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Abstract: - In this paper, we consider multi-parametric method for solution of unsteady temperature two-
dimensional MHD laminar boundary layer. Outer magnetic field induction is assumed as function of 
longitudinal coordinate and time with force lines perpendicular to the body on which boundary layer forms. 
Temperature varies along body surface with longitudinal coordinate, but not with time. Further, electric field is 
neglected and value of magnetic Reynolds number is significantly less then one i.e. problem is considered in 
induction-less approximation. According to temperature differences under 50oC physical properties of fluid are 
constant. Introducing new variables and then similarity parameters, starting equations are transformed into 
universal form. Obtained universal equations and corresponding boundary conditions do not contain explicit 
characteristics of particular problems. Appropriate approximations of obtained equations are solved 
numerically in this paper, and a part of obtained results is given in the form of figures and corresponding 
conclusions.  
 
Key-Words: - MHD, multi-parametric method, boundary layer, similarity parameters, temperature, 
universal solutions.  
 

1 Introduction 
The problem of boundary layer separation and 
control has attracted considerable attention over 
several decades because of the fundamental flow 
physics and technological applications. Prandtl [1] 
has addressed some of the essential ideas related to 
boundary layer separation and the need to prevent 
the same from occurring. For a long time following 
methods was used for boundary layer control: admit 
the body motion in stream-wise direction, increasing 
the boundary layer velocity, boundary layer suction 
[2], second gas injection, body cooling… 

The interest in effects of outer magnetic field on 
heat-physical processes appeared sixty years ago 
[3]. The research in MHD flows was stimulated by 
two problems: the protection of space vehicles from 
aerodynamic overheating and destruction during the 
passage through the dense layers of the atmosphere; 
the enhancement of the operational ability of the 
constructive elements of high temperature MHD 
generators for direct transformation of heat energy 
into electric. The first problem showed that the 
influence of a magnetic field on ionized gases is a 
convenient control method for mass, heat and 

hydrodynamic processes. Solutions of mentioned 
problems were followed with rapid increase of 
analytical papers and experimental procedures about 
heat transfer in MHD boundary layer [4], [5], [6]. 
The field of MHD prospecting extended gradually 
to new applied problems and nowadays research in 
viscoelastic fluids [7], Marangoni convection under 
the influence of magnetic filed [8], magneto-
biological processes in medicine [9]… 
 
 

2 Problem Formulation 
In this paper, for the sake of richness of mentioned 
research, unsteady temperature two-dimensional 
laminar MHD boundary layer of incompressible 
fluid is studied. Outer magnetic field is still in 
relation to fluid in outer flow. It is assumed that 
outer magnetic filed induction is function of 
longitudinal coordinate and time with force lines 
perpendicular to the body surface on which 
boundary layer forms. Assuming absence of outer 
electric filed and value of magnetic Reynolds 
number significantly lower then one, considered 
problem is in induction-less approximation. 
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Velocity of flow is considered much lower then 
speed of light and usual assumption in temperature 
boundary layer calculation that temperature 
difference is small (under 50oC) is used, accordingly 
characteristic properties of fluid are constant 
(viscosity, heat conduction, electro-conductivity, 
magnetic permeability, mass heat capacity …). 
Temperature varies along body surface with 
longitudinal coordinate. Obtained system of partial 
differential equations can be solved for every 
particular case using modern numerical methods and 
computer. 

In this paper, quite different approach is used 
based on ideas in papers [10], [11], [12], [13] that is 
extended in papers [14], [15], [16]. Essence of this 
approach is in introducing adequate transformations 
and sets of parameters in starting equations of 
laminar two-dimensional unsteady temperature 
MHD boundary layer of incompressible fluid, which 
transform the equations system and corresponding 
boundary conditions into form unique for all 
particular problems and this form is considered as 
universal. 

Accordingly, in this paper universal equations of 
observed problem with universal boundary 
conditions are obtained. Obtained equations do not 
contain characteristic values of observed problem, 
which distinguish particularly cases, and in that 
sense, they are universal. Solutions of universal 
system of equations obtained with numerical 
integration are used in paper to yield general 
conclusions about boundary layer development 
which are valid for all particular cases. Results can 
be also used for calculations of particular cases and 
this task will be subject of future research. Arbitrary 
particular problems can be also solved numerically 
using some modern numerical method for example 
genetic algorithms in the variational methods for 
boundary value problems [17]. Comparison of 
results for the case of classical boundary layer on 
circular cylinder obtained using parametric method 
and other methods [11], [12] depict suitability of 
this method. According to our research we expect to 
retain benefits of described parametric method for 
observed case and in future research. 
 
 
2.1 Mathematical model 
Described two-dimensional problem of unsteady 
MHD temperature boundary layer is mathematically 
presented with: 
continuity equation: 
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energy equation: 
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and corresponding boundary and initial conditions: 
 

 ( )0 0 wu , v , T T x= = =  for 0y = ; 

 ( )u U x,t , T T∞→ →  for y → ∞ ; 

 ( )0 0u u ( x, y ) , T T x, y= =  for 0t t= ; 

 ( )1 1u u ( t , y ) , T T t, y= =  for 0x x= .  (4) 
 
In previous equations and initial and boundary 
conditions the parameter labelling used is common 
for the theory of MHD boundary layer: ,x y -
longitudinal and transversal coordinate respectively, 
t -time, ,u v -longitudinal and transversal velocity 

component in boundary layer respectively, ( ),U x t -

velocity on outer edge of boundary layer, ν -fluid 
kinematics viscosity, σ -fluid electro-conductivity, 
ρ -density of fluid, ( , )B x t -magnetic field 
induction, T -fluid temperature, λ -thermal 
conductivity, pc -mass heat capacity, μ -fluid 

viscosity, ( )wT x -body surface temperature, T∞ -

temperature on outer boundary layer edge, ( )0 ,u x y  

and ( )0 ,T x y -longitudinal velocity and fluid 

temperature respectively at moment 0t t= , ( )1 ,u x y  

and ( )1 ,T x y - longitudinal velocity and fluid 

temperature respectively in cross section 0x x= . 
For further consideration stream function, 

( )x, y,tΨ  is introduced with following relations: 

 

 v , u
x y

Ψ Ψ∂ ∂= − =
∂ ∂

; (5) 
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which satisfies equation (1) identically and 
transform momentum equation (2) into equation: 
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  (6) 

and energy equation into equation: 
 

 

2

2

2 22 2

2

p

p p

T T T T

t y x x y c y

B
U .

c c yy

Ψ Ψ λ
ρ

μ Ψ σ Ψ
ρ ρ

∂ ∂ ∂ ∂ ∂ ∂+ − = +
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞∂ ∂+ + −⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠⎝ ⎠

 (7) 

 
Boundary and initial conditions are transformed into 
conditions: 
 

 0 0 w, ; T T ( x )
y

ΨΨ ∂= = =
∂

 for 0y = ; 

 ( )U x,t ; T T
y

Ψ
∞

∂ → →
∂

 fo r y → ∞ ; 

 ( )0 0u ( x, y ) , T T x, y
y

Ψ∂ = =
∂

 for 0t t= ; 

 ( )1 1u ( t , y ) , T T t , y
y

Ψ∂ = =
∂

 for 0x x= . (8) 

 
Equation (6) does not depend from equation (7) and 
it can be solved independently. Solution of equation 
(6) is used for solving of equation (7).  
 
 

3 Universal Solution 
In order to analyze described flow problem 
following new variables are introduced:  
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where D  is normalizing constant, η -dimensionless 

transversal coordinate, ( )h x,t -characteristic linear 

scale of transversal coordinate in boundary layer, 

( ), ,x y tΨ -dimensionless stream function (ratio of 

velocities in boundary layer and on outer edge of 
boundary layer) and ( ), ,x tΘ η -dimensionless 

temperature difference.  

According to introduced variables, equations (6) 
and (7) are transformed into following system: 
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where for the sake of shorter expression, the 
notations are introduced: 
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 Now we introduce sets of parameters in 
following order dynamical, magnetic, temperature 
and constant parameter: 
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where: 
 

 wq T T∞= − . (16) 
 
 Introduced sets of parameters reflect the nature 
of velocity change on outer edge of boundary layer, 
alteration characteristic of variable N  and 
temperature change along body surface, and a part 
from that, in the integral form (by means of z  and 

z / t∂ ∂ ) pre-history of flow in boundary layer.  
 Further, using the parameters (12)-(15) as new 
independent variables and differentiation operators 
for x  and t : 
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respectively, where parameter derivates along 
coordinate x  and time t  are obtained by 
differentiation of Eqs. (11)-(14): 
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where k ,n k ,n k ,n k ,n k kQ ;E ;K ;L ;M ; N  are terms in 

curly brackets in obtained equations.  It is important 
to notice k ,n k ,n kQ ;K ;M  beside the parameters 

depend on value U z x F∂ ∂ = . Using parameters 
(12)-(14), operators (17) and terms (18) system of 
equations (10) is transformed into system: 
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where the following markings have been used for 
shorter statement: 1ℑ -left side of first equation of 
system (10), 2ℑ - left side of second equation of 
system (10).  
 In order to make system (19) universal it is 
necessary to show that value F  which appears in 
terms for k ,n k ,n kQ ;K ;M  can be expressed by means 

of introduced parameters. In order to prove 
mentioned we start from impulse equation of 
described problem: 
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where δ ∗  is displacement thickness: 
 

 ( )
0

1* u
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U
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∞
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⎝ ⎠∫ ; (21) 

 

δ ∗∗ -momentum thickness: 
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wτ -friction stress on the body: 
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Introducing dimensionless characteristic functions: 
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which, according to Eqs. (9) and (21)-(23), can be 
expressed in the following form: 
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 After transition to new independent variables 

values H ∗ , H ∗∗ , ξ  become functions only from 

parameters k ,nf , k ,ng , kl  and g .  

 Now, using parameters as new independent 
variables and derivative operators from impulse 
equation (20) after simple transformation next 
equation is obtained: 
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Last two equations define function F  in terms of 
values, which depends only from introduced 
parameters. System of equations (10) is now 
universal system of described problem. Boundary 
conditions, also universal, are given with terms: 
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ΦΦ Θ
η

∂= = =
∂

 for 0η = ; 
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where ( )0Φ η -Blasius solution for stationary 

boundary layer on the plate, ( )0Θ η  is solution of 

following equation: 
 

   
22 22

20 0 0 0
02 2

0
d d dD

D Ec .
Pr dd d H

Θ Φ ξ ΘΦ
ηη η ∗∗

⎛ ⎞
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Universal system of equations (19) with boundary 
conditions (28) are strictly for wide class of 
problems in which ( )z At C x= + , where A  is 

arbitrary constant and ( )C x  some function of 

longitudinal coordinate. For other problems this 
equations are approximated “universal” equations. 
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System of equations (19) is integrated in m-
parametric approximation once for good and all. 
Obtained characteristic function can be used to yield 
general conclusions about development of described 
boundary layer and to solve any particular problem. 
Before integration for scale of transversal coordinate 
in boundary layer ( ),h x t  some characteristic value 

is chosen. In this case h δ ∗∗=  and accordingly to 

Eq. (24) 1H ∗∗ = , H Hδ δ∗ ∗ ∗∗= =  and equality 
(26) now have form: 
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∑ ∑

 (30) 

 
 Taking parameters 0k ,nf = , 0k ,ng = , 0g =  

first equation of the system (19) is simplified into 
form: 
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and if 2
0D ξ=  then previous equation became well-

known Blasius equation. According to previous 
statement for normalizing constant D  value 0,47 
must be chosen.  
 For selected value h  equation (29) for 
determining variable 0Θ  became: 
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In this paper approximated system of equations (19) 
is solved in which influence of parameters 1 0,f , 0 1,f , 

1 0,g , 1l , and g  are detained and influence of 

parameters 0 1,f , 1l  derivatives are disregarded.  

In this way system is simplified into following 
form: 
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and function F  is obtained from Eq. (30) in same 
approximation: 
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 (34) 

 
Boundary conditions which coincide to system of 
equations are conditions: 
 

 0 0 0, ,
ΦΦ Θ
η

∂= = =
∂

 for 0η = ; 

 
 1 1,Φ Θ→ →   for  η → ∞ ; 
 

 ( ) ( )0 0,Φ Φ η Θ Θ η= =  for 

 1 0 0,f = , 0 1 0,f = , 1 0 0,g = , 1 0l = , 0g ;=  (35) 
 
which is obtained from condition (28), using same 
simplifications like as equations.  

First equation of system (33) is four-parametric 
once localized approximation and second is five-
parametric twice-localized approximation of system 
of equations (19). 

In this paper, system of equations (33) with 
appropriate boundary conditions (35) is solved using 
three-diagonal method, known in Russian literature 
as the "progonka" method. Obtained results of 
system integration are given in next section in the 
form of diagrams and conclusions. 
 
 

4 Results 
In this section, part of results obtained with 
numerical integration of equation system (33) with 
boundary conditions (35) is given on figures 1 to 11. 
Fig. 1 presents the variations of values F  and ξ  in 

function of dynamic parameter 1,0f  for different 

values of unsteadiness parameter 0,1f  and value of 

magnetic parameter 1,0 0.10g = . It may be noted that 

value F  decrease with increase of dynamic 
parameter. Value F  is higher for the case of 
decelerated outer flow, and lower for the accelerated 
outer flow in relation to stationary outer flow.  
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Same figure shows that ξ  have higher values for 
the case of accelerated outer flow and lower for the 
case of decelerated flow in relation to stationary 
case. This remark lead to conclusion that accelerated 
outer flow postpones the boundary layer separation 
and decelerated flow has quite opposite influence. 

Fig. 2 shows the value H  (ratio of boundary 
layer displacement thickness and momentum 
thickness) in function of dynamic parameter 1,0f  for 

different values of unsteadiness parameter 0,1f , 

while magnetic parameter is set to 1,0 0.10g = . Ratio 

H  decrease with increase of dynamic parameter 

1,0f . It may be noted also that for the same value of 

dynamic parameter ratio H  is higher for the case of 
decelerated outer flow and lower for the case of 
outer flow acceleration. According to derived 
conclusions it may be observed that accelerated 
outer flow have positive influence on boundary 
layer development.  
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Fig. 1 Variations of quantities F  and ξ  in function 

of dynamic parameter 1,0f  for different values of 

unsteadiness parameter 0,1f  ( 1, 0.3r cP E= = ) 
 

The effect of magnetic parameter 1,0g  on 

quantities F  and ξ  for different values of dynamic 
parameter is shown on Fig. 3. Figure presents the 
case of accelerated outer flow ( 0,1 0.02f = ). 

Quantity F  decrease and ξ  increase with 

increasing of dynamic parameter 1,0f . It is 

interesting to note that for the same value of 
dynamic parameter quantity F  decrease and 
quantity ξ  increase with increasing of magnetic 

parameter 1,0g . This remark lead to conclusion that 

magnetic field postpone the boundary layer 

separation and greater postponement is achieved 
with increasing of magnetic parameter 1,0g .  
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Fig. 2 Variations of quantity H  in function of 
dynamic parameter 1,0f  for different values of 

unsteadiness parameter 0,1f  ( 1, 0.3r cP E= = ) 
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Fig. 3 Variations of quantities F  and ξ  in function 

of dynamic parameter 1,0f  for different values of 

magnetic parameter 1,0g  ( 1, 0.3r cP E= = ) 
 

Fig. 4 present the results obtained for ratio H  in 
function of dynamic parameter for different values 
of magnetic parameter 1,0g , while unsteadiness 

parameter is set to 0,1 0.02f = . According to Fig. 4 

ratio of boundary layer displacement thickness and 
momentum thickness decrease with increase of 
dynamic parameter. This ratio also decreases while 
magnetic parameter increases for the same value of 
dynamic parameter.  

Fig. 5 and 6 present the variations of quantities 
F , ξ  and H  in function of dynamic parameter 

1,0f  for different values of magnetic parameter 1,0g . 

WSEAS TRANSACTIONS on FLUID MECHANICS
Zoran Boricic, Dragisa Nikodijevic, 
Bratislav Blagojevic, Zivojin Stamenkovic

ISSN: 1790-5087 103 Issue 3, Volume 4, July 2009



In this case, outer decelerated flow is analyzed in 
order to compare prior derived conclusions.  
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Fig. 4 Variations of quantity H  in function of 
dynamic parameter 1,0f  for different values of 

magnetic parameter 1,0g  ( 1, 0.3r cP E= = ) 
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Fig. 5 Variations of quantities F  and ξ  in function 

of dynamic parameter 1,0f  (decelerated outer flow 

case 0,1 0.02f = − ) 
 

According to obtained results, it may be noted 
that magnetic field has positive influence on 
boundary layer development and this conclusion is 
valid for the cases of accelerated and decelerated 
outer flow. 

Ratio of velocities in boundary layer and at the 
outer edge of boundary layer (dimensionless stream 
function  Φ ) is shown in the Figure 7 in function of 
dimensionless transversal coordinate η  for different 
values of unsteadiness parameter, while values of 
dynamic parameter and magnetic parameter are set 
to 1,0 0.04f = − , 1,0 0.06g = . It may be noted that 

velocity in boundary layer faster tends to velocity on 
outer edge of boundary layer for the case of 
accelerated outer flow and slower for the case of 
decelerated outer flow compared with stationary 
outer flow.  
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Fig. 6 Variations of quantity H  in function of 
dynamic parameter 1,0f  for different values of 

magnetic parameter 1,0g  (decelerated outer flow 

case 0,1 0.02f = − ) 
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Fig. 7 Dimensionless stream function  Φ  in 
function of dimensionless transversal coordinate η  

for different values of unsteadiness parameter 0,1f  
 

Fig. 8 describe temperature distribution in 
function of dimensionless transversal coordinate η  

for different unsteadiness parameter 0,1f  values with 

dynamic parameter 1,0 0.04f = − , magnetic 

parameter 1,0 0.06g =  and temperature parameter 

1,0 0.02l = − . Solid line presents the case of 

stationary outer flow. It may me noted that 
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temperature function Θ  faster tends to value on 
outer edge of boundary layer for the case of 
decelerated outer flow. 

In the Fig. 9 variations of dimensionless stream 
function Φ  (ratio of velocities u U ) in function of 
value η  for different values of magnetic parameter 

1,0g  and 0,1 0.02f = − , 1,0 0.03f = . It may be 

concluded that with increase of magnetic parameter 
longitudinal velocity in boundary layer faster tends 
to the velocity on outer edge of boundary layer. This 
conclusion holds also for the case of accelerated 
outer flow ( 0,1 0f > ).  
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Fig. 8. Temperature distributions in function of 
dimensionless transversal coordinate η  for different 

values of unsteadiness parameter 0,1f  
 

 Fig. 10 shows the variations of temperature 
function Θ  in function dimensionless transversal 
coordinate η  for different values of magnetic 

parameter 1,0g  while unsteadiness, temperature and 

dynamic parameters are set to 0,1 0.02f = − , 

1 0.02l = , 1,0 0.03f = . With increase of magnetic 

parameter temperature function Θ  slower tends to 
the value on outer edge of boundary layer. This 
conclusion holds also for the cases of accelerated 
outer flow ( 0,1 0f > ) and temperature decreasing 

along the body ( 1 0l < ). 

 The effect of temperature parameter 1l  on 
dimensionless temperature function Θ  is presented 
on the Fig. 11 in function of dimensionless 
transversal coordinate η . In this case like for the all 

other Prandtl number rP  and Eckert number cE are 
set to 1.0 and 0.3 respectively. Magnetic, 
unsteadiness, temperature and dynamic parameters 
are set to: 1,0 0.1g =  0,1 0.01f = , 1,0 0.02f = . 
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Fig. 9 Variations of dimensionless stream function 
Φ  in function of value η  for different values of 

magnetic parameter 1,0g  
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Fig. 10 Dimensionless temperature function Θ  for 
different values of magnetic parameter 1,0g  
 

0 1 2 3 4 5 6
0,0

0,2

0,4

0,6

0,8

1,0

Θ
 d

im
en

si
on

le
ss

 te
m

pe
ra

tu
re

 fu
nc

tio
n

η

 l1=-0.02

 l1=0.00

 l1=0.02

f0,1=0.01

f1,0=0.02

 
 

Fig. 11 Variations of temperature function for 
different values of temperature parameter 1l  
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It may be noted that for the case of temperature 
decreasing along the body this value slower achieve 
value on outer edge of boundary layer, while for the 
case of temperature increasing along the body 
surface this tends is faster.  For comparison is used 
the case of constant body surface temperature. This 
conclusions is valid for the cases of accelerated and 
decelerated outer flow. 
 
5 Conclusion 
In this paper, unsteady two-dimensional MHD 
boundary layer on the body with temperature 
gradient along surface is considered. This problem 
can be analyzed for every particular case i.e. for 
given outer flow characteristics. Here is used quite 
different approach in order to use benefits of multi-
parametric method and universal equations of 
observed problem are derived. These equations are 
solved numerically in some approximation and 
integration results are given in the form of diagrams 
and conclusions. Obtained results are used to yield 
general conclusions about developing of described 
temperature MHD boundary. 
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