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Abstract: - In this paper a research is made on the design of a new fluid flow control system on transport pipelines. The 
flow control system is based on a sensorless speed control system of an induction motor with the squirrel – cage. The 
estimator component for rotor flux and speed from the induction motor speed control system is an Extended Gopinath 
Observer. 
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1 Introduction  
This paper presents a new flux and rotor speed 
observer [9] called an Extended Gopinath Observer 
(EGO). The design of the EGO observer is done 
based on an adaptive mechanism using the notion of 
Popov hyperstability [7]. 
    Thus, this type of observer is included in the 
estimation methods based on an adaptation 
mechanism, along with the Extended Luenberger 
Observer (ELO) proposed by Kubota [4] and the 
Model Adaptive System (MRAS) observer proposed 
by Schauder [1]. 

This type of speed control system is used in the 
second part of the paper in the design of a pipe flow 
control system. 

 
 

2 The Extended Gopinath Observer  
The equations that define the rotor flux Gopinath 
observer are [9]: 
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In the relations above, are marked with “*” the 
identified electrical sizes of the induction motor. 

The block diagram of the Extended Gopinath 
Observer (EGO) is presented in figure 1. 

 

 
Fig. 1.The Principle Schematic of the EGO  
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The essential element in the stability of the 

Gopinath flux observer is the g gain, which is a 
complex number in the following form: 

 
a bg g j g                                (2) 

 
     In order to design this type of estimator we need 
to position the estimator’s poles in the left Nyquist 
plane so that the estimator’s stability is assured.  

The expressions ga and gb after the pole 
positioning are [9]: 
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In these conditions the Gopinath rotor flux 

observer is completely determined. 
Next, in order to determine the adaptation 

mechanism used to estimate the rotor speed, we will 
consider as a reference model the „stator curents - 
rotor fluxes” model of the induction engine and as 
an ajustable model, the model of the Gopinath rotor 
flux observer. The equations mentioned above 
written under the input-state-output canonic form 
are: 
 Reference model: 
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 Ajustable model: 
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where: 
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In the above relations we marked with „~” the 
Gopinath estimator’s matrices which are dependent 
upon the rotor speed, which in turn needs to be 
estimated based on the adaptation mechanism. 

Next, in order to determine the expression that 
defines the adaptation mechanism we will assume 
that the identified electric sizes are identical with the 
real electric sizes of the induction engine. 

In other words: 
 

*
ij ija a ;i, j 1, 2   and *

11 11b b . 
 

In order to build the adaptive mechanism, for 
start we will calculate the estimation error given by 
the difference: 

ˆe x xx                               (6) 
 
Derivation the relation (6) in relation with time 

and by using the relations (4) and (5) the relation (6) 
becomes: 
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Equation (8) describes a linear system defined by 

the term  1M A A ex    in inverse connection 

with a non linear system defined by the term  ye  

which receives at input the error y xe C e   between 
the models and has at the output the term: 

 
  1M A A A x                       (9) 

 
The block diagram of the system that describes 

the dynamic evolution of the error between the state 
of the reference model and the state of the tuning 
model is presented in figure 2. 

As one may notice, this problem is frequently 
treated in the literature of the non-linear systems, 
being exactly the configuration of the Lure problem, 
and of one of the problems treated by Popov. 
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Fig. 2: The block diagram of the system that 
describes the dynamic evolution of the error 

between the state of the reference model and the 
state of the control model 

 
     Considering, according to the Popov 
terminology, the non-linear block described by 

 ey  the integral input- output index associated to 

it is: 
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0 1 y0

t , t Re e t t dt                   (10) 

 
In order for block to be hyper-stable a necessary 

condition is: 
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for any input-output combination and where  0  is 
a positive constant.  

In the above relation we marked with T
ye  the 

following expression 
 

T
yye e 0                                (12) 

 
Obtained in order to keep the compatibility 

between the input and output dimensions, and ye  
represents the conjugate of the complex variable ye . 

Under these circumstances, using the relation (9) 
the expression (11) becomes: 
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Next we assume that the error  1M A A A    

is determined only by the rotor speed of the 
induction machine. In this case we may write: 
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For any positive derivable f function we can 

demonstrate the following inequality: 
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On the other hand, using the relation (14), the 

expression (13) becomes: 
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By combining the relations (15) and (16) we can 
write the following relations: 
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Because 1K  is a constant and then, in case of a 

slower r  parameter variation related to the 
adaptive law, we can write: 
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After replacing the variables that define the 

above expression (18) and taking into account the 
arbitrary nature of the iK  positive constant we 
obtain: 
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where dsyd dse i i    and qsyq qse i i   . 
Sometimes, instead of the adaptation law (19) we 

can use the following form: 
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(20) 
 
From the above relation we ca observe that a 

new proportional component apears from the desire 
to have 2 coefficients that can control the speed 
estimation dynamics. This fact isn’t always necesary 
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because we can obtain very good results by using 
only expresion (19). 

Thus expresion (20) represents the general 
formula of the adaptation mechanism where RK  
represents the proportionality constant and 

i R RK K T ; where RT  represents the integration 
time of the proportional-integral regulator that 
defines the adaptation mechanism.  

 
 

3 The Mathematical Description of the 
Vector Control System 

 
The block diagram of the control system of the 
mechanical angular speed r  of the induction 
engine with a discreet orientation after the rotor flux 
(DFOC) is presented in figure 3. 

In figure 3 were  marked with B1 the control 
block of the speed control system with direct 
orientation after the rotor flux (DFCO) and with B2 
the extended Gopinath estimator block (EGO).  

Some of the equations that define the vector 
control system are given by the elements which 
compose the field orientation block and consist of: 

 
Fig.3 The block diagram of the DFOC vector control system which contains an EGO loop. [9] 

 
 

 stator tensions decoupling block (C1Us): 
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(21) 
 
 PI flux controller (PI_ψ) defined by the K  
proportionality constant and the T  integration 
time: 
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 couple PI controller (PI_Me) defined by the MK  
proportionality constant and the MT  integration 
time: 
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 Flux analyzer (AF): 
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 current PI controller (PI_I)  defined by the iK  
proportionality constant and the iT  integration time: 
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 the calculate of the couple block (C1Me): 
 

rqse a rM K i                              (27) 
 

where: m
a p

r

L3K z
2 L



   ; pz is the pole pairs number. 

In these conditions the vector control system is 
completely defined. 

 
 

4 Pipe flow control system design 
The flow control system based on the modification 
of the speed of the centrifugal pump is presented in 
figure number 4. 
 

 
Fig. 4 Conventional representation o a flow control 

 
The following notations were used in figure 3: 
 TD - flow transducer 
 SPC -centrifugal pump 
 L - the length of the pipe, from the pump to the 
flow transducer 
 D - the interior diameter of the pipe 
 P - the pressure drop on the length L of the 
pipe 

 F - inlet flow of the oil 
 F* - prescribed flow for the control system 
 PI FLOW - integral proportional type flow 
regulator 
 DFOC SPEED - speed control system presented 
in figure 2. 

One of the main problems in the practical 
implementation of a speed control system for an 
induction motor is the controller tuning.  

In present, the controllers tuning of the 
induction motors speed control systems is made 
only through experimental methods, and the time 
allocated for this type of tests is a really long one.  

The paper deals with the analytical tuning 
controllers through the method of repartition of 
zeros - poles and the symmetry criteria and module 
Kessler instance. [9]  

Therefore, for the regulators composing block 
B2 of the speed control system the following 
analytical adjustment formulas are used. 
 Current controller: 
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  Flux controller: 
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  Couple controller: 
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   Speed controller: 
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where:             4
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F
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    In the above mentioned formulas, *
1dT  and *

2dT  are 
two time constancies imposed considering they need 
to respect the following conditions: 
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The proportion and integration coefficients of the 
PI controller of the adapting mechanism of the 
Extended Gopinath Observer are determined using 
the linear equation of the estimation error (8).  

The linearization of the relation defining the 
estimation error is made using an orthogonal 
benchmark r rd q    related to the rotor flux 
module. Therefore the linear relation of the 
estimation error is the following: 
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Considering an identical method, the error: 
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Following the linearization in an orthogonal 
benchmark r rd q    related to the rotor flux, it 
becomes: 
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The following equalities have been considered 
realised when obtaining the previously mentioned 
linear expressions: 
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Relation (35) may be written: 
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Therefore, based on relations (33) and (37) after 
having applied the Laplace Transformer in initial 
null conditions, the following transfer function is 
obtained: 
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Relation (38) may also be written: 
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2 2

1 r0 a 33 a a a 132 a a a a g a         ; 
  2 2

0 r0 a 13 33 a 33 r0 13 b ag a a a a a g a               
 
Therefore, the block diagram of the estimated 

speed controll system is presented in figure 5. 

 
Fig. 5. Control system used for speed estimation 
 
Considering the previously presented facts, the 

transfer function of the open system is: 
 

   
3 2

2 1 0
d R u 3 2

2 1 0

s m s m s mG s k K
s s s s

    
  

        
   (40) 

where: 
R 1

2
R

T h 1m
T
 

 ; R 0 1
1

R

T h hm
T
 

 ; 0
0

R

hm
T

 . 

 
Considering the relation (40) the following 

expression will be imposed for the determination of 
the proportionality coefficient of PI regulator 
composing the adaption mechanism: 

  R
u d1

1k
K T




                         (41) 

where:        2*
u p 14 rK z a    .  

On the other hand, for the selection of the time 
constant of the controller, the transfer function of 
the closed system will be presented considering 
relation (42) defining the transfer function of the 
open system. 

 

 
3 2

2 1 0
0 R u 4 3 2

3 2 1 0

s m s m s mG s k K
s n s n s n s n

    
  

      
(42) 
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where: 3 2 R un k K   ; 2 1 R u 2n k K m    ;          

1 0 R u 1n k K m     ; 0 R u 0n k K m   . 
 

It has been observed that for a time constancy: 
r

R
TT
2

                             (43) 

 
considering the transfer function (42), the poles and 
zeros of the transfer function (42) are found in the 
left Nyquist plane. 

In order to highlight the previously presented 
facts in figure 6 the graphic representation of the 
poles of the transfer function (42) will be made for 
an induction machine fitted with a centrifugal pump. 
The poles of the transfer function (42) are obtained 
both in a motor operation regime as well as in a 
recuperative break regime. 
     Another important and difficult problem in the 
design of a pipe flow control system is the tuning of 
the flow controller. 

For the tuning of this type of controller, in the 
beginning, the transfer matrix of the speed control 
system presented in figure 3 will be determined. 
Therefore, all the equations defining the control 
system in an r rd q    axis system related to the 
rotor flux module of the induction motor will be 
reported. 

 
Fig.6. The transfer function poles (40) of Extended 

Gopinath Observer  

        Following the report of the applications 
defining the speed control system model, a system 
of differential equations is obtained: 

  dx f x,u
dt

                            (44) 

     In relation (18), the x vector will have 14 
components. This vector is: 

  1,14
 T

i i
x x                               (45) 

where:
r1 dsx i  ;

r2 qsx i  ;
r3 drx i  ;

r4 qrx i  ; 

          5 rx   ; rds11x i   ; rqs12x i   ; 
rdr13x   . 

     The firs 5 components of the vector correspond 
to the model of stator currents-rotor currents of the 
induction motor. The other elements of vector (45) 
are given by the state variables of the automated 
controllers as well as by the state variables of EGO 
estimator composing the system presented in figure 
2. 
      The input vector u of expression (44) is: 
 

 T1 2 3u u u u                        (46)  
 
where: *

1 ru    ; *
2 ru   ; 3 ru M . 

    The expression of the vector function of the 
mathematical model (44) is: 
 

  Ti i 1,14
f f


                                 (47) 

 
where: 

1 11 1 r 12 p 5 2

13 3 14 p 5 4 11 1

f x ( z x )x

x z x x g
     

   
 

2 r 12 p 5 1

11 2 14 p 5 3 13 4 11 2

f ( z x )x

x z x x x g
    

     

3 31 1 32 p 5 2 33 3

r 34 p 5 4 31 1

f x z x x x

( z x )x g

   

   

4 32 p 5 1 31 2

r 34 p 5 3 33 4 31 2

f z x x x

( z x )x x g

   

      

5 m1 3 2 4 1 m2 5 m3 3f K (x x x x ) K x K u     

6 2 13f u x   

 7 8 1 3 a 13 12
Kf x K u g K x x
T






     

8 1 3f u g   

 9 6 2 13 11

K
f x K u x x

T





     

M
10 7 M 7 12

M

Kf x K f x
T

      
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* * * *
11 a 11 r 12 b 1 13 13 11 1f a x x a x a x b g       

* * * *
12 r 11 a 12 b 2 14 p 3 13 11 2f x a x a x a z g x b g            

   
   

* *
13 31 1 33 13 a 1 11 b 2 12

b r 1 11 a r 2 12

f a x a x g f f g f f

g x x g x x 

      

     
 

 14 13 2 12f x x x    
 
     The following notations have been used in the 
above mentioned expressions: 

11 ds 1
1 *

11

b v hg
b

 
 ; 11 qs 2

2
11

b v h
g

b






           (48) 

 R
3 14 R 13 2 12

R

Kg x K x x x
T

                (49) 

i
ds 9 i 9

i

Kv x K f
T

  ; i
qs 10 i 10

i

Kv x K f
T

        (50) 

2
* * 12

1 13 13 31 p 3 12
13

xh a x a z g x
x

              (51) 

    * * 11 12
2 14 p 3 13 31 p 3 11

13

x xh a z g x a z g x
x


            (52) 

* 12
r p 3 31

13

xz g a
x                     (53) 

    The coefficients defining the stator currents-rotor 
currents model of the induction motor are: 
 

11
s

1
T

  


; 12
1

 


; m
13

s r

L
L T

 
 

; m
14

s

L
L

 


 

m
31

r s

L
L T

 
  

; m
32

r

L
L

 


; 33
r

1
T

  


; 34
1

 


11
s

1
L

 


; m
31

s r

L
L L

  
  

; 
s

s
s R

L
T   ; 

r

r
r R

LT   ; 
rs

2
m

LL
L1


 ; p
m1 m

z3K L
2 J

   ; 

m2
FK
J

 ; m3
1K
J

 . 

 
where: J – is the inertia moment of the rotor, F – is 
the friction coefficient; sR  - is the stator resistance; 

rR  - rotor resistance; sL  is the stator inductance; 

rL is the rotor inductance; mL  is the mutual 
inductance; rM  is the resistant couple and pz  is the 
number of pole pairs of the induction machine. 
      Because the speed control system is nonlinear, 
for the determination of the transfer matrix the 
system will be linearized (44) around the balance 
point. [10] For the determination of the balance 
point the following nonlinear equation system will 

be solved using Newton’s method, for an imposed 
input vector and invariable in time. 
 

 if (x,u) 0 ;  i 1 14                    (54) 
 

     The obtained balance point for the input vector 
Nu , formed from the nominal input values of the 

control system, will be marked with  Ti i 1,14
b b


 .  

    Considering these conditions, the linearized 
system is: 
 

L L

L

d x A x B u
dt
y C x

    

  

                  (55) 

 
where: 

i
L N

j i 1,14; j 1,14

fA (b,u )
x

 

 
  

  
;

i
L N

k i 1,14;k 1,3

fB (b,u )
u

 

 
   

; 

 LC 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 
    Going to Laplace transform in initial conditions 
null in expression (55) we may explain the transfer 
matrix of the control system in figure 3. [10] 
 

    1
L 14 L LG s C s I A B                   (56) 

 
     The transfer matrix (56) is composed of three 
transfer functions linking the output of the control 
system with the three inputs of the vector (46). 
     Within the design of the flow controller the used 
transfer function is the one that links the output of 
the system to the first element of the input vector. 
This transfer function will be noted as follows: 
 

   
 

r
1 *

r

s
G s

s





                         (57) 

 
     The fixed part of the flow control system will be 
explained based on this transfer function. Therefore 
the transfer function of a small pipe ( L D ) will be 
presented. [4]  

 

 
p0

2
p

0

F s
kFG s p(s) T s 1

P



 
 


                     (58) 
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where: kp  is the amplification factor pk 0.5  and 

pT  is the delay constancy of the resistive tube: 
 

p
0

ALT
F

  ;  
2DA

2
   
 

 ; D
f L

 


            (59) 

 
     In the last expression of relation (59), f is the 
coefficient of friction determined considering the 
Reynolds number. 
     Expression (58) is obtained following the 
linearization of the equation on a resistive tube 
based on Taylor’s theory arround the balance point 
 0 0F ; P . 
 

0 0

0

P(t) P ( P(t)) P p(t)
F(t) F F(t)
         


  
       (60) 

 
     As the flow transducers dynamically act as first 
order aperiodic systems we may say that the transfer 
function of the flow transducer is: 
 

        
 

r T
3

T

F s kG s
F s T s 1

 


                  (61) 

 
where: kT  is the amplification factor and TT  is the 
delay constancy of the transducer. In the design of 
the flow controller, this constancy TT  is neglected 
because the it has a small value considering the time 
constancies dominated by the process. 
     Due to the fact that there is a difference between 
the flow and angular speed of the centrifugal pump 
actuating motor, there is a direct proportion, and we 
may say that the motor-pump ensemble is defined 
by the following transfer function: 
 

   
   EE SP 1*

F s
G s K G s

s
  


            (62) 

 
where: SPK  is the slope characteristic to flow-speed 
of the centrifugal pump. 
     In these conditions, the transfer function 
of the fix slope of the system is: 

   
       
*

PF SP 1 2 3
r

s
G s 2 K G s G s G s

F s


      (63) 

 
     In the above mentioned relation the coefficient 
multiplying the slope of the flow-speed 
characteristic of the centrifugal pump appears due to 

the equation defining the pressure drop on a 
resistive tube: 
 

2

2

FP
2 A


 


                               (64) 

     In these conditions the control system presented 
in figure 7 may have the following form: 
 

 
Fig. 7. Flow control system 

     In these conditions, based on the transfer 
function (63) and on the pole-zero repartition 
method the flow controller may be easily tuned. 
 
 
5.   Application 
In order to give examples for what we have 
presented in the paper we will design an oil flow 
control system on a main pipe. 
     Thus, a main pipe will be considered with an 
internal diameter  D 0.2 m  and the flow 
transducer will be placed at a distance  L 1 m . A 
20oC oil operating temperature has been considered 
for the design. During the simulation, the 
technological pipeline is modelled on the basis of 
the notions presented in the papers [2], [8].   
     The centrifugal pump used is a LQRY 150-125-
270 type pump manufactured by Shanghai Pate 
Pump MFG.CO. [12] with a maximum capacity of 

3400 m / h   .  
      The actuating motor used has the following 
electrical and mechanical parameters: 
 

 NP 160 kW ;  NU 400 V ; N
rotn 1487
min
    

; 

 Nf 50 Hz ; pz 2 ;  sR 0.01379  ; 

 rR 0.007728  ;  sL 0.007842 H ; 

 rL 0.007842 H ;  mL 0.00769 H ; 

2J 2.9 Kg m    ; N m sF 0.05658
rad
     

. 

 
     The length of the main pipe for the transport of 
petroleum product is equal to  1 km . 
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     For the design of the controllers from speed 
control systems the following values of the 
constancies *

d1T  and *
d2T  have been used: 

 
 *

d1T 1 msec ;  *
d2T 7.5 msec .              (65) 

 
     Following the tuning of flow controller based on 
the described procedure in this paper the following 
values of the coefficients defining the controller 
have been obtained: qK 5 ;  qT 0.0005 sec . 

     For the simulation of flow control system with 
the modification of the speed of the centrifugal 
pump, for the flow *F  different values have been 
imposed, respectively 50, 80, 150 and 200 [m3/h]. 
The simulation of the control system has used  
Matlab-Simulink software, and following the 
simulation the following graphs have been obtained: 
 
 
 

 

 
Fig. 8 Time proportioned flow variation 

   
Fig. 9 Pressure drop variation on the pipe 

 
Fig. 10 Motor’s speed time variation

     
  Considering all the previously presented it is 
observed that the control system has a very good 
dynamics. 

 
 
 

WSEAS TRANSACTIONS on FLUID MECHANICS
Olimpiu Stoicuta, Marin Silviu Nan, Gabriel Dimirache, 
Nicolae Buda, Dan Liviu Dandea

ISSN: 1790-5087 153 Issue 3, Volume 5, July 2010



6 Conclusions 
The used concepts and ideas in the design of the 
control system presented in the paper may be used 
and developed for other types of flow control 
systems as well. 
     Because of the real advantages of the sensorless 
control of speed and good dynamic control 
performances of the new control system we may say 
that implementing and using the system is a real 
advantage. 
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