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Abstract: It is well known, that the fluid motion in reversible hydraulic machinery elements is a complex three-
dimensional problem. In this paper it is developed an explicit numerical model based on Finite Element Method 
and Dual Reciprocity Method for the simulation of the flow velocity and pressure distributions on blade of the 
Francis type reversible radial-axial hydraulic machine’s runner, in the hypothesis of ideal incompressible fluid 
and the relative rotational motion. The proposed numerical model was applied for reversible radial–axial 
hydraulic machinery operating as a pump. The blade has the basic profile NP205. This profile has a quadratic 
equation which defines its skeleton and its thickness function is that of a NACA profile with a maximum 
relative thickness of five percent. The numerical results for different discharge values have finally allowed 
obtaining the cavitation characteristic and sensitivity curves for the reversible hydraulic machinery. 
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1 Introduction 
At it is well known, when fluid motion in the re-
versible hydraulic machinery elements is a complex 
three–dimensional problem [2], [9], [13], [14], [17]. 
 Calculations of three-dimensional flow in rotating 
and stationary blade passages of turbomachinery are 
approximated by assuming that the three–dimen-
sional flows can be represented by separate, nearly 
orthogonal, two–dimensional flows [1]. 
 According to the authors, the Finite Element 
Method (FEM) and the Dual Reciprocity Method 
(DRM) allows the transformation of the three–di-
mensional problem of fluid motion in the reversible 
hydraulic machines (pump–turbines) runner in to a 
simpler two–dimensional problem, in the hypothesis 
of ideal incompressible fluid. For this purpose the 
following stages are recommended: 
 a) The axisymmetric potential motion is solved 
for a given domain that permites the determination of 
the hydrodinamic field and also the velocity and 
pressure distributions along the streamlines using 
FEM. 
 b) It is studied the fluid motion around radial-
axial profile cascades disposed on the stream sur-
faces using DRM. 
 For solving both two–dimensional problems we 
consider the hypotheses: 
 – the fluid is inviscid and incompressible; 
 – mass forces are neglectable; 

 – the absolute motion is potential and stationary; 
 – the runner's number of rotations is constant; 
 – the motion is considered axial-symmetrical in 
the absence of runner blades; 
 – the stream surfaces are revolving surfaces; 
 – the motion is uniform at half of the cascade 
spacing upstream and respectively downstream of 
the cascade. 
 The relative fluid motion around radial–axial pro-
file cascades is rotational. In order to determine this 
motion, the conformal mapping of the domain on the 
stream surface in an associated plane was used as 
well shown by Abdallah S. [1] and Carte I.N. [6]. 
 The crossing of the stream surface with the run-
ner blades generates a radial–axial cascade of pro-
files. Because the stream surface is deployble into a 
plane surface it is conformally mapped into an asso-
ciated plane (Prasil) and the radial–axial cascade in a 
linear on. The determination of the motion in this 
plane was made by solving a boundary – value pro-
blem for the differential equation for the stream 
function ψ*, obtaining the velocity and pressure field 
in the associated plane. Next, the results were trans-
posed to the stream surface. 
 The numerical model was applied to the pump 
radial–axial cascade presented in [10]. The NP205 
profile which is part of the blade’s structure has a 
skeleton made of quadratic polynom and a four digit 
NACA profile thicknes functions. 
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2 Numerical model 
 
2.1 Solving the fluid axial-symmetrical mo-

tion through pump-turbine runner  
The paper presents a method of solving the potential 
axial-symmetrical motion of the inviscid incom-
pressible fluid through the no blade runner of the 
reversible hydraulic machine functioning as a pump. 
Because of the axial-symmetrical nature of the mo-
tion, the use of a cylindrical coordinate system like 
(R, θ, Z) is in order. 
 From the previous hypotheses we know that the 
axial-symmetrical motion is a potential one, that 
means 0=×∇ v

r
, where ϕ∇=v

r
. Potential ϕ  of 

velocity v
r

 is stationary (∂ϕ/∂t = 0) because the 
absolute motion is considered stationary (∂ v

r
/∂t = 0). 

 Taking into acount that the fluid is incom-
pressible )0( =⋅∇ v

r
 the Stokes equations are ob-

tained: 
 –  with the velocity potential ϕ: 
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    0
1

2

2

2

2

=
∂
Ψ∂

−
∂

Ψ∂
+

∂

Ψ∂
RRRZ

    (2) 

because v
r

 and ϕ do not dependent on θ and: 

Ψ∇×−=
R

i
v θ

r
r

, 0=×∇ v
r

 and 0
θ

=
∂
Ψ∂

. 

 The  components of velocity v
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are given by the 
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 The authors achieve solving the problem with 
Dirichlet and Neumann boundary conditions for the 
stream function Ψ, by means of integrating equation 
(2) using FEM. 
 In order to generalize the problem it is useful to 
take a dimensionless approach in the stream func-
tion, using the following variable interchange: 

    11 ; −∗−∗ == axax RLRZLZ     (5) 

and of function 

     Ψ=Ψ −∗ 12 Qπ       (6) 

where Lax is the axial extension of the analysis 
domain, Q – discharge equal to 2π(Ψ–Ψ0) and the 
value of Ψ0 is equal to zero. 
 In this case, the Stokes equation for the stream 
function Ψ* is written as such: 
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and the dimensionless components of velocity v* are 
given by: 
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 The equations which express the connection bet-
ween the velocity dimensionless components and the 
dimensional ones are written as follows: 

  RaxRZaxZ
vQLvvQLv 1212 2;2 −∗−∗ == ∗∗ ππ  (9) 

 Because the problem to be solved requires mixed 
limit conditions, figure 1 show the geometric shape 
of the analysis domain and the limit conditions on its 
boundary for both the dimensional and the dimen-
sionless approach. 

 
a) 

 
b) 

Fig.1 Analysis domain and the limit conditions for the 
dimensional case (a) and the dimensionless one (b) 
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 Function Ψ* is globally approximated on Ω* as 
follows: 

   NGa ...,,1; =Ψ=Ψ ∗∗∗ ααα     (10) 

where: NG representes the number of global nodes 
on domain Ω*, resulted from its discretization in 

finite elements; ∗
αa  – global interpolation functions 

on Ω*; ∗Ψα – value of ∗Ψ  in global node α. 

 The Galerkin method is applied as follows [7]: 
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 Domain Ω* is axial-symmetrical and thus dΩ* = 
R

* dθ dZ
* dR

*. Using integration by parts on equation 
(11), a system of linear equations is obtained in its 
global form: 

   NGFD ...,,1,; ==Ψ ∗∗∗ βααββα   (12) 

where coefficients ∗
αβD  are written: 
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and for the free terms we have relation: 
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where: ∗
βa  are the global interpolation functions on 

Ω*; ∗Ψβ  – value of Ψ* in global node β ; ∗∗
αa  – glo-

bal interpolation functions on Γ*; ∗
∗Z

n , ∗
∗R

n  – cosinus 

of the angle between normal n* to Γ* boundary and 
axis OZ

*, respectively OR
*. 

 Obtaining the global system of equations implies 
the knowledge of the finite element equation. The 
analysis domain has been discretized into a number 
E  of isoparametric linear finite elements Ω*e with 
boundary Γ*e. 
 Function Ψ* is approximated locally on each fi-
nite element as such: 

   NLNa
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in which: e
Na∗  are the local interpolation functions; 

e
N
∗Ψ  – value of Ψ*e in the local node N ; NL = 4 –

number of local nodes on Ω*e. 
 If we apply the Galerkin method for the finite 
element we have the form of the local finite element 
equation: 
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where coefficients e
NMD∗  and the free terms e
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computed with the following relations: 
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 The coefficients e
NMD∗  are numerically evaluated 

using a Gauss quadrature formula [10]: 
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where: n  is the number of Gauss integration points 
from inside the finite element; ζi and ηj – natural 
coordinates of the integration point; wi, wj  – weight 
factors. 
 Taking into account the limit conditions for the 

stream function, the free terms e
NF ∗  are equal to zero 

on Γ*e, respectively Γ*. Knowing the local values of 
e

N
∗Ψ , e

NMD∗ , e
NF ∗ , allows the computation of the glo-

bal values with the help of Boolean matrices: 
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where e
Nα∆ , e

Mβ∆  are the elements of Boolean ma-

trix e∆ which has dimensions NL×NG. 

 The components of velocity v
*e on the finite 

element are computed in the gravity center of the 
finite element (for ζ = 0, η = 0) using the relations 
[7], [8]: 
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and the velocity´s value v* in nodes is computed 
using the arithmetical average of the components 
pertaining to the neighbouring finite elements: 

     ( ) 2

1
22 ∗∗∗
∗∗ +=

RZ
vvv      (22) 

 Knowing the components of velocity v* in the 

global nodes, we can compute the values of ∗ϕ  in 

these nodes by use of the following equation:  
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R

c
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imposing 00 =∗ϕ  on BC . 

 The authors have developed a computer program 
in the FORTRAN programming language for IBM-
PC compatible microsystems. Using this porogram is 
obtained the hydrodynamic field (fig. 2) defined by 
the streamlines Ψ* = const. and the lines of equal 
potential ϕ* = const. also the velocity (fig. 3) and 
pressure distributions (fig. 4) along the streamlines, 
considering the following data: Lax = 2.027 m, 

666.01 =∗a , vAB = 12.61 m/s. 

 Velocity ∗v  corresponding to a point on the 
streamline represents the ratio between two dimen-
sionless velocities: 

      
ABv

v
v

∗

∗
∗ =       (24) 

where: 

 
Fig. 2 Hydrodynamic field 

 
Fig. 3 Velocity distributions along the stramlines  

 
Fig. 4 Pressure distributions along the stramlines 

 

     5.4)(2 2
1 == −∗∗ av AB     (25) 

in which ∗
1a  is the dimensionless radius corespon-

ding to the entry in the considered runner (fig. 1-b). 
Dimensionless velocity v for every streamline point 

is obtained by multiplying ∗v  by vAB. 
 In order to obtain the pressure distribution along 
the streamlines (fig. 4) the equation below is used: 

      
2

1 ∗−= vp       (26) 

 Relation (26) is result of Bernoulli´s theoreme for 
the potential stationary motion, written for two 
streamline points one belonging to the AB  boun-
dary and the other is the current one. 
 From figures 3 and 4 we can identify the ma-

ximum value point for ∗v  and the minimum value 
for p . We notice that for Ψ* = 1 we obtain 

364.1max =∗v  and 86.0−=p  for 46.0=∗
s  the value 

of the streamline curve arch. This means that here 
exists a higher probability to produce cavitational 
phenomenon. 
 For solving the rotational motion on the stream 
surface we shall retain only the stream-lines from the 
hydrodynamic field in the meri-dian plane and in this 
plane (fig. 5) we shall put the entry edge and the exit 
edge of the blade, the latter being parallel to axis 

OZ
*, and is found at radius 233.1=∗

PR . 

 
2.2 Basis of the Dual Reciprocity Method  
The DRM proposed by Brebbia A. and Nardini D. 
[5], [15], and developed by Novak A., Partridge P. 
and Wrobel L. [18], [19], has as an objective the 
transformation of domain integrals into boundary 
integrals, which shows it is based on the BEM. 
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Fig. 5 The streamlines and entry and exit edges  

for the runner blades 

 The elements that constitute the basis of the met-
hod are applied to equations as such: 

      bu −=∇2       (27) 

where b  is one or more dependent functions of (x, y, 
u, t) or of (x, y, u), when t  (time) is missing. Solu-
tion u  to equation (27) can be obtained from solu-
tion u

(
 out of the Laplace equation and a particular 

solu-tion û  as follows: 
      uuu ˆ+=

(
      (28) 

 In [19] it is proposed to use a limited series of 
particular solutios and for b the relation: 
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where Fj is the function associated to point j and αj 
are the α vector elements. Because we have N boun-
dary nodes and L internal nodes from Ω domain, as 
presentated in figure 6, we have as a result N+L 
values for Fj and α. 

 
Fig. 6 Boundary and internal nodes  

from Ω domain 

 Starting with the basic equation: 
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to whch we apply the usual BEM technique, after 
then Γ  boundary's discretization in linear elements, 
the following matrix equation insues: 
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where u, q are the solution vectors and of its normal 

derivative of N+L size, and matrices H, G, Q̂ , Ĥ , 
have the size (N+L)×(N+L). For computing matrix 

elements Q̂ , Ĥ  a limited serier of particular solu-
tion û  is proposed and its normal derivative q̂ , 
where the distance function r intervenes: 
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 The calculus of elements Hij  and Gij corespon-
ding to matrices H and G is the same as for linear 
boundary elements. 
 The matrix equation (31), after implementing the 
limit conditions leads to a linear system of N+L 
equations with N+L unknows, these being the values 
of function u and its normal derivative q in the nodes 
where they are unknown. 
 
2.3 Equation for relative rotational motion 
on the stream surface 

The fluid flow in a Francis type runner is considered 
nonviscous and incompressible. The crossing of the 
stream surface with the runner blades in functioning 
as a pump will determine a radial-axial cascade with 
profiles represented in figure 7. 

 
Fig. 7 Radial-axial cascade on the stream surface 

 If we consider the relation between the absolute 
velocity v, the relative velocity w and u which 
represents the peripheral velocity, the absolute mo-
tion of the ideal fluid being considered potential as 

WSEAS TRANSACTIONS on FLUID MECHANICS Anton Iosif, Ioan Sarbu

ISSN: 1790-5087 59 Issue 2, Volume 5, April 2010



well as introducing the Oq1q2q3 orthogonal curve-
linear coordonate system will lead to the obtaining of 
the stream surface motion equation [10]: 
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in which: w(1), w(2) are the relative flow velocity 
components of the motion on the stream surface, ωP 
the angular velocity, R0 the radius coresponding to 
the origin of curvelinear coordinates system, and z, R 
the axial cordinates and radius, variables in the case 
of the axisymmetric motion. 
 
2.4 Conformal mapping of the radial-axial 

cascade 
Because equation (33) is not useful for the numerical 
calculation, there is a need for the following change 
of variables (x; y):  
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 The equations (35) realise the geometric transfor-
mation of the stream surface in the associated plane 
and of the radial-axial cascade into a linear one. In 
numerical computation accomplished in associated 
plane where the linear cascade is found, as shown in 
figure 8 are used the following dimensionless vari-
ables: 
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Fig. 8 Analysis domain from the associated plane 
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in which: ∗
0s  is the dimensionless arc coresponding 

to the origin O (Fig. 7), Lax the dimensional axial 

extension of the analysis domain, and L∗  the length 
of cascade chord in the associated plane obtained 
through the dimensionlles way of deeling with 
problem in the stream function Ψ* solved of the 
axisymmetric motion. 
 
2.5 Solving the dimensionless differential 

equation for stream function in associated 

plane 
In the associated plane, taking into account equation 
(33) it has been deduced the following differential 
dimensionless equation for the ψ* stream function in 
this plane: 
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and ( )∗xh  is thickness function of the variable fluid 
layer. 
 Differential equation (39) is solved with the 
DRM, if we take into acount the analysis domain 
shown in figure 8 and the following boundary con-
ditions: 
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where: ∗
0t  is the cascade step from associated plane, 

∗
n  the external normal to boundary, and β the angle 
between relative and peripheral velocity. 
 Equation (39) can be written like so: 

      b=∇ ∗ψ2       (42) 

where b is the sum of two terms: 
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 If we take into account DRM we have for (39) the 
folloving matrix equation: 

   ))(ˆˆ( λαQGUHGqHψ +−=−∗    (44) 

in which α, λλλλ are vectors determined as such: 

    cFλaFα
11 −− == ;      (45) 

 In the above equation a, c are vectors, and F–1 is 
reciprocal of matrix F. Solving matrix equation (44) 
with the boundary conditions (41) is done through a 
repetitiv process, starting with the Lplace equation 
solution. The results from the plane are transposed 
on the stream surface using the relations below: 
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obtaining the velocity and pressure distributions 
( ( )w , ( )p ) on the profile from the radial–axial cas-

cade, namely on the reversible runner blades. The 

dimensionless velocity ∗w  has the expresion: 

      
AMw

w
w ∗

∗
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where: w* is the dimensionless velocity computed in 
the associated plane, w*AM – dimensionless velocity 
upward the linear cascade, vm0 – dimensional meri-
dional velocity corresponding to the “O“ origin of 
the curvelinear coordinate system. 
 A computer program has been elaborated on the 
basis of the numerical model developed. It was rea-
lized in the FORTRAN programming language, for 
IBM-PC compatible microsystems. 
 
3 Results of numerical model applica-

tion to a pump-turbine 
The proposed computational model was applied for a 
reversible radial–axial hydraulic machinery functio-
ning as a pump which following fundamental charac-
teristics: HP=317 m, QP=72.35 m3/s, PP=250 MW, 
ηP = 0.9, nsp = 130, nP = 300 rpm, L* = 1.476,  

βAM
 = 159°, AM

cβ  = 21°, βAV
 = 155°, AV

cβ  = 25°,  

βsup = 24°, βc = 66°. The number of runner blades is 
ZP = 7 and maximum relative thickness of profile is 
d/l = 0.5. Thickness function of the variable fluid 
layer is expressed as follow: 

 ( ) −+−= ∗∗∗∗ 345
67.3838.8174.57 xxxxh  

    998.017.027.7
2

+−− ∗∗ xx    (49) 

 For solving the matrix equation (43) the analysis 
domain is discretized on the boundary into linear 
elements, and the internal nodes are established [12]. 
The nummerical calculus is performed for 43=N  
nodes of the boundary and 20=L  internal nodes. 
 The flow velocity and pressure distributions on 
the reversible runner blade are simulated with the 
computer program for the discharge Qc = 72.35 m3/s 
and the medium stream surface generated by the 
streamline Ψ*=0.6 and represented in figures 9 and 

10. This representation was made along the ∗
LOXL  di-

mensionless loxodrome. The same figures represent 
the velocity and pressure distributions computed also 
with FEM. From the representation of the velocity 
and pressure distributions (fig. 9, 10) we can ascer-
tain the following values on the profile intrados 
using DRM: ( )w =1.56, ( )p = –1.17 and FEM: 

( )w =1.46 ( )p = –1. It can be observed in general a 

good coordonaton of the values obtained with the 
two numerical methods. 

 

Fig. 9 Velocity distribution on the runner blade 

 
4 Cavitation characteristic and sensi-

tivity curves 
The reversible hydraulic machine functions, in rea-
lity, at random discharge values Qx that can differ or 
are equal to the computed discharge. Taking into 
account the unfavourable behaviour of the machine 
during pump regime than during the turbine regime 
[2], [3], it is necessary to determine the cavitation 
characteristic σPx = f(Qx/Qc) and the cavitation sen-
sitivity curves kp max, x = f(Qx/Qc) from the very stage 
of designing the runner. 
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Fig. 10 Pressure distribution on the runner blade 

 These theoretical characteristics are determined 
based on the coefficient of minimal pressure distri-
butions obtained for Qx = [0.8, 1.0, 1.2, 1.4]×Qc and 
Ψ* = 0.6. Figure 11 presents the Francis pump-
turbine hydraulic circulation while operating as a 
pump, and figure 12 shows the velocity triangles 
corresponding to points 0 on the stramlines at dis-
charges Qx. 
 In the case of Qx random discharge regimes, velo-
city (fig. 13) and pressure (fig. 14) distributions were 
obtained using DRM, one the blade of the reversible 
hydraulic machine. 
 

 
Fig. 11 Hydraulic ciculation of reversible machine 

operating as a pump 

 
Fig. 12 Velocity triangles corresponding to point 0 

 
Fig. 13 Velocity distributions on the hydraulic 

 machine´s blade 

 
Fig. 14 Pressure distributions on the hydraulic  

machine´s blade 

 For computing the cavitation coefficient σPx for 
discharge Qx, equation was employed: 

 ++−=
Px
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++ ∑ −0        (50) 

where hydraulic losses ∑ − Mxph 0 are equal to zero 

for the inviscid incompressible fluid. 
 The pumping head HPx is computed with relation: 

 







−

+
= P

PP

x
PP

hP
Px ctg

bD

Q
uu

pg
H 2

22
22)1(

β
π

η
 (51) 

where: p is the influence coefficient for the finite 
number of blades ZP, (ZP = 7, p = 0.3836 ); ηhP = 
0.96 – the hydraulic efficiency of the runner. 
 In relation (1) factor kp max, x is equal to the value 

xp min,)(− obtained from the pressure distributions for 

discharge Qx, and the absolute velocity (v0x), the 
relative velocity (w0x) and the peripheral velocity 
(u0x) corresponding to point 0 from figure 11, res-
pectively to origine O of the curvelinear coordinate 

system 321 qqOq  from figure 7. 

WSEAS TRANSACTIONS on FLUID MECHANICS Anton Iosif, Ioan Sarbu

ISSN: 1790-5087 62 Issue 2, Volume 5, April 2010



 Results obtained with DRM allowed the illus-
tration (fig. 15 and 16) of the cavitation charac-
teristic and also the cavitation sensitivity curves 
compaired with the respective characteristics deter-
mined with FEM. 

 
Fig. 15 Cavitation characteristic σPx = f(Qx/Qc) 

 
Fig. 16 Cavitation sensitivity curves kp max, x = f(Qx/Qc) 

 In figure 15 the value of σP equal to 0.145 was 
also written, which was obtained with the statistical 
equation recommended with Siervo F. [22] for Qx = 
Qc = QP. It can be noticed that this value is closer to 
the σP values computed with DRM and FEM for the 
intrados. 
 Figures 15 and 16 show that increasing discharge 
Qx, leads to an increase in the values of σPx and  
kp max, x, thus leading to an unfavourable of the run-
ner, from the cavitational point of view. These 
operating conditions are makeing possible the deve-
lopment of cavitation phenomenon inside the runner 
and decreasing the energy efficiency. 
 In the following, we proceed to present a method 
of computing the cavitation coefficient σPx and the 
location of point M in which the pressure equals the 
value of xp min,)(  for Ψ* = 0.6 and Qx = Qc = QP = 

72.35 m3/s. For the case in which Qx/Qc = 1, relation 
(50) can be formulated as such: 
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where the peripheral velocity coefficient is given by: 
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and 

   ( ) .8625.0 axMSM LZDa ∗−=    (54) 

 

where radius ∗
MR  of point M and radius ∗

0R  of  

point 0 are dimensionless and axMM LRR ∗=  and 

axLRR ∗= 00  are dimensional. 

 In equation (3) hydraulic losses ∑ − Mph 0 are 

equal to zero, and the values for velocities are: v0 = 
12.9 m/s, u0 = 33.45 m/s, w0 = 35.3 m/s. 
 For establishing the location of point M, the 
following approximation polynomials have been 
determined: 

9152.110227.027393.0809.3

5641.45184.110827.0
1

23

456

+++−

−+−=
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∗

sss
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1624.00012.1

02595.0029893.053727.0
234
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∗

∗∗∗∗

x

xxxs
(57) 

 For s* = 0 the result is 522.00 =∗R  and the dimen-

sionless abscissa of point M is given by relation: 

      ∗∗∗ = MM xLx       (58) 

in which ∗
Mx  is the abscissa of point M in plane 

∗∗ xy o . 

 The computation results are presented in table 1. 
Table 1. The coordinates of point M’s location 

Method ∗
Mx  ∗

Mx  ∗
Ms  ∗

MZ  ∗
MR  ku σP 

DRM 0.220 0.325 0.498 0.494 0.577 0.23 0.216 
FEM 0.238 0.351 0.526 0.520 0.587 0.27 0.175 

 Figure 17 illustrates the location of point M ob-
tained using the two nummerical methods DRM and 
FEM. 
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Fig. 17 Location of point M 

 We can see small differences between the results 
obtained with DRM and FEM, which can be ex-
plained by the computational errors generated while 
employing these methods. 
 Also we can notice that point M of minimal pres-
sure is found in the close vecinity of the area where 
the liquid flow is on the blade of the hydraulic ma-
chine in a pumping state, which has been experimen-
tally identifyed by Anton I. [3]. 
 

5 Conclusions 
The authors show a method for solving a three–
dimensional problem by transforming it into two 
problems both two–dimensional for determining the 
velocity and pressure distributions on the blade of 
the pump–turbine runner, accepting the fact that the 
fluid is inviscid.  
 For simulating the velocity and pressure distri-
butions it is necessary to solve a mixt boundary con-
ditions problem in the associated plane. For this 
purpose, a numerical computational model has been 
developed, with the help of DRM for solving the 
partial derivative equation (39) imposing Dirichlet 
and Neumann boundary conditions on the boundary 
of the analysis field in the associated plane. This is 
the novelty in solving the problem. 

 The modality of solving the problem we approa-
ched with DRM can be a starting point in the case of 
viscous fluid.  
 Theoretical study of the cavitation characteristic 
and sensitivity, and also establishing the location of 
the minimal pressure point, constitute important re-
sults for all the designing engineers in this field of 
expertise. 
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