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Abstract: - In this paper, we consider multi-parametric method for solution of unsteady temperature two-
dimensiond MHD laminar boundary layer. Outer magnetic field induction is assumed as function of
longitudinal coordinate and time with force lines perpendicular to the body on which boundary layer forms.
Temperature varies along body surface with longitudinal coordinate, but not with time. Further, electric field is
neglected and value of magnetic Reynolds number is significantly less then one i.e. problem is considered in
induction-less approximation. According to temperature differences under 50°C physical properties of fluid are
constant. Introducing new variables and then similarity parameters, starting equations are transformed into
universal form. Obtained universal equations and corresponding boundary conditions do not contain explicit
characteristics of particular problems. Appropriate approximations of obtained equations are solved
numerically in this paper, and a part of obtained results is given in the form of figures and corresponding
conclusions.

Key-Words: - MHD, multi-parametric method, boundary layer, similarity parameters, temperature,
universal solutions.

1 Introduction hydrodynamic processes. Solutions of mentioned
The pr0b|em of boundary |ayer Separation and prOblemS were followed with rapld increase of
control has attracted considerable attention over analytical papers and experimental procedures about

several decades because of the fundamental flow heat transfer in MHD boundary layer [4], [9], [6].
physics and technological applications. Prandtl [1] The field of MHD prospecting extended gradually
has addressed some of the essential ideas related to to new applied problems and nowadays research in

boundary layer separation and the need to prevent viscoelastic fluids [7], Marangoni convection under
the same from occurring. For a long time following the influence of magnetic filed [8], magneto-
methods was used for boundary layer control: admit biological processesin medicine[9]...

the body motion in stream-wise direction, increasing
the boundary layer velocity, boundary layer suction

h Th(re\in_te;&et in effects of outc;lmz_;\gnetic field on In this paper, for the sake of richness of mentioned
eal-pnysical processes gppeared Sty years ago research, unsteady temperature two-dimensional

[3]. The resee.\rch in MH[.) flows was i ”.‘“'a‘ed by laminar MHD boundary layer of incompressible
two problems: the protection of space vehiclesfrom ¢ .o qudied. Outer magnetic field is sill in
aerodynamic overheating and destruction during the relation to fluid in outer flow. It is assumed that
Fhf EEEQﬁ through tthefd'f[err:selayig ofa'lthzbq:r?ospp e{ﬁ' outer magnetic filed induction is function of

€ ennancement of the operation ity ‘ot the longitudina coordinate and time with force lines
consiructive dements of high ftemperature MHD perpendicular to the body surface on which
generators for direct transformation of heat energy boundary layer forms. Assuming absence of outer
into electric. The first problem showed that the dectric filed and value of magnetic Reynolds

mfluen_ce ?f an;aglnetlztl;:eldd ]?n lonized %aesf 'Sg number significantly lower then one, considered
convenient confrol method Tor mass an problem is in induction-less approximation.
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Veocity of flow is considered much lower then
speed of light and usual assumption in temperature
boundary layer caculation that temperature
difference is small (under 50°C) is used, accordingly
characteristic properties of fluid are constant
(viscosity, heat conduction, electro-conductivity,
magnetic permeability, mass heat capacity ...).
Temperature varies aong body surface with
longitudinal coordinate. Obtained system of partia
differential equations can be solved for every
particular case using modern numerical methods and
compulter.

In this paper, quite different approach is used
based on ideasin papers [10], [11], [12], [13] that is
extended in papers [14], [15], [16]. Essence of this
approach is in introducing adequate transformations
and sets of parameters in starting eguations of
laminar two-dimensional unsteady temperature
MHD boundary layer of incompressible fluid, which
transform the equations system and corresponding
boundary conditions into form unique for all
particular problems and this form is considered as
universal.

Accordingly, in this paper universal equations of
observed problem with universal boundary
conditions are obtained. Obtained equations do not
contain characteristic values of observed problem,
which distinguish particularly cases, and in that
sense, they are universa. Solutions of universal
system of equations obtained with numerica
integration are used in paper to yield general
conclusions about boundary layer development
which are valid for al particular cases. Results can
be also used for calculations of particular cases and
this task will be subject of future research. Arbitrary
particular problems can be also solved numericaly
using some modern numerical method for example
genetic algorithms in the variational methods for
boundary value problems [17]. Comparison of
results for the case of classical boundary layer on
circular cylinder obtained using parametric method
and other methods [11], [12] depict suitability of
this method. According to our research we expect to
retain benefits of described parametric method for
observed case and in future research.

2.1 Mathematical model

Described two-dimensional problem of unsteady
MHD temperature boundary layer is mathematically
presented with:

continuity equation:
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a—U+Q=O; «y
oX oy
momentum equation:
Jou Ju du
—4+U—4V—=
ot oxX oy
ou U 92 B? @
=—4+U—+ _121_0 (u—U),
ot ox oy P
energy equation:
oT o7 oT
—4+U—+V—=
ot oxX oy
, , , (©)
=ia_-2r+i(%] +O-B (u_U)Z;
pCy dy”  pcy\dy)  pc,

and corresponding boundary and initial conditions:

u=0,v=0,T=T,(x) for y=0;
u—U(xt), T->T, for y—eo;
u=Uy(x,y), T=To(xy) for t=ty;

u=u(ty),T=T(ty) for x=x,. 4

In previous equations and initial and boundary
conditions the parameter labelling used is common
for the theory of MHD boundary layer: x,y-
longitudina and transversal coordinate respectively,
t-time, u,v-longitudinal and transversal velocity
component in boundary layer respectively, U (x,t) -

velocity on outer edge of boundary layer, v -fluid
kinematics viscosity, o -fluid electro-conductivity,

p-density of fluid, B(xt)-magnetic field
induction, T -fluid temperature, A-thermal
conductivity, c,-mass heat capacity, u-fluid

viscosity, T, (x)-body surface temperature, T_ -
temperature on outer boundary layer edge, u,(X,y)
and T,(xy)-longitudina velocity and fluid
temperature respectively at moment t=t,, u,(x,y)
and T,(xy)- longitudinal velocity and fluid

temperature respectively in cross section x =X, .
For further consideration stream function,
T(x,y,t) isintroduced with following relations:

oY

I¥ oY _
ox B

% u; 5)
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which satisfies equation (1) identicaly and
transform momentum equation (2) into equation:

¥V Q¥ W OV IV

(6)
ou U 9% oB?(o¥ _
== tU—y— | U |;
ot ox oy p Loy
and energy eguation into equation:
oT 0¥ dT owaT _ A 9T,
ot dy ox Ix dy pc, dy’
2w\ oB*(aw Y )
+ ,u[ zj +G [ —Uj.
pCy\ dy pCy\ dy

Boundary and initial conditions are transformed into
conditions:

¥’=O,a—¥/=0; T=T,(x) for y=0;
ay

—-oU(xt); ToT, for y—e;

——=Ug(X,Y), T=Ty(xy) for t=ty;

aa—ilzul(t,y),T =T,(t,y) for x=Xx,.

8
Equation (6) does not depend from equation (7) and
it can be solved independently. Solution of equation
(6) is used for solving of equation (7).

3 Universal Solution
In order to anadyze described flow problem
following new variables are introduced:

D¥(x,y.t)
X=Xt=t;@(xt,n)=——""—;
U (xt)h(x,t
D-y T(X—'?' " ©
T h(xt) Octn) =3 2

where D is normalizing constant, 7 -dimensionless
transversal coordinate, h(x,t) -characteristic linear
scale of transversal coordinate in boundary layer,
?(x,y,t)-dimensionless stream function (ratio of
velocities in boundary layer and on outer edge of
boundary layer) and ©(xt,77)-dimensionless
temperature difference.
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According to introduced variables, equations (6)
and (7) are transformed into following system:

3 2 2
Dza—cz,jH10 @a—d;— 9% +1]+
an” | an® 97
1 0’D 0D
+§(F¢+ﬂg)a_772+(f°l+gl'°)[l_ﬁj:
2
=222 (i)
oton

2 42 2 +)\2 2
D79 Q_DZEc(a ¢] _Ecgl,o[l_aﬁj +

R on’ on’ o
0@ 1 90
+(1-09),—+=ng—+ 10
( ) an 2779 an (10)
1 00 00
+§(F+2flyo)¢wzZE—UZY(X;U);

where for the sake of shorter expression, the
notations are introduced:
h? 9z
Z:—’ =—,
v ot
oU zdU Uz dT, .
1 f01:__a|1=—_1
ox U dt T,-T. dx
_90 0 90 7’0
OX, 070X, OX, OX0n
0D 00 0D IO
Y(xix)= 570 SRS

O OX, OX, 0%,

_ VPG

2
NzaB ;gm:Nz;qu%;
o : oX

fl,O -

X (%5 %)

Pr -Prandtl number;

U 2
=—— -Fckert number. 11
Ec Cp (Tw _Too) ( )

Now we introduce sets of parameters in
following order dynamical, magnetic, temperature
and constant parameter:

k+ny
_ k—la U k+n

f
i Xk at" (12)
(k,n=012,...;kvn=0);
g, =U ? 9“ "N n
n X< 1ot" (13)

(k,n=012,...,;k#0);
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Uk o*q
| =——2,(k=12,..); 14
0z
=— =const. 15
g== (15)
where:
q=T,-T.. (26)

Introduced sets of parameters reflect the nature
of velocity change on outer edge of boundary layer,
ateration characteristic of variable N and
temperature change along body surface, and a part
from that, in the integral form (by means of z and
0z / ot) pre-history of flow in boundary layer.

Further, using the parameters (12)-(15) as new
independent variables and differentiation operators
for x and t:

0, for @
Y _ i afkn i gkn
ax Ko | X afkn ——f 0| & ox E)gkn
kvnz0 ox a| n=0
0, for@
= | Ofyn
—=> +19l, 9
= | ot afkn —£— for@
kvn=0 8 BI (17)

+iagk,n a .
o dt 90y,

respectively, where parameter derivates aong
coordinate x and time t are obtained by
differentiation of Egs. (11)-(14):

Fen L r (1)1, 6, +
ox Uz

1
+(k + n) ka,n + fk+l,n} = EQk'n;

. 1
P H0e1) sy

1
+(k+ n)gfk,n + fk,n+1} :EEk,n;

agk n _
ox Uz

(k 1) foGkn +

1
_Kk,n;

+(k + n) ng,n + gk+1,n} = UZ
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agk,n

1
ot :E{(k_l) fo19kn +

1
(k+ n) ggk,n + gk,n+1}=ELk,n;

ol
a—;zé{[kfm—lﬁkF]lk+Ik+l}=éMk;
o, 1 1
a_tsz{ k( f01+g)lk}=ENk; (18)

where Qi E i K 1iLniM N, are terms in
curly brackets in obtained equations. It isimportant
to notice Q,;K,,;M, beside the parameters
depend on value U dz/ox=F . Using parameters

(12)-(14), operators (17) and terms (18) system of
equations (10) istransformed into system:

= _ R
_MZB QX (7 fen )+ Ek‘“anafk,n}r

kvnz0

- o’
Z|:Lk,n g, + Ko X (7 9 )}
k,n

oo

00
32: z |:anY(77 1:kn)-i_Ek af j|+

k,n=0 k,n

+i[ng—@+ MkY(n;Ik)}+ (19)

k,n

where the following markings have been used for
shorter statement: 3, -left side of first equation of
system (10), S,- left side of second equation of
system (10).

In order to make system (19) universal it is
necessary to show that value F which appears in
terms for Q, ,; K, ,; M, can be expressed by means
of introduced parameters. In order to prove

mentioned we start from impulse equation of
described problem:

Qus ) 2oy

+U (8_U+ Njé T—W=o;
oX P

(20)
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where §" is displacement thickness:
5 (xt)= J{l—ijdy; (21)
5 U

5" -momentum thickness:

7,,~-friction stress on the body:

rw(x,t)=u[§—;] . (23)
y=0

Introducing dimensionless characteristic functions:

5* 5**

HY(x0) =5 1 (x) =5 uh

;f(x’t)=w? (24

which, according to Egs. (9) and (21)-(23), can be
expressed in the following form:

175 0D
H*(xt)== [ 1-=— |d
(xt) DI{ anjn

0

H* (xt) == a¢[1—a¢jd77;

b ian oy
°d

ﬂxQ:Daz (25)
/-

After transition to new independent variables
values H*, H™, & become functions only from
parameters f, ., 9,,, I, axd g.

Now, using parameters as new independent
variables and derivative operators from impulse
equation (20) after simple transformation next
eguation is obtai ned:

F= (26)

P
5

where, P and Q are:

ISSN: 1790-5087

Zoran Boricic, Dragisa Nikodijevic,
Bratislav Blagojevic, Zivojin Stamenkovic

P=§—f1’0(2H +H )—[f01+glyo+§ng -

z Ek,nai+|:(k_l) frofint fk+1,n:|i—);:—}
) k,n

_Z{Lk,nsgi"_ |:(k_1) fl,ng,n + gk+1,n]g:—};
k,n k,n

1, .. - oH™
==H"+ k+n)f, ,—+
Q 2 k’nz_o( ) k,n afk’n
kvn=0
(27)
oo aH**
+> (K+n) Gy =

k,n

Last two eguations define function F in terms of
values, which depends only from introduced
parameters. System of equations (10) is now
universal system of described problem. Boundary
conditions, also universal, are given with terms:

¢:0,3—¢:0,@:0 for n=0;

n

D —-10—-1 for n—eo;

D=d,(n),0=06,(n) for
fin=0,(k,n=012,.kvn=0)

=0 (kn=012,..k#0

=0 | ) (28)
Ik:O (k:1,2,...)

g=0

where  @,(n)-Blasius solution for stationary

boundary layer on the plate, @,(7) is solution of
following equation:

2 42 2 2
D M—DZEC(d quJ + 52* @, 4% _o. (29)

Pr dp? dn? H dn

Universal system of equations (19) with boundary
conditions (28) are dtrictly for wide class of

problems in which z=At+C(x), where A is
arbitrary constant and C(x) some function of

longitudinal coordinate. For other problems this
equations are approximated “universal” equations.
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System of equations (19) is integrated in m-
parametric approximation once for good and all.
Obtained characteristic function can be used to yield
general conclusions about development of described
boundary layer and to solve any particular problem.
Before integration for scale of transversal coordinate

in boundary layer h(x,t) some characteristic value
is chosen. In this case h=6" and accordingly to
Eq. (24) H" =1, H*=6"/6"=H and equality
(26) now have form:

1
F =2[§Z— f1,0(2+H)_(f01+91,0+§ng -

- (30)
- Z St "o Z agk n }

k,n=0 k n k=1
kvnz0 n=0

Taking parameters f, =0, g,,=0, g=0
first equation of the system (19) is simplified into

form:
d’w, & _ d°@,
3 2 CDO 2
dn D dn

-0 (31)

and if D?=¢£, then previous equation became well-
known Blasius equation. According to previous
statement for normalizing constant D value 0,47
must be chosen.

For sdected value h equation (29) for
determining variable &, became:

2 2 2
n n

In this paper approximated system of equations (19)
is solved in which influence of parameters f,,, f;,

G, L, and g are detained and influence of
parameters f,,, |, derivatives are disregarded.

In this way system is simplified into following
form:

°P
3y =FfoX (7 fio)+ gfmw+
°P
+Fg,0X (17 00 )+ ggl,omi
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88
3,= FfloY(ﬂ f10)+ ofo=— of
10 (33)
+FgoY (7 910 ) + 9910 o

and function F is obtained from Eg. (30) in same
approximation:

oH
F=2¢- fl,0(2+ H )_991,0__
99,0
(34)
1 oH
_(foi"' gl,0+§ng _gfl,oa}-

Boundary conditions which coincide to system of
equations are conditions:

D= 02_45_00 0 for n=0;

n

D160 -1 for 71— oo

D=d,(n),0=06,(n) for
f0=0,%:,=0,0,,=0,l,=0,9=0; (39)

which is obtained from condition (28), using same
simplifications like as equations.

First equation of system (33) is four-parametric
once localized approximation and second is five-
parametric twice-localized approximation of system
of equations (19).

In this paper, system of equations (33) with
appropriate boundary conditions (35) is solved using
three-diagonal method, known in Russian literature
as the "progonka' method. Obtained results of
system integration are given in next section in the
form of diagrams and conclusions.

4 Results

In this section, part of results obtained with
numerical integration of equation system (33) with
boundary conditions (35) isgiven on figures 1 to 11.
Fig. 1 presents the variations of values F and & in

function of dynamic parameter f,, for different
values of unsteadiness parameter f,, and value of
magnetic parameter g, , =0.10. It may be noted that

value F decrease with increase of dynamic
parameter. Value F is higher for the case of
decelerated outer flow, and lower for the accelerated
outer flow in relation to stationary outer flow.
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Same figure shows that £ have higher values for
the case of accelerated outer flow and lower for the
case of decelerated flow in relation to stationary
case. Thisremark lead to conclusion that accelerated
outer flow postpones the boundary layer separation
and decelerated flow has quite opposite influence.

Fig. 2 shows the value H (ratio of boundary
layer displacement thickness and momentum
thickness) in function of dynamic parameter f,, for

different values of unsteadiness parameter f,,
while magnetic parameter isset to g, , =0.10. Ratio

H decrease with increase of dynamic parameter
f 0. It may be noted also that for the same vaue of

dynamic parameter ratio H is higher for the case of
decelerated outer flow and lower for the case of
outer flow acceleration. According to derived
conclusions it may be observed that accelerated
outer flow have positive influence on boundary
layer devel opment.

0,8

9110:0.10

o
=)

Functions & and F
o
S

o
N

R
%
. .

»

0,0 T
0,02

-0,12

-0,10 -0,08 -0,06 -0,04 -0,02

f

0,00 0,04

1,0

Fig. 1 Variations of quantities F and & in function
of dynamic parameter f,, for different values of

unsteadiness parameter f,, (B =1LE, =0.3)

The effect of magnetic parameter g¢,, on

quantities F and & for different values of dynamic
parameter is shown on Fig. 3. Figure presents the
case of accelerated outer flow ( f,; =0.02).
Quantity F decrease and & increase with
increasing of dynamic parameter f,. It
interesting to note that for the same value of
dynamic parameter quantity F decrease and
quantity & increase with increasing of magnetic
parameter g,,. This remark lead to conclusion that
magnetic field postpone the boundary layer

is

ISSN: 1790-5087

103

Zoran Boricic, Dragisa Nikodijevic,
Bratislav Blagojevic, Zivojin Stamenkovic

separation and greater postponement is achieved
with increasing of magnetic parameter g, ;.

2,8

gm:o.lo

2,6

24

Function H

2,2

2,0 T
-0,12

-0,10 -0,08 -0,06 -0,04 -0,02 0,00 0,02 0,04

f1,0

Fig. 2 Variations of quantity H in function of
dynamic parameter f,, for different values of

unsteadiness parameter f,;, (B, =1L E, =0.3)

1,0 oy T T
-=--g; 4=0.00
rrrrrrr g, ,=0.04
——0,; =010
RS ===, 4=0.00
Lo 9,0=0.04
' ——9; 5=0.10

0,8
=0.02

0,6

N

N
~ N, v
| T e s
S o 4
| —— IR S AN IS
v we
.- [SRPRSN
N N
<

0,4

Functions & i F

| e v #7_..—"
0.2 — s

0,0
-0,10

-0,08 -0,06 -0,04 -0,02

f1,0

0,00 0,02 0,04 0,06 0,08

Fig. 3 Variations of quantities F and £ in function
of dynamic parameter f,, for different values of

magnetic parameter g,, (B =1LE,=0.3)

Fig. 4 present the results obtained for ratio H in
function of dynamic parameter for different values
of magnetic parameter g,,, while unsteadiness

parameter is set to f,, =0.02. According to Fig. 4

ratio of boundary layer displacement thickness and
momentum thickness decrease with increase of
dynamic parameter. This ratio also decreases while
magnetic parameter increases for the same value of
dynamic parameter.

Fig. 5 and 6 present the variations of quantities
F, £ and H in function of dynamic parameter

f,o for different values of magnetic parameter g, ;.
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In this case, outer decelerated flow is analyzed in
order to compare prior derived conclusions.

f,,,=0.02

35

3,0

Function H

25

2,0 T
-0,12

-0,10 -0,08 -0,06 -0,04 -0,02 0,00 0,02

f

0,04
1,0

Fig. 4 Variations of quantity H in function of
dynamic parameter f,, for different values of

magnetic parameter g,, (P, =1E.=0.3)

0,9

T
f01=0.02 |

08 -
~1 | | [ =0.00)
07 F 910
T - ; i gy 5=0.04
w N S N I A =
L o8 — 9, ¢=0.08
) S AN —_— =0.12
fj- 05 S . - 91,0
" ;
c
2 04
Q
e |
>
T 03
0.2 = —> =7

0,1

0,0
-0,08

-0,06 -0,04 -0,02 0,00

f

0,02 0,04 0,06 0,08

1,0

Fig. 5 Variations of quantities F and £ in function
of dynamic parameter f,, (decelerated outer flow

case f,; =-0.02)

According to obtained results, it may be noted
that magnetic field has positive influence on
boundary layer development and this conclusion is
valid for the cases of accelerated and decelerated
outer flow.

Ratio of velocities in boundary layer and at the
outer edge of boundary layer (dimensionless stream
function @) isshown in the Figure 7 in function of
dimensionless transversal coordinate 77 for different

values of unsteadiness parameter, while values of
dynamic parameter and magnetic parameter are set
to f,,=-0.04, g,,=0.06. It may be noted that
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velocity in boundary layer faster tendsto velocity on
outer edge of boundary layer for the case of
accelerated outer flow and slower for the case of
decelerated outer flow compared with stationary
outer flow.

35

I
fy,=-0.02
——g,,=0.00
————— g, ,=0.04
30 "=+g;,=0.08
I oo g, 4=0.12
c
2
g
25 = T o \
2,0

-0,02
f

-0,08 -0,06 -0,04 0,00 0,02 0,04 0,06

1,0

Fig. 6 Variations of quantity H in function of
dynamic parameter f,, for different values of
magnetic parameter g,, (decelerated outer flow

case fy, =-0.02)

1,0

Y '
S os A f10=-0.04 _|
=
2 /2 IR e f, ,=-0.02
2 ——15,=0.00
0,6 /A — -
s f,,=0.02
= /
17} VA
)] k74
1%} A
D 04
= A
o /
e y
c a
S 7
E 02
S y/
- yi
0,0 . . . . . .
0 1 2 3 4 5 6

n
Fig. 7 Dimensionless stream function @ in

function of dimensionless transversal coordinate 7
for different values of unsteadiness parameter f;

Fig. 8 describe temperature distribution in
function of dimensionless transversal coordinate 7

for different unsteadiness parameter f,, values with
f,o=-0.04,
parameter g,,=0.06 and temperature parameter

dynamic  parameter magnetic
l,0,=-0.02. Solid line presents the case of

stationary outer flow. It may me noted that
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temperature function @ faster tends to value on
outer edge of boundary layer for the case of
decelerated outer flow.

In the Fig. 9 variations of dimensionless stream
function @ (ratio of velocities u/U ) in function of

value 7 for different values of magnetic parameter
G and f,;,=-002, f,=003. It may be

concluded that with increase of magnetic parameter
longitudina velocity in boundary layer faster tends
to the velocity on outer edge of boundary layer. This
conclusion holds aso for the case of accelerated
outer flow ( fy; >0).

1,0 — i
c —
S g, ¢=0.06
5] f, .=-0.04
S o8 1,0 |
2
[
<
2 /
o 4
o© 06 7
Qo v
1S /
Q 4
i) /
- /
@ /4
§oa /
= /
kel
2]
c
g o2
£
@

0,0 - - - - - -

0 1 2 3 4 5 6

n

Fig. 8. Temperature distributions in function of
dimensionless transversal coordinate 77 for different

values of unsteadiness parameter f;

Fig. 10 shows the variations of temperature
function @ in function dimensionless transversal
coordinate 77 for different values of magnetic

parameter g,, while unsteadiness, temperature and
fo,=-0.02,
l,=0.02, f,,=0.03. With increase of magnetic

dynamic parameters are set to

parameter temperature function @ sower tends to
the value on outer edge of boundary layer. This
conclusion holds aso for the cases of accelerated
outer flow (f,;>0) and temperature decreasing

along the body (1, <0).

The effect of temperature parameter |, on

dimensionless temperature function @ is presented
on the Fig. 11 in function of dimensionless
transversal coordinate 77 . In this case like for the all
other Prandtl number P and Eckert number E_ are
set to 1.0 and 0.3 respectivdy. Magnetic,
unsteadiness, temperature and dynamic parameters
aesetto: g,=0.1 f,; =0.01, f,=0.02.
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Fig. 9 Variations of dimensionless stream function
@ in function of value n for different values of

magnetic parameter g, ,
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Fig. 10 Dimensionless temperature function @ for
different values of magnetic parameter g, ,
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Fig. 11 Variaions of temperature function for
different values of temperature parameter |,
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It may be noted that for the case of temperature
decreasing along the body this value slower achieve
value on outer edge of boundary layer, while for the
case of temperature increasing along the body
surface this tends is faster. For comparison is used
the case of constant body surface temperature. This
conclusions is valid for the cases of accelerated and
decelerated outer flow.

5 Conclusion

In this paper, unsteady two-dimensional MHD
boundary layer on the body with temperature
gradient along surface is considered. This problem
can be analyzed for every particular case i.e. for
given outer flow characteristics. Here is used quite
different approach in order to use benefits of multi-
parametric method and universal equations of
observed problem are derived. These equations are
solved numericaly in some approximation and
integration results are given in the form of diagrams
and conclusions. Obtained results are used to yield
general conclusions about developing of described
temperature MHD boundary.
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