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Abstract The transformation of waves is one of the important subjects in coastal engineering 
studies. Refraction, diffraction, shoaling, reflection can be analysed with the mild slope equation 
over mild sloped topographies. But the extended mild slope equation can be applied to the rapidly 
varying topographies since it includes higher order bottom effects such as square of bottom slope 
and bottom curvature. In this study, extended mild slope equation has been solved with finite 
difference method using Mac Cormack and Point Gauss Seidel Methods together. The nonlinear 
wave celerity and group velocity have been used. The numerical model has been tested on elliptic 
shoaling area and compared with the physical experiment measurements given in literature. The 
predictions are in consistency with the measurements. As a result of error analysis, it is decided 
that the numerical can be used for the simulation of wave propagation. Numerical model has been 
applied to a coastal area in the Kocaeli Bay in the Marmara Sea in Turkey.  
 
Key-words: Extended mild slope equation, Mac Cormack Method, Point Gauss Seidel Method, 
wave refraction, diffraction, finite difference method, CFD 
 
1   Introduction 
Mild slope equation has been used to 
simulate combined refraction diffraction 
based on a mild slope assumption [1]. The 
mild slope equation proposed by Berkhoff 
has been shown in equation (1) [2].  
 

0)()( 2 =+
∂
∂

∂
∂

+
∂
∂

∂
∂ φσφφ

C
C

y
CCg

yx
CCg

x
g   (1) 

 
φ is velocity potential function, C  is wave 
celerity,  is group velocity, gC σ is wave 
frequency. x and y are horizontal 
coordinates. The major characteristic of mild 
slope equation is analysing wave refraction 
and diffraction together. The mild slope 
equation is valid when 1/ <<∇ khh . h is the 
water depth, k is the wave number and ∇ is 
horizontal operator. This assumption means 
that the bottom slope or the change of water 
depth per wave length is very small The 

mild slope equation includes wave 
refraction, diffraction, shoaling and 
reflection.  
 
Mild slope equations can be classified in 
four categories based on Hsu et al. [3, 4]:  

i. The original mild slope equation 
ii. The original mild slope equation 

with seabed slope and curvature 
terms 

iii. The original mild slope equation 
with special treatments for seabed 
discontinuities 

iv. The original mild slope equation 
with seabed slope and curvature 
terms plus a second equation 
derived from the seabed boundary 
condition 

 
The example studies of the four categories 
based on Liu and Shi [4] has been given 
with extensions. The original mild slope 
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equation has been investigated by Biesel [1], 
Berkhoff [2], Lozano and Liu [5], Booij [6], 
Liu [7], Behrendt and Jonsson [8], Kirby [9], 
Ebersole [10], Balas and İnan [11], Madsen 
and Larsen [12], Li and Anastasiou [13], 
Dingemans [14] , Tang et al. [15], Zhang et 
al., [16].  
 
The original mild slope equation with 
seabed slope and curvature terms has been 
studied by Massel [17], Chamberlain and 
Porter [18], Chandreskera and Cheung [19], 
Miles and Chamberlain [20], Lee and Suh 
[21], Lee et al. [22], Maa et al. [23].  
 
The original mild slope equation with 
special treatments for seabed discontinuities 
has been examined by Porter and Staziker 
[24], Porter [25], Kim and Bai [26].  
 
On the original mild slope equation with 
seabed slope and curvature terms plus a 
second equation derived from the seabed 
boundary condition has been worked by 
Athanassoulis and Belibassakis [27], 
Chandreskera and Cheung [28], Ardhuin and 
Herbers [29], Chen et al. [30], Hsu et al. [3].  
 
In recent years, the researchers have worked 
on the decrease of the limitations of the mild 
slope equation and adding the other 
phenomenas like wave breaking, harbor 
resonance and bottom friction effects in the 
mild slope equation.  
 
Lee and Yoon investigated how the 
refraction of water waves is affected by the 
higher- order bottom effect terms 
proportional to the square of bottom slope & 
to the bottom curvature in the extended mild 
slope eqautions [31].  
 
Kim et al. developed techniques of 
numerical wave generation in the time 
dependent extended mild slope equations for 
random waves using a source function 
method. The source function method avoids 
rereflection problems at the offshore 
boundary. They verified that the source 
function of the Helmholtz equation may be 

used in generating waves in any refraction 
diffraction equation models [32].  
 
Bellotti et al. applied a numerical model 
based on the mild slope equation to 
reproduce the propagation of small 
amplitude transient waves. The results of 
two available experimental studies on 
tsunamis generated by landslides are used to 
validate the model, which appears to be able 
of reproducing the effects of the frequency 
dispersion [33].  
 
Liu et al. developed a numerical model to 
solve the MSE on the basis of a self adaptive 
finite element model combined with an 
iterative method to determine the wave 
direction angle to the boundary and thus to 
improve the treatment of the boundary 
conditions. Developed numerical model 
represents effectively wave absoption at the 
absorbing boundaries & simulates 
multidirectional wave propagation [34]. 
 
Chen et al. accomplished finite element 
wave model based on the an extended mild 
slope equation wave-current equation that 
includes wave breaking. Improved boundary 
conditions are used to provide more accurate 
forcing & to minimize spurious wave 
reflections from the boundaries [35] 
 
In this study, the extended mild slope 
equation suggested by Maa et al. [23] has 
been solved numerically. This equation 
examines wave refraction, diffraction, 
shoaling, reflection, wave breaking and 
bottom friction dissipations and harbour 
resonance. The nonlinear wave celerity and 
group velocity have been used in the 
calculations to examine the nonlinear effects 
more accurately.  
 
Finite difference method has been applied to 
the problem. Finite difference method is 
used very often in a wide variety field of 
computational fluid dynamics [36, 37, 38]. 
Mac Cormack Method and Point Gauss 
Seidel have been handled in numerical 
solution procedure. The numerical model 
has been tested on the elliptical shoaling 
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area given in literature and applied to a 
coastal region in Kocaeli Bay of Marmara 
Sea in Turkish coasts.  
 
2   Theory  
The extended mild slope equation proposed 
by Maa et al. has been given in the equation 
(2) [23]. It includes harbor resonance and 
dissipations due to wave breaking & bottom 
friction beside wave refraction, diffraction, 
shoaling and reflection. Furthermore it is 
applicable to the rapidly varying 
topographies since it includes higher order 
bottom effects such as bottom curvature and 
square of the bottom slope.  
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h∇  is bottom slope,  is bottom 

curvature,  is the sum of bottom friction 
dissipation factor and energy dissipation 
factor after breaking. g is the gravitational 
acceleration.  is the bottom curvature 
coefficient and  is the coefficient of 
square of bottom slope. They are functions 
of wave number and water depth. 
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Bottom friction dissipation factor ( ) has 
been calculated with the equation (5). Here, 
f

bf

w is wave friction factor [23]. 
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Jonsson and Carlsen [39] recommended the 
equation (7) to calculate wave friction 
factor.  
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a1m is semi distance of the movement of the 
fluid particle on bottom and kN is the 
Nikuradse roughness coefficient. After 
emprical studies, mf had been calculated as  
-0.08 by Jonsson and Carlsen [39]. If a1m/kN 
is less than 2, wave friction factor fw is 0.24. 
Otherwise the value calculated in the 
equation (7) is used in the numerical 
solution [39, 40]. 
 
Wave breaking dissipation factor ( ) has 
been calculated with the equation (8) [23, 
41]. 

df

Γ  and K are emprical constants and 
Γ=0.4, K=0.15 [41]. 
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Breaker index ( bγ ) is calculated with the 
formulation [42] given in the equation (9).  
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γ  is the ratio betweeen wave amplitude and 
water depth (γ=a/h). γ and γb are calculated 
in each step and compared. If γ  is less than 

bγ , fd is equalized to zero. Otherwise fd is 
calculated with the equation (9) [40]. The 
couple of breaker index and wave breaking 
dissipation factor has been selected because 
of the error analysis of different couples in 
literature based on Hsu and Wen [43]. This 
couple gives minimum error in the 
numerical analysis [43].  
 
2.1 Nonlinear Wave Celerity and 
Group Velocity 
Nonlinear effects are especially important in 
shallow regions where refraction is 
dominant. Nonlinearity should be taken into 
account to obtain more accurate results in 
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wave propagation problems. Kirby and 
Dalrymple recommended a dispersion 
relationship given in the equation (10) to 
determine nonlinear wave celerity and group 
velocity [14, 44]. It is valid either in deep 
sea or in shallow regions.  
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After the calculation of σ, the nonlinear 
wave celerity and group velocity can be 
obtained simply. 
 

k
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σ
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2.2 Boundary Conditions 
General boundary condition used in coastal 
engineering problems referring radiation, 
partial and full reflection conditions is given 
in the equation (16) [45]. 
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* ααα i+=  is complex tranmission 
coefficient and depend on energy transfer on 
boundary, wave height, wave phase and 
reflection coefficient. 1α  and 2α  are 
calculated with the equations (17) and (18), 
respectively. 
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Here, KR is reflection coefficient, β  is the 
phase difference between incident and 
approaching waves, θ  is the angle between 
boundary normal and incident wave. Since β 
is so small, it is assumed to be zero in the 
calculations.  
 
Total potential function on the boundary of 
incident and reflected waves is given in the 
equation (19).  
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Velocity potential of a wave with the height 
(H) and period (T) is calculated using the 
equation (20) with linear theory. They have 
been used as input values. 
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Wave number vector is related to wave 
phase.  
 

sk ∇=
r

                (24) 
 
Phase function (s) is determined with the 
equation (21) and wave angle is a function 
of wave phase. The details can be found in 
the study of Hsu and Wen [42]. 
 

( )
( )⎟⎟⎠

⎞
⎜⎜
⎝

⎛
= −

φ
φ

Re
Imtan 1s               (25) 

⎟
⎠
⎞

⎜
⎝
⎛

∂∂
∂∂

= −

xs
ys

/
/tan 1θ               (26) 

 
3   Numerical Model 
Mac Cormack Method and Point Gauss 
Seidel Method have been used together in 
the numerical model. It can be said that a 
modified form of Mac Cormack method has 
been applied to the problem. Since Mac 
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Cormack Method is a multistep method, 
more stable results can be obtained. In Mac 
Cormack method, predictor and corrector 
values are calculated, respectively. In 
predictor step, forward finite difference 
method in the order of (O(∆x) and O(∆y)) 
has been used for the first order derivatives 
and central finite difference method in the 
order of (O(∆x2) and O(∆y2)) has been used 
for the second order derivatives. Backward 
finite difference method in the order of 
(O(∆x) and O(∆y)) has been applied to the 
first order derivatives in corrector step. The 
second order derivatives have been 
calculated with the same method used in 
predictor step. The irregular mesh has been 
used so the grid sizes in the domain can vary 
due to the bottom configurations. The 
calculated nodes have been taken into 
account rapidly because of the use of Point 
Gauss Seidel Method. So iteration number 
has been minimized. Mac Cormack Method 
has been applied to the governing equation 
(2).  
 
Predictor Step 
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2/1

,
+k
jiφ  will be used in the calculation of 

corrector step. 
 
 

 
Corrector Step 
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The input values for the numerical solution 
are water depth, deep water wave height, 
deep water incidence wave angle and wave 
period. An identity matrix has been created 
to determine the location of nodal point. So 
it is decided if the nodal point is inside the 
domain, or outside the domain or on the 
boundary. Firstly, wave characteristics have 
been obtained with the linear theory as input 
for the calculation of the governing 
equations (2). After determination of the 
complex velocity potential, wave phase and 
wave angle at each nodal point have been 
calculated with the equations (25) and (26), 
respectively. As the grid sizes decreases, 
either geometric and bathymetric properties 
or the effects of diffraction can be 
determined more accurately. The grid sizes 
in each axis should be less than 1/10 of 
wave length [23]. 
 
4   Applications of the Numerical 
Model 
Numerical model has been tested on the 
elliptical shoaling area given in literature. 
After obtaining acceptable results, the 
numerical model has been applied to a 
coastal region in Kocaeli Bay of Marmara 
Sea in Turkey.  
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4.1 Elliptic Shoaling Area 
Berkhoff et al. [2] prepared a topography 
model to model wave propagation 
physically. The bottom has a slope 1/50 and 
elliptical shoaling area. Wave period (T) is 1 
sec. Incident wave amplitude (a0) at x=0 is 
0.0232m.  
 
The angle between bathymetry lines and y-
axis is 200. Elliptical shoaling area had been 
builded to observe the diffraction effects 
better.  
 
The mathematical relationship between (x, 
y) and (x′, y′) coordinate axis have been 
given in the equations (30) & (31). 
 

°° −−−=′ 20sin)10(20cos)5.10( yxx          (30) 
°° −+−=′ 20cos)10(20sin)5.10( yxy         (31) 

 
The point  is the shoaling 
center. The bottom topography without 
elliptical shoaling area can be modeled with 
the equations (32) and (33).  

)0,0(),( =′′ yx

 
mh 45.0=                      (32) mx 82.5−<′

mxh )82.5(02.045.0 ′+−=       (33) mx 82.5−≥′
 
The boundaries of the elliptical shoaling 
area has been given in the equation (34).  
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The water depths in shoaling area have been 
calculated with the the equation (35).  
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The bathymetry of the elliptical shoaling 
area has been shown in the Fig. 1. The water 
depths shown in Fig.1 are in meters.  
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Fig. 1: Bathymetry of the experiment [2] 
 
In Fig. 2, the increase of the wave amplitude 
due to shoaling can be observed.  
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Fig. 2: Relative wave amplitude at x=11m  
 
In Fig. 3, the shoaling and diffraction effects 
are dominant when the wave leaves the 
elliptical shoaling area. Diffraction at this 
caotic region can not be determined by 
linear theory. 
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Fig. 3: Relative wave amplitude at x=13m  
 
The RMSE and BIAS values obtained from 
the physical experiment and numerical 
model have been given in Table 1.  
 
Table 1: RMSE and BIAS values  

 RMSE BIAS 
x=11m  0,1588 0,0550 
x=13m 0,2434 -0,1264 

 
4.2 A Coastal Region in Kocaeli Bay 
Kocaeli is located in Marmara Region where 
the northern branch of the North Anatolian 
Fault Zone passes through. North Anatolian 
Fault has potential to trigger submarine 
ground failures that can be the cause of 
occurrence tsunami [46]. Since the 
earthquake held on 17August 1999 when 
thousands of people died, the Kocaeli Bay 
and the sea of Marmara are thought by 
researchers as natural laboratory. 
Furthermore, Kocaeli is one of the important 
industrial cities of Turkey. There are 
industrial harbor, many factories and oil 
pipelines under the sea. Therefore it is 
critical region point of view of coastal 
engineering. The location of studied region 
has been shown in Fig. 4.  

 

 

x=13m
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Fig. 4. Location of Kocaeli [47] 
 
The dominant wave direction is W. The 
wave approaching angle in deep water is set 
to be zero. The significant wave height is 
H0=3m and wave period is T=8sec under the 
effect of the wind velocity U=13m/sec. 
Bathymetry of the computed coastal region 
has been given in Fig. 5 and the water 
depths are in meters.  
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Fig. 5: Bathymetry of the computed coastal 
region in Kocaeli Bay  
 
The wave height distributions obtained by 
the numerical model has been shown in Fig. 
6. The wave heights are in consistency with 
the bottom contours.  
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Fig. 6: Wave height distribution (Wave 
heights are in meters) 
 

5   Conclusion 
Determination of wave transformations is an 
important subject in coastal engineering 
field. Wave height distribution in any 
coastal region must be known for any 
coastal studies. Extended mild slope 
equation is a successful tool to define wave 
propagation from deep sea to shallow water 
and includes wave refraction, diffraction, 
shoaling, reflection, harbor resonance and 
dissipations due to wave breaking and 
bottom friction. Extended mild slope 
equation can be applied to rapidly varying 
topographies because higher order bottom 
effects such as the square of bottom slope 
and bottom curvature. Extended mild slope 
equation has been solved numerically using 
Modified Mac Cormack Method. It is the 
use of Mac Cormack Method and Point 
Gauss Seidel together. Since Mac Cormack 
is a multi step method, a stable solution can 
be obtained. New calculated nodal points are 
used immediately in Point Gauss Seidel 
Method so the iteration number decreases. 
Furthermore, the nonlinear wave celerity 
and group velocity have been taken into 
account in the numerical model. It is an 
advantage especially in shallow areas where 
refraction is important. The application of 

nonlinear wave celerity and group velocity 
to the extended mild slope equation is a new 
approach. The numerical model has been 
compared with the physical experiment 
given in literature and obtained acceptable 
results. The numerical model can be used for 
the simulation of wave transformation in 
coastal engineering studies. In future 
studies, harbor resonance can be examined 
in details and wave- current interaction can 
be taken into account so the numerical 
model can be applied to the coastal areas 
where currents are significant and wave 
spectrum can be used for irregular waves.  
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