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Abstract: - The Lattice Boltzmann Method is applied to incompressible, steady, laminar flows at high Reynolds 
numbers varying in a range form 50 to 2000. The developing channel flow and the lid driven cavity flow are analyzed. 
The effect of the model Mach number on accuracy is investigated by performing computations at different Mach 
numbers in the range 0.1 - 0.4 and comparing the results with finite-volume predictions of the incompressible Navier-
Stokes equations. It is observed that the Mach number does not effect the results within this range, and the results agree 
perfectly well with the finite-volume solution of the incompressible Navier-Stokes equations. An important purpose of 
the study has been to explore the stability limits of the method. It is observed that the maximum allowed collision 
frequency decreases with increasing Reynolds and Mach numbers, and this dependency is more predominant, and the 
limiting collision frequencies are lower for the channel flow compared to the lid driven cavity flow.  
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Nomenclature 
cs lattice sound speed 
αer     discrete lattice velocity set 

αf        discrete particle distribution function 
H          channel height, cavity edge length 

Ma       Mach number ( scvuMa /22 += ) 
xr     position vector 
x.y 2D Cartesian coordinates 
p  modified static pressure 

Re Reynolds number (Re = u0 H / ν) 
t            time 
u, v flow velocity components 

αw  weighting factors 
Greek symbols 
δ  lattice unit (distance between two  

neighboring lattice nodes) 
δt  time step 
ν kinematic viscosity 
ρ      density 
ω collision frequency 
Sub- and Superscripts 
0 boundary value 
eq  equilibrium value 
m mean value 
~ post-collision state 
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1. Introduction 
In the computational analysis of fluid flow problems, the 
methods based on the discretization of the Navier-Stokes 
equations (e.g. by finite volume, finite element, finite 
difference, or other methods) are now being very widely 
used in research and application [1-3].  An alternative 
approach is the Lattice Boltzmann Method (LBM), 
which is not based on the Navier-Stokes equations, but 
relies on the Boltzmann equation of gas kinetics that 
describes the transport of molecules [4].  
     Although, by far, not as widely used as the above-
mentioned conventional approaches, within about the 
last three decades, there has been a rapid increase in the 
application of the Lattice Boltzmann Method as an 
alternative computational approach for solving problems 
in fluid dynamics [4-6]. A field, where the method has 
become quite popular is the prediction of single- or 
multi-phase flows in rather small scales, in complex 
geometries such as those encountered e.g. in porous 
media, which are usually characterized by rather low 
Reynolds numbers [7-11].  
     On the other hand, the model has also been applied to 
large Reynolds number flows [12]. Here, the treatment 
of flow turbulence arises as a key issue. An application 
of the original Lattice Boltzmann equations directly to 
turbulent flow (Direct Numerical Simulation) [13] 
requires the use of too fine lattice resolutions, leading to 
a too large problem size. Thus, the employment of a 
“turbulence model” becomes necessary, as it is the case 
in the Navier-Stokes equations based counterpart. Within 
this context, two-equation turbulence models have 
already been used [14-16] in conjunction with the 
Lattice Boltzmann Method, which correspond to an 
unsteady RANS (Reynolds Averaged Numerical 
Simulation) type [17] of description. A Large Eddy 
Simulation (LES) [17] like formulation based on the 
definition of a subgrid-scale viscosity [17] has also been 
widely used, which may be found to offer a more natural 
approach for the intrinsically unsteady methodology of 
the LBM [18-21].  
     We are mainly interested in large Reynolds number 
applications. In the Lattice Boltzmann formulations, the 
“collision frequency” (ω), which is one of the main 
ingredients of the model, exhibits a theoretical upper 
bound (ω < 2) that is related with the positiveness of the 
molecular kinematic viscosity [5]. Thus, stability 
problems arise as the collision frequency approaches to 
this limiting value [22]. For incompressible flows, the 
flow velocities are limited, since the model immanent 
Mach number needs to be kept sufficiently small. Thus, 
a lowering of the kinematic viscosity, for achieving high 
Reynolds numbers for a given geometry, pushes the 
collision frequency towards the above-mentioned 
stability limit. This can be encountered by making the 
lattice unit smaller, which, but, may mean an increase in 
the number of lattice nodes, and, thus, in the 

computational overhead. Within this context, working 
with possibly large values of the collision frequency, in 
the vicinity of the stability limit, seems to be 
advantageous for keeping the problem size as small as 
possible. Therefore, it is important to have detailed 
knowledge on the stability limits, as well as on the 
behavior and quality of the related solution within this 
range. This is the main scope of the present 
investigation. 
     At this stage, it shall be mentioned that there are 
methods, which increase the stability of the method, in 
the above-mentioned respect, and allow larger values of 
the collision frequency to be used, such as the Multiple 
Relaxation Time (MRT) approaches [23-25]. On the 
other hand, such methods, although very useful, cause an 
increase in the computational time, which, in return, 
devaluates, at least to an extent, one of the main assets of 
the Lattice Boltzmann Method, namely the speed of 
computation. Furthermore, although the stability 
conditions are somewhat relaxed in Multiple Relaxation 
Time procedures, the stability limits still exist, which, to 
the best of the authors’ knowledge, have not been 
explored until now, in the manner presented in this 
paper. Another possibility of coping with the stability 
limits is the use of interpolation procedures between 
lattice structures and larger meshes, as described, e.g. 
within the context of using non-uniform meshes in 
combination with the Lattice Boltzmann Method [26-
28]. However, the above-mentioned stability limits still 
exist for the background lattice. Although, this may be 
seen not that critical compared to a single mesh 
procedure, such limits may still be important in such 
multiple-mesh procedures, since they can have effects on 
the interpolation quality. Therefore, the present 
investigation is assumed to have implications also for 
such procedures. 
     In turbulent flows, the turbulent/subgrid viscosity 
automatically plays a stabilizing role [22] and, to an 
extent, diverts from the above-mentioned problem. 
However, in the present work, we aim to investigate this 
aspect in an isolated manner, without the additional 
influences caused by the turbulent/subgrid viscosity. 
Therefore, in  the present study, only laminar flows are 
considered, which are also assumed to be 
incompressible, steady-state and two-dimensional. Two 
test cases, namely the developing channel flow, and the 
lid driven cavity flow are investigated. The stability 
limits are explored for Reynolds numbers varying within 
the range 50-2000 and (model) Mach numbers within the 
range 0.1-0.4.   
     In the literature, there are, of course, much more 
theoretically based and sophisticated analyses on the 
stability conditions of the Lattice Boltzmann Method 
[29,30]. In difference to those, the present approach is of 
“empirical” nature, which means that the stability limits 
are determined by applying the method to a number of 
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problems. Therefore, the present experience, which does 
not emerge form a theoretically based framework, is 
rather bound to our specific formulation and code, as 
well as the test cases considered. Thus, the present 
results can, by far, not be claimed to possess 
universality. However, the authors assume that the 
present experience may still be of some common value. 
 
2. Modeling 
The mostly used Lattice Boltzmann formulations are 
based on the approximation of Bhatnagar-Gross-Krook 
(BGK) [31]. In the present work, a version [32] is 
adopted, which is claimed to be especially suitable for 
steady-state, incompressible flows.  
 
2.1. Discretized Equations 
The 2-dimensional 9-velocity lattice model (D2Q9) is 
employed. The lattice configuration is displayed in    
Fig. 1 for a rectangular solution domain and on its 
boundaries for typical boundary types. 

 
 

 
 
 

Fig. 1. D2Q9 lattice model illustrated in a solution 
domain and on typical boundaries. 

 
 
The discretized lattice Boltzmann evolution equation, 
which is usually solved in two consecutive steps, i.e. in a 
“collision” and a following “streaming” step, is provided 
below: 
 
Collision step: 
 

( ) ( ) ( ) ( )[ ]txftxftxfttxf eq ,,,,~ rrrr
αααα ωδ −−=+        (1) 

 
Streaming step: 
 

( ) ( )ttxftttexf δδδ ααα +=++ ,~, rrr
                            (2) 

 

The collision frequency ω is defined by 
 

)2/1)/(/(1 2 += tcsδνω            (3) 
 
In the above equation cs denotes the lattice sound speed, 
which is defined as 
 

3/ccs =                  (4) 
 
with the lattice speed c: 
 

tc δδ /=              (5) 
 

The nine discrete velocities of the model are given by the 
following values: 
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The equilibrium distribution function is given by the 
following function [23] 
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The macroscopic fields are obtained from the following 
equations 
 

∑∑
==

==
8

0

8

0 i

eq
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ff ααρ             (9) 
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==
8

0

8

0 i

eq

i
fefeu αααα

rrr
         (10) 

 
2
scp ρ=            (11) 

 
The time step size tδ  is chosen in such a way to result in 
a lattice speed c (Eq.(5)) of unity, resulting in a lattice 
sound speed of 3/1=sc  (Eq. (4)). For coding the 
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model, sample Fortran codes provided in [33] are used 
basis. 
 
2.2. Boundary Conditions 
As also indicated in Fig. 1, physical boundaries of the 
solution domain are defined to be aligned with the lattice 
grid lines (“on-grid” formulation). Referring to Fig. 2, 
the boundary condition formulations are presented  
below: 
 
Inlet: 
 

( )[ ]7634200 2 ffffffu ++++++=ρ            (12a) 

031 3
2 uff +=                                                          (12b) 

( )
62

1 0
2475

u
ffff +−+=                                     (12c) 

( )
62

1 0
2468

u
ffff +−−=                                     (12d) 

 
Wall: 
  

31 ff =              (13a) 

24 ff =          (13b) 

2
0

68
u

ff +=                  (13c) 

2
0

57
u

ff −=          (13d) 

 
Outlet: 
 

( )( )8514200 2 ffffffu p ++++++−= ρ       (14a) 

puff
3
2

13 −=                                                          (14b) 

( )
62

1
2486

pu
ffff −−+=                                     (14c) 

( )
62

1
2457

pu
ffff −−−=                                     (14d) 

 
Symmetry: 
 

42 ff =          (15a) 

76 ff =          (15b) 

85 ff =                                    (15c) 
 
Corner nodes (inlet/stationary wall, or moving 
wall/stationary wall) are treated as to be belonging to the 
stationary wall (thus, with u=v=0). 
 

3. Results 
Two test cases, namely the developing channel flow and 
the lid driven (square) cavity flow are investigated. The 
geometries and boundary conditions of the two cases are 
sketched in Fig. 2.  
     Computations are performed for Reynolds numbers 
(Re) varying within the range 50 and 2000. Mach 
numbers (Ma) are varied between 0.1 and 0.4. For each 
computation, various values of the collision frequency ω 
are used, for detecting the highest possible value for a 
stable solution.  
     For validation purposes, the flows are also computed 
by the general purpose finite-volume based CFD code 
Fluent [34], using a perfectly incompressible 
formulation, comparing the results to LBM predictions.. 
In these comparisons, the same grids (finite volume vs. 
lattice grid) are always used. 

 
3.1. Developing Channel Flow 
Fig. 3 shows the computed contours of the non-
dimensional axial velocity for the developing channel 
flow for different values of the Reynolds and Mach 
numbers (the axial direction x is scaled by the Reynolds 
number). In all cases, the typical patterns of developing 
flow can be recognized, which are most predominant in 
the vicinity of the inlet boundary and smoothly decay 
along the channel length. The flow fields for Re=50 and 
Re=200 exhibit quite similar patterns, when the axial 
coordinate is scaled by the Reynolds number, as 
expected. One can also recognize that the solutions for 
the different values of the Mach number (i.e. for the two 
extreme values of Ma=0.1 and Ma=0.4 of the considered 
range) do not exhibit a significant difference and are 
practically the same, for a given Reynolds number. 
    Fig. 4 presents the traversal profiles of the 
nondimensionalized axial velocity, as predicted by the 
Lattice Boltzmann Method for Re=200 and Ma=0.1, for 
different axial locations. The evolution of the velocity 
profile form top-hat towards the quadratic fully 
developed profile can be observed (the analytic velocity 
profile for fully developed channel flow is also displayed  
 
 

(a) (b) 
 

Fig. 2. Test cases: (a) developing channel flow,  
(b) lid driven square cavity flow. 
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                                          (a) 

                                          (b) 

                                          (c) 

                                          (d) 
 

Fig. 3. LBM predicted axial velocity (u/u0) contours in 
initial section of developing channel flow: (a) Re=50, 
Ma=0.1, (b) Re=50, Ma=0.4, (c) Re=200, Ma=0.1, (d) 

Re=200, Ma=0.4. 
 

 
 

Fig. 4. LBM predicted traversal axial velocity (u/um) 
profiles along channel length for Re=200, Ma=0.1. 

in the figure). The Ma=0.4 Lattice Boltzmann Method 
results and the incompressible Fluent predictions (for 
clarity, Fluent predictions are not displayed in the figure) 
are observed to be practically identical to the displayed 
curves.  
    Fig. 5 presents the axial variations of the predicted 
nondimensional axial velocity component along the 
channel symmetry line, for Re=200 computed by 
different approaches. As can be seen from the figure, the 
Lattice Boltzmann results for Ma=0.1 and Ma=0.4 as 
well as the Fluent predictions for incompressible flow 
are very close to each other. 
 
3.2. Lid Driven Cavity Flow 
Fig. 6 displays the predicted contours of nondimensional 
u velocity component for the lid driven square cavity 
flow, predicted for different values of Reynolds and 
Mach numbers. Comparing the solutions for Re=200 and 
Re=2000, one can see that the main recirculation 
structure gets more symmetric for Re=2000, as expected 
based on the previous studies on this typical benchmark 
flow problem. As also can be seen from the figure, for a 
given Reynolds number, a Mach number variation 
within the considered range does not remarkably affect 
the flow field. 
    Fig. 7a compares the predicted u velocity profiles 
along a vertical line at x/H=1/2 for Re=200. The v 
velocity profiles for the same Reynolds number, along a 
horizontal line at y/H = 1/2 are compared in Fig. 7b 
(x=0, y=0 is at the lower left corner of the cavity). In 
Fluent computations, two discretization schemes, namely 
the 1st Order Upwind scheme and Quick scheme have 
been used. Both results of are displayed in the figures. 
One can see that the Lattice Boltzmann predictions for 
Ma=0.1 and Ma=0.4 are quite close to each other and 
agree very well with the Fluent predictions using the 
Quick scheme. It is interesting to note that the Fluent 
predictions using the 1st Order Upwind scheme shows 
some discrepancy to the other curves (please remember 
that all results are obtained on the same lattice / finite 
volume grid). This confirms the higher order accuracy 
and less dissipative nature of the Lattice Boltzmann 
Method in treating advection (Fluent predictions using 
1st Order Upwind and Quick schemes did not lead to 
remarkably different results in the channel flow, which is 
attributed to mainly unidirectional nature of the flow). 
    These comparisons serve as a validation of the present 
Lattice Boltzmann Method based code, on the one side, 
and show that the presently adopted incompressible 
Lattice Boltzmann Method formulation [27] remains to 
“behave” incompressible up to Ma < 0.4, on the other 
(please not that this Mach number is not the “physical” 
one, but a “lattice” Mach number, implied by the model, 
based on the lattice sound speed). 
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Fig. 5. Axial velocity (u/um) variation along channel 
symmetry line for Re=200. 

 
 

    Based on the present problem, convergence behaviors 
of the present Lattice Boltzmann code and Fluent are 
also compared in Figs. 8 and 9, for Re=2000. For a 
better comparability, the same criteria, namely the 
percentage variation (which indicated as % ε in the 
figures) of a variable at a given monitor point is taken as 
the indicator of the convergence, for the both codes. For 
a general variable φ (which can be u or v), this is 
computed from  

 

n

nn

ϕ
ϕϕε −

⋅=
+1

100%                       (16) 

 
    In Eq. (16), the parameter n denotes the iteration 
number. Obviously, the same grids are used, and 
computations are started from the same initial velocity 
field distributions (zero velocity everywhere in the flow 
filed). Of course, the same computer is used for both 
kinds of computations. For the Fluent computations, the 
Simple pressure-correction procedure is used. For the 
underrelaxation factors, the default values are applied for 
all variables [34]. As can be seen in Figs. 8 and 9, the 
Lattice Boltzmann Method shows, in general, a better 
overall convergence rate (according to the present 
definition described by Eq. (16)). On the other hand, the 
Lattice Boltzmann Method results exhibit some 
“wiggles” along the way to convergence. The residuals 
obtained by the Fluent code exhibit a more smooth 
behavior. 

                                (a)

                                (b) 

                                 (c)

                                  (d) 
 
Fig. 6. LBM predicted u velocity (u/u0) contours for lid 

driven square cavity flow: (a) Re=200, Ma=0.1, (b) 
Re=200, Ma=0.4, (c) Re=2000, Ma=0.1, (d) Re=2000, 

Ma=0.33. 
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                                            (a) 

   
                                            (b) 

 
Fig. 7. Nondimensional velocity profiles for Re=200:  

(a) u velocity at x=H/2, (b) v velocity at y=H/2. 
 
 
3.3. Stability Limits 
For a wide range of Reynolds (50 < Re < 2000) and 
Mach (0.1 < Ma < 0.4  numbers, different values of the 
collision frequency ω are applied, for detecting the 
maximum allowed value beyond which the solution 
becomes unstable, i.e. no converged steady-state solution 
can be obtained. Theoretically, it is obvious that the 
oscillation frequency ω is not allowed to take the value 
2, but needs to be smaller. Nevertheless, how close one  
 

 

          

           (a) 
 

           (b) 
          

           (c) 
          

           (d) 
 

Fig. 8. Convergence behavior (Re=2000): (a) % ε in u at 
x=H/2, y=3H/4, (b) % ε in u at x=H/2, y=H/4. (c) % ε in 

v at x=H/2, y=3H/4, (d) % ε in v at x=H/2, y=H/4. 
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can come to the upper bound of 2 seem to depend on the 
specific application. 
     For both test cases, the predicted maximum allowed 
collision frequency (ω) values for a stable solution (the 
solid lines) are presented in Fig. 9, as a function of the 
Mach number, for different values of the Reynolds 
number. As can be seen from Fig. 9, the limiting 
collision frequency (ω) values depend on the type of the 
flow considered, on the one hand, as well as the 
Reynolds and Mach numbers, on the other. In both 
flows, the maximum allowed collision frequency (ω) 
values decrease with the Reynolds number, whereas for 
a given Reynolds number, also a decrease with the Mach 
number is predicted. One can also see that the maximum 
collision frequency (ω) values are generally larger and 
show a weaker dependency on the Reynolds and Mach 
numbers for the cavity flow (which may be taken as a 
generic close boundary flow) compared to the channel 
flow (which  may be seen as a generic open boundary 
flow). 
    The curves mostly exhibit a linear-like variation with 
the Mach number. Thus, a trial has been given to fit a 
linear curve to the predicted data, the coefficients being 
functions of the Reynolds number, which can be 
expressed as 
 

( ) ( )ReRe bMaaMAX +⋅=ω          (16) 
 
    The coefficients a(Re) and b(Re) of Eq. (16), which 
are obtained by curve fitting to the predicted data are 
presented in Table I. The linear curves predicted by Eq. 
(16) are also displayed in Fig. 9, as the dashed lines, 
where the corresponding legends are designated by the 
suffix “cf” (for “curve fitting”) after the corresponding 
Re value. 
 

Table I. Coefficients a(Re) and b(Re) of Eq. (16). 
 

            Channel               Cavity 
410⋅a  10397Re25.2 −−  28.213ln(Re)27.4 +−  
210⋅b  6.3507Re30.0 −−  27.209ln(Re)13.2 +−  

 
 
4. Conclusions 
An incompressible steady-state formulation of the 
Lattice Boltzmann Method is applied to laminar flows 
for Reynolds numbers between 50 and 2000, where the 
Mach number is also varied between 0.1 and 0.4. The 
channel flow and the lid driven square cavity flow 
problems are analyzed. Stability limits, in terms of the 
maximum allowed collision frequency ω, as a function 
of the Reynolds and Mach numbers are explored. It is 
observed that the largest allowable collision frequency 
(ω) decreases with the increasing Reynolds and Mach 
numbers.  

 

   

 

                                         (a) 
   

 

                                        (b) 
 

Fig. 9. Predicted maximum ω values a for stable 
solution; The dashed lines and the suffix “cf”  

refer to the curve of  Eq. (16) (Table I) 
(a) channel flow (b) lid driven square cavity flow. 

 
 
It is observed that these dependencies are stronger and 
the limiting ω values are lower for the channel flow 
(varying between 1.2 - 1.9) compared to the lid driven 
cavity (varying between 1.8 - 1.95). Comparisons with 
the general-purpose, finite-volume based CFD code, 
using an incompressible formulation has served as a 
validation of the present Lattice Boltzmann Method 
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based code, at the same time confirming that the present 
incompressible Lattice Boltzmann formulation predicts 
flow fields that behave sufficiently incompressible for 
the considered range of Mach numbers. 
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