little energy 
(information). 

 

 
Fig. 11 The first four most energetic modes of  
variation of absolute velocity magnitude field 

 

 
Fig. 12 Isolines of mode 1 for variation of  
absolute velocity magnitude in the section  
from the middle height of vaned diffuser 

 

 
Fig. 13 Isolines of mode 2 for variation of  
absolute velocity magnitude in the section  
from the middle height of vaned diffuser 

     The first two most energetic modes of variation of 
absolute velocity magnitude field contain as much as 
95.5% of the total energy. The first mode has 54.9% of 
the total energy and it represents the interaction 
between wakes due to the circumferential Coriolis force 
and blunt trailing edge of impeller blade and potential 
effects. According to theory of characteristics, this 
interaction affects especially the vaned diffuser region 
and its peak is located near the middle distance between 
impeller and vaned diffuser as shown in Figs. 11 and 
12. The second mode contains 40.6% of total energy 
and it represents the interaction between wakes and 
potential effects in the vaned diffuser region as well as 
the propagation of potential effects in the impeller 
region as shown in Figs. 11 and 13. The third and fourth 
modes have 3.7% of the total energy and they contain 
both physical and numerical information. From the 
physical point of view, they contain the information 
regarding the interaction between wakes and potential 
effects as well as the influence of potential effects in the 
impeller region. From the numerical point of view, they 
represent the numerical errors that occur at the interface 
between rotating region and stationary region and due 
the rotational periodicity condition. Furthermore, one 
sees that the value of the third mode is not close to zero 
at the outlet boundary of computational domain because 
we imposed a uniform static pressure on this frontier 
and this is not too correct according to the theory of 
characteristics [8, 9]. 
 
 

8   Reconstruction 
Because the POD is a method that reconstructs a data 
set from its projection onto an optimal base, we need 
only four modes to rebuild the variations of static 
pressure and absolute velocity fields, accurately. We 
will rebuild them for two snapshots placed at half the 
period (the number of impeller blades is equal to the 
number of vaned diffuser blades) as shown in Figs. 14 
and 15. 

 
Fig. 14 The first snapshot for which, the reconstruction 

is built and isolines of static pressure  
computed with commercial code Fluent 
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Fig. 15 The second snapshot for which, the 

reconstruction is built and isolines of static pressure  
computed with commercial code Fluent 

 

 
Fig. 16 Reconstruction of variation of  

absolute velocity magnitude field for snapshot 1 
 

 
Fig. 17 Reconstruction of variation of  

static pressure field for snapshot 1 
 

 
Fig. 18 Reconstruction of variation of  

absolute velocity magnitude field for snapshot 2 
 

 
Fig. 19 Reconstruction of variation of  

static pressure field for snapshot 2 
 

     Analyzing the Figs. 16-19, one observes that only 
four modes are enough to reconstruct accurately the 
variations of static pressure and absolute velocity 
magnitude fields. Furthermore, the points where the 
field variable u(x,t) has high absolute values are better 
reconstructed than the points with small absolute values 
because the data set is projected onto a basis that 
maximizes the energy content. In other words, points 
with high energy (information) are reconstructed more 
accurately than points with low energy. 
 
 

9   Conclusions 
Both Adamczyk and proper orthogonal decomposition 
have been successfully applied to the decomposition of 
fully three-dimensional static pressure and absolute 
velocity magnitude fields obtained from numerical 
simulations using the commercial CFD code Fluent. 
     The Adamczyk decomposition clearly shows that the 
single circular arc vaned diffuser generates a huge jet-
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wake region and important pressure losses because the 
channel is highly divergent in the first part of vaned 
diffuser. In order to obtain better compressor 
performance, it is necessary to renounce circular arc 
vaned diffuser. 
     Both variations of static pressure and absolute 
velocity magnitude fields can be accurately 
reconstructed using only the first four modes; therefore, 
the proper orthogonal decomposition method is a very 
efficient method for the data storage of unsteady flows. 
Moreover, POD technique is able to capture the 
relevant features of the unsteady rotor-stator interaction, 
especially, the potential effects and the interaction 
between wakes due to the circumferential Coriolis force 
and blunt trailing edge of impeller blade and potential 
effects. Furthermore, the POD method clearly shows 
the numerical errors such as those errors that occur at 
the interface between rotating region and stationary 
region because the information exchange does not use 
the characteristic variables, the reflection of numerical 
waves at rotational periodic and outlet boundaries as 
well as their magnitude. In order to obtain more 
accurate results [6, 25], we should impose the phase-
lagged condition, which is not yet available in Fluent, 
on the left and right sides of computational sides, 
instead of the rotational periodicity condition.  
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