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Abstract: -The unsteady and inviscid compressible flow around a circular cylinder and airfoil has been solved 
using a cell-centered finite volume method. A new algorithm for the generation of unstructured triangular grids 
was used to discretize the computational flow domain. Automatic grid generation, cell size distribution, and 
geometry treatment are some of the grid algorithm capabilities. Euler flow solutions have been obtained for 
subsonic and transonic flow conditions. The subsonic solution of flow around a circular cylinder grid verified 
the unstructured grid techniques, and was compared with an analytical solution. Transonic solution over the 
same grid fully converged after only 2791 iterations. The grid quality resulted in smooth pressure contours. 
Transonic flow solutions were also obtained for airfoil at free stream Mach number of 0.8 and attack angle of 
1.25. The true position of the shock is illustrated in the pressure coefficient plots, and shows the shock 
capturing capability of the solution method. The convergence history obtained, points to the accuracy of the 
numerical solution. 
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1 Introduction 
The governing equations of the fluid flow are partial 
differential equations. Analytical solutions of these 
equations for complex geometry are difficult if not 
impossible. One approach is to use computational 
fluid dynamics (CFD) to solve the governing 
equations. In most CFD analysis, the first step is to 
generate a computational grid around the domain of 
interest. Structured and Unstructured grid generation 
methods are two dominant categories for space 
descretization of flow domains. Structured grids are 
generated based on a specific mathematical relation, 
while unstructured grid generation does not follow a 
specific equation for allocation of grid points. 
Structured grids produce equal number of cells 
around each point, and have been extensively 
investigated by Thompson [1].  

Unstructured grids require a connectivity matrix 
for the definition of points and point connectivity. 
This may require a large amount of data storage, and 
can make the generation of unstructured grids more 
difficult than the structured grid generation 
methods. However, the ability of unstructured grids 
in handling complex geometry and solution 
adaptation has made them the subject of interest for 
many researchers. Lohner [2] has used the 
unstructured advancing front method to generate 
grids for medical applications. Marcum [3] has 

generated unstructured grids using iterative point 
insertion and local reconnection. Hexahedral blocks 
were employed to generate tetrahedral grids for 
aerodynamic applications [4]. 

In this paper, a new unstructured grid generation 
algorithm is used to discretize the flow domain with 
triangular cells. This algorithm uses a combination 
of point insertion and cell subdivision techniques 
whereby new grid points and point connectivities 
are created simultaneously. Automatic grid 
generation, the ability to change the geometry of the 
solid domain, grid quality enhancement, and cell 
size distribution are some of the issues addressed in 
this algorithm. Using this method, sample 
computational grids are generated around a circular 
cylinder and airfoil geometry applicable to external 
flow. 

To verify the computational unstructured grids, 
Euler flow solutions are obtained. Jameson and 
Mavriplis solved Euler equations numerically on a 
regular triangular mesh [5]. In the present work, 
solutions of the unsteady Euler equations by a cell-
centered finite volume method and unstructured 
grids are presented. In order to prevent oscillations 
near shock waves, extra dissipative terms were 
added to the Euler equations. A modified Rung-
Kutta scheme is used to update the flow variables in 
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each time step. Far field boundary condition can 
affect the outgoing disturbances. To minimize the 
reflection of these disturbances, Riemann invariants 
are used for the outer boundary condition.  
 
 
2 Unstructured Grid Generation 
A novel algorithm is used to generate triangular 
unstructured grids. Grid refinement is based on a 
combination of point insertion and cell-subdivision 
methods. An edge-based and a cell-based 
connectivity matrix were employed simultaneously 
to prevent long searches through the list of edges. 
The algorithm starts with a very coarse starting grid. 
Surface and field grids are then generated 
simultaneously. The art of this grid generation 
algorithm is in its geometry movement capability, 
where the newly generated surface points are moved 
to a prescribed geometry. The following sections 
further describe the grid generation procedure. 
 
 
2.1 Initial Grid 
The grid generation algorithm developed in the 
current research, starts with a very coarse initial 
grid. A sample initial grid is shown in Figure 1, 
where, the domain is arbitrarily triangulated.  

 
 

 
Fig 1:  Initial coarse grid 

 
 
This initial grid contains 8 vertices and 16 edges 

that form the 8 triangular cells around the square 
shape solids geometry within a rectangular domain. 
It should be noted that the 4 edges forming the solid 
boundary are designated as surface edges.  
 
 
2.2 Connectivity Matrices   
As noted earlier, unstructured grids are associated 
with a data structure known as the connectivity 
matrix. The current approach uses an edge based 
data structure and a cell based data structure 

simultaneously. This reduces the long searches 
through the list of cells, edges, or vertices.  

In addition to the grid connectivity data, other 
information is also stored within the matrices. For 
example, each edge is designated with an integer 
value to represent a surface, interior or outer 
boundary edge. This integer value is stored as a 
column within the edge based data structure. 
 
 
2.3 Grid Refinement Procedure  
Once the data connectivity matrices are constructed 
for the initial grid, the remainder of the grid 
generation procedure is performed automatically. 
The algorithm starts by sorting the cells based on 
their area with the largest cell placed on top of the 
stack. The longest edge of the cell on top of the 
stack is then selected for refinement. A new grid 
point is defined and inserted at the middle of this 
edge. This point is then connected to the opposite 
vertices of the triangular cells sharing the selected 
edge. Figure 2 shows the initial grid after one cycle 
of refinement. It can be seen that the largest edges 
within the original grid are subdivided.  
 
 

 
Fig 2:  Grid after 1st cycle of refinement 

 
 

The newly generated vertices, edges, and cells 
are recorded by updating the connectivity matrices. 
The program is then ready to further refine the 
initial grid. To illustrate this procedure, Figures 3 
and 4 show the grid after 2nd and 3rd cycles of 
refinement. 
 

 
Fig 3:  Grid after 2nd cycle of refinement 
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Fig 4:  Grid after 3rd cycle of refinement 

 
 

The grid displayed in Figure 4, although 
numerically acceptable, contains many elongated 
triangular cells. These elongated cells can 
deteriorate Euler solutions which require isotropic 
grids. To improve the shape of elongated triangular 
cells additional algorithms for grid quality must be 
employed. 
 
 
2.4 Grid Quality 
Two grid quality algorithms were used to improve 
the overall shape of the triangular cells. The first 
algorithm involved an edge swapping procedure. 
This procedure is better described by Figure 5, 
where edge AB is removed and swapped for edge 
CD. By doing so, the resulting triangles ACD and 
BDC are closer in shape to an equilateral triangle.  
 
 

 
Fig 5: Edge swapping procedure, where edge AB is 

removed and edge CD is generated 
 
 

The second algorithm used for improving the 
grid quality involved a grid point smoothing 
procedure. This procedure is better described by 
Figure 6, where point B is moved to a new location 
for optimal quality of the grids surrounding point B. 
The smoothing weighted coefficient can be adjusted 
to satisfy a variety of criteria. Equal smoothing 
coefficient is used for all of the grids illustrated 
here. 
 

 
Fig 6: Grid smoothing procedure, where point C is 

moved to a new location for the optimal grid quality 
 
 

By applying the grid quality algorithms while 
refining the initial grid, triangular cells are clearly 
improved. This can be seen in Figure 7, where final 
grid outputs are compared with and without quality 
improvement.  

 
 

  
Fig 7:  Final grid output (a) without quality 
improvement, (b) with quality improvement 

 
 

The amount of improvement with respect to an 
equilateral triangle depends on the user defined 
quality parameters. The elongated cells of Figure 7 
(a) have vanished after employment of quality 
improvement algorithms. The final grids displayed 
in Figure 7 (b) dose not have any elongated 
triangular cells. But, how close are they when 
compared to an equilateral triangle? Figure 8 shows 
the distribution of angles between adjacent triangle 
edges for the final grid output of Figure 7 before and 
after quality improvement. It is shown that the 
distributions of skewed angles are removed after 
employing grid quality algorithms.  

(a)                 (b) 
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Fig 8: Distribution of angles between adjacent 

triangle edges for the final grid output before and 
after quality improvement 

 
 
2.4 Geometry Treatment 
The last and the most important function of the 
triangular unstructured grid generation procedure is 
its capability to adapt a coarse initial geometry to a 
prescribed solid geometry. To show this procedure 
the initial coarse grid of Figure 1 is refined again 
with utilizing the geometry treatment algorithm. In 
this case, the objective is to match the initial square 
shape solid geometry of Figure 1 to that of a circular 
cylinder. By doing so and simultaneously 
employing grid quality algorithms, final grid around 
a circular cylinder is generated and is shown in 
Figure 9.  
 

 
Figure 9: Final computational grid output around a 

circular cylinder within a rectangular domain 
 
 

To examine the quality of the final triangular 
cells near the solid geometry, a close view of the 
final grid output of Figure 9 is shown in Figure 10. 
 

 
Figure 10: A close view of the final computational 

grid shown in Figure 9 
 
 

To verify the grid generation procedure 
illustrated in this section, Euler flow solutions are 
obtained over the computational grid of Figure 9. 
The mathematical formulations for the flow solver 
are given in the following section.  
 
 
3 Mathematical Formulation 
The finite volume representation of the governing 
flow equations, a multi-step time marching scheme, 
initial conditions, and the appropriate boundary 
conditions constitute the numerical mathematical 
formulation. The governing equations used are the 
two-dimensional Euler equations. The Euler 
equations govern inviscid, compressible fluid 
motion and can be written in integral form for a 
region Ω  with boundary Ω∂  as: 
 

( ) 0=−+
∂
∂
∫∫ ∫
Ω Ω∂

dxgdyfdxdyw
t

. (1)

 
Where t  is the time variable, x  and y  are 

Cartesian coordinates, and vectors w , f , and g  are 
defined by the following matrices.  
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For a perfect gas, the total energy E  is given by: 

 

( ) ( )2 21
1 2

pE u vρ
γ

= + +
−

. (3)

 
Where; ρ , u , v , p , and γ  are definitions of 
density, Cartesian velocity components, static 
pressure, and ratio of specific heats respectively.  
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Equation (1) is in vector form and includes the 
set of continuity, momentum and energy equations. 
This set of equations, apply to each cell individually 
and can also be written as:  
 

0=+ i
i

i Q
dt
wdA . (4)

 
Where, iA  is the cell area and iQ  is the net flux out 
of the cell. The net flux can be computed by taking 
the sum over the three sides of the triangular cell 
and is given by:  
 

( )∑
=

∆−∆=
3

1k
kkkki xgyfQ . (5)

 
Where, x∆  and y∆  are spatial increment in the x  
and y  directions.  

An adaptive scheme for adding dissipative terms 
to the Euler equations has proven to be effective in 
practice in numerous calculations of complex 
unsteady flows. Thus, to consider the dissipative 
terms, Equation (4) is replaced by:  
 

0=−+ ii
i

i DQ
dt
wdA . (6)

 
Where iD  contains the dissipative values for each 
cell and is calculated as shown below.  
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A pressure sensor iν , first defined by Jameson 

[6], is utilized to control the amount of dissipation to 
be added throughout the flow field. This pressure 
sensor for a triangular cell is given by:  
 

3
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where, ip  and jp  are pressures of adjacent cells. 
The calculated value of the pressure sensor is then 
used to predict the amount of pressure switches (2)

iε  

and ( )4
iε . These first- and third order pressure 

switches are calculated as a function of the pressure 
sensor iν , and the adjustable dissipation coefficients 

2k  and 4k  as follows.  
 

(2)
2ij kε ν= . (10)
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A modified four step Rung-Kutta scheme is used 
to update flow variables after each time step. The 
updating procedure is performed in the following 
manner.  
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Where l  represents arbitrary level index for each 
stage, α  is coefficient of Rung-Kutta, and t∆  is the 
time step. 

At the inner boundary, there is no flux through 
the solid wall. Therefore, the solid wall flux is set to 
zero ( 0=kQ ). The far field boundary condition of 
the computational domain is constructed using the 
Riemann invariants [6].  
 
 
4 Computational Flow Solutions 
Three computational flow solutions are given in this 
section to both verify the unstructured grid method's 
robustness, and to show the accuracy of the Euler 
flow solver. First and second cases include flow 
over a circular cylinder at free stream Mach 
numbers of 0.3 and 0.45. The third case illustrates 
the transonic flow over an airfoil at a free stream 
Mach number of 0.8.  
 
 
4.1 Circular cylinder, M∞ = 0.25 
The first computational case involved the inviscid 
flow solution around circular cylinder at M∞ = 0.25. 
The computational grid output around a circular 
cylinder given in Figure 9 was used with the Euler 
flow solver for 6000 iterations. Average density 
residuals are plotted verses iteration numbers and 
are shown in Figure 11. The distribution of pressure 
coefficients on the cylinder surface are plotted 
against an inviscid analytical solution. This is shown 
in Figure 12, where, exceptional agreement with 
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analytical solution is achieved for this subsonic test 
run.  
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Fig 11: Convergence history for the solution of flow 

around circular cylinder at M∞ = 0.25 
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Fig 12:  Distribution of pressure coefficients on a 
circular cylinder surface at M∞ = 0.25 

 
 

The Mach number and pressure contours for the 
solution around circular cylinder at M∞ = 0.25 are 
plotted over the cylinder surface and are shown in 
Figures 13 and 14.  
 
 

 
Fig 13:  Mach number contours for the solution of 

flow around circular cylinder at M∞ = 0.25 
 

 
Fig 14:  Pressure contours for the solution of flow 

around circular cylinder at M∞ = 0.25 
 
 
4.2 Circular cylinder, M∞ = 0.45 
The second case uses the final grid of the previous 
case with a free stream Mach number of 0.45. This 
was selected to enable the authors to compare the 
results with available published data. Again, the 
Euler flow solver was employed for 6000 iterations 
and the convergence history is shown in Figure 15. 
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Fig 15: Convergence history for the solution of flow 

around circular cylinder at M∞ = 0.45 
 
 

The distribution of pressure coefficients on the 
cylinder surface are plotted against Jameson [6] and 
are shown in Figure 16. It can be seen that the CFD 
solution results are comparable with the published 
data. The increase in the free stream Mach number 
from 0.25 of the solution case 1 to 0.45 of this 
solution have led to development of shocks on the 
cylinder shoulders. This can be seen by comparing 
the pressure coefficient curves of Figures 12 and 16 
at locations about 90º and 270º from the leading 
edge on the cylinder surface. 
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Fig 16:  Distribution of pressure coefficients on a 

circular cylinder surface at M∞ = 0.45 
 
 

Similarly, Mach number and pressure contours 
for this solution around the circular cylinder at M∞ = 
0.45 are provided by Figures 17 and 18.  
 
 

 
Fig 17:  Mach number contours for the solution of 

flow around circular cylinder at M∞ = 0.45 
 
 

 
Fig 18:  Pressure contours for the solution of flow 

around circular cylinder at M∞ = 0.45 
 
 

Distribution of pressure coefficients on a circular 
cylinder surface for this case was given by Figure 
16. To show the location of pressure coefficients 
with respect to the cylinder surface geometry, 
pressure coefficients are compared with Jameson [6] 
results and are shown in Figure 19. 
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Fig 19:  Distribution of pressure coefficients on a 
circular cylinder surface geometry at M∞ = 0.45 

 
 
4.3 NACA0012 Airfoil, M∞ = 0.8 
The third computational case considers transonic 
flow on an airfoil with NACA0012 cross section. To 
do this, the vertices of the initial coarse grid of 
Figure 1 are modified to suite the problem at hand, 
and are shown in Figure 20.  
 
 

 
Fig 20:  Initial coarse grid for NACA0012 

 
 
This initial grid is refined and the geometry is 

adapted to an airfoil with NACA0012 cross section. 
The final grid output as a result of the refinement 
procedures is shown in Figure 21.  
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Fig 21: Final computational grid output around a 

NACA0012 within a rectangular domain 
 
 

To further examine the grid cells near the solid 
boundary, close views of the final computational 
grid at the airfoil's leading and trailing edges are 
shown in Figure 22. 
 
 

 
Fig 22: Close views of the final computational grid 

at the airfoil's leading and trailing edges 
 
 

For consistency with previous cases, Euler flow 
solutions over the airfoil were obtained for 6000 
iterations. The convergence history for this solution 
is shown in Figure 23.  
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Fig 23: Convergence history for the solution of flow 
around a NACA0012 airfoil at M∞ = 0.8 and α=1.25 
 
 

The Mach number contours for this transonic 
solution are shown in Figure 24. A strong shock 

wave can be seen on the upper surface of the airfoil, 
while a weaker shock is present on the lower 
surface. The Mack number contours in this figure 
are plotted over the final grid to show the grid size 
distribution at the shock propagation. 

Similarly, Figure 25 shows the pressure contours 
for the solution of flow around NACA0012 airfoil at 
M∞ = 0.8 and α=1.25. Strong sharp contours can be 
seen near regions of shock and stagnation points, 
while smooth pressure contours are seen elsewhere. 

 
 

 
Fig 24:  Mach number contours for the solution of 
flow around NACA0012 airfoil at M∞ = 0.8 and 

α=1.25 
 
 

 
Fig 25:  Pressure contours for the solution of flow 
around NACA0012 airfoil at M∞ = 0.8 and α=1.25 

 
 

Finally, the coefficients of pressures on the upper 
and lower surfaces of NACA0012 airfoil are 
compared with solutions of Jameson [7] and are 
plotted in Figure 26. The shock at 60% of the chord 
is clearly captured and can be seen in this figure. 
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Fig 26:  pressure coefficients on the upper and lower 

surfaces of NACA0012 airfoil at M∞ = 0.8 and 
α=1.25 

 
 

4 Conclusion 
An algorithm and procedure is developed and used 
to generate triangular unstructured grids. Grid 
refinement is based on a combination of point 
insertion and cell-subdivision methods. Edge-based 
and cell-based connectivity matrices were employed 
simultaneously to prevent long searches for 
identification of vertices, edges, or cells. The 
algorithm starts with a very coarse starting grid and 
adapts the solid surface geometry to a prescribed 
geometry. In this case, geometries were adapted to 
generate unstructured grids around a circular 
cylinder and a NACA0012 airfoil.  

The finite volume approach for the governing 
equations and a multi-step Runge-Kutta scheme 
along with initial and boundary conditions have 
been formulated and programmed to develop an 
Euler flow solver. 

The discretized Euler flow equations are 
essentially non-dissipative. Hence, convective terms 
of the flow equations can generate spurious 
oscillations that can affect the quality of the solution 
and can result in a deterioration of the convergence. 
A small amount of numerical dissipation is added to 
damp the oscillations enabling the flow solution to 
reach its steady state conditions.  

The first computational example considers a 
subsonic flow solution with a free-stream Mach 
number of 0.25 over a circular cylinder. When the 
coefficients of pressure are compared with an 
analytical solution, apart from regions of high 
pressure gradients, the results are identical 
elsewhere on the cylinder (See Figure 12). The 
small deviations from the analytical solution at 
regions of high pressure gradients are due to the 
addition of numerical dissipation for solution 
stability.  

The second example discussed the solution at a 
higher free stream Mach number on the cylinder. It 
was shown that small shock waves are present on 
the cylinder and their locations are identical to those 
given by published data. 

The last case involved the generation of 
computational cells around an airfoil. An Euler flow 
solution for this airfoil was obtained and the shock 
capturing capability of the flow solver was 
demonstrated.  

The integrity of the unstructured grid generation 
method and procedures has been demonstrated by 
obtaining inviscid flow solutions at various flow 
conditions.  
 
 
Nomenclature 

iA                                                       Area of cell i  
D                                                 Dissipative term 
E                                                       Total energy 

∞M                              Free-stream Mach number 
p                                                    Static pressure 
Q                                       Net flux out of the cell 

vu,                        Cartesian velocity components 
x∆               Spatial increment in the x directions 
y∆               Spatial increment in the y directions 
t∆                                                           Time step 

)2(ε                               1st -order pressure switch 
)4(ε                               3rd -order pressure switch 

42 , kk              Adjustable dissipation coefficients 

iν                                    Pressure sensor for cell i 
γ                                         Ratio of specific heats 
α                                                   Angle of attack 
ρ                                                               Density 
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