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1 Introduction

There has been a growing interest in recent years in
the modelling of hazards arising from the atmospheric
dispersion of chemical, biological and radiological
(CBR) agents in the environment, and the threat that
they pose to the population and military forces. This
is a particularly challenging problem in an urban
setting. Dispersion of CBR tracer in an atmospheric
boundary layer (ABL) over a heterogeneous (urban)
canopy is a complex process to be described by
advanced methods of fluid dynamics, turbulence
theory, diffusion and statistics. Using comprehensive
modelling is computationally intensive and too time
consuming when applied to operational problems
when a reliable outcome has to be produced within a
limited time frame. Plume characterisation requires
the development of simplified analytical models of
turbulent dispersion based on physical assumptions
and “first principles” physics considerations. These
models must still be simple enough to be easily
treated numerically in an operationally viable way.
Such models can also provide a theoretical foun-
dation for “backtracking” problems, i.e. finding
a CBR source in a complex canopy under various
meteorological conditions. The purpose of this paper
is to summarise the recent research conducted by
DSTO in the development of such models.

Figure 1: An example of one of the obstacle arrays
used inthe experiment.

2 A New Modelling Framework

2.1 Mean Flow in a Complex Canopy

The flow model in a surface layer within and above
a canopy should correctly describe the average (i.e.
non-fluctuating) velocity field. The traditional model
for the ABL velocity profile is the celebrated log-law
profile

U(z) =
v∗
κ

ln

(

z − d

z0

)

, (1)

whereU(z) is the horizontal velocity,z is the distance
from the ground,v∗ is the friction velocity,κ = 0.4
is Von Karman’s constant,z0 is the roughness height
and d is the so-called displacement height. For the
real ABL flow over the canopy bothd andz0 should
be considered as fitting parameters.
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Figure 2: The average horizontal velocity profile. The
pink/solid line is for a sparse canopy (ǫ = 0.5) and the
blue/dashed line is for a dense canopy (ǫ = 2).

It has been known for a long time (dating back to
Prandtl, see [9]) that the ABL mean velocity profile
can be fairly approximated by a power-law function:

U(z) = v0

(

z − d

z0

)m

. (2)

In generalv0, z0, d, andm may be considered as “fit-
ting” parameters (given or derived from observations).
Obviously expression (2) makes sense only forz ≥ d.
It is important to note that for the ABL over a flat
smooth surfaced = 0 and the “fitting” parameters
v0 andm can be expressed in terms of the main flow
parameters (see [2] )

v0 = av∗, a =
lnRe√

3
+

5

2
, m =

3

2 lnRe
, (3)

whereRe is the Reynolds number of the flow in the
ABL and the power-law model becomes completely
defined. Observed values ofm in the atmosphere
range from nearly0 in very unstable conditions, repre-
senting perfect mixing and a uniform velocity profile,
to nearly1 in very stable conditions, approaching the
Couette linear profile of laminar motion over a plane
surface. For neutral conditionsm ≈ 1/7 [9]. The
value ofm also depends on surface roughness: rough-
ness promotes mixing near the surface, which reduces
the velocity gradient at smallz and thus leads to larger
variation inm. A simple estimate fora can also be
derived from the conditionU(δ) = U0, whereδ is
the boundary layer thickness andU0 is the velocity of
unobstructed flow. Thus

a ≈ U0

v∗

(

z0
δ

)m

(4)

If δ is used as a reference height (i.e.z0 = δ) we
can deduce thata ≈

√

2/cx, wherecx is the drag
coefficient of the underlying surface (canopy).

Height (mm)
0 20 40 60 80 100 120 140 160

)-1
U m

ea
n (

mm
 s

-50

0

50

100

150

200

250

300

350

Point A2

Point C2

Point K2

Point L2

Figure 3: Measured velocity profiles for a simulated
urban canopy at different positions relative to canopy
objects.

Based on the so-called distributed drag approach
it has been recently shown [6] that the entire influence
of the canopy on the ABL flow (2) can be described
by only one parameter that describes the ratio of the
canopy surface area to the total area. For an array of
identical cylinders (similar to Fig. 1) this parameter is
approximately equal to:

ǫ =
2H

r0

1 − λp

λp
, (5)

where all parameters in this formula are determined
by the canopy morphology (H is the canopy height,
r0 is the radius of the cylinders andλp is the packing
density of canopy elements). The limiting values of
ǫ correspond to sparse (ǫ ≫ 1) and dense (ǫ ≪ 1)
canopies. We have developed a consistent theoretical
framework that allows us to derive a “modified” ve-
locity profileU(z) (2) for a given value ofǫ, i.e. for
a given canopy. Our approach is based on “smooth”
matching of the two solutions of momentum balance
(below and above the canopy) near the canopy top (for
details see [8]). In this way we have derived an alge-
braic system for functionsd(ǫ), z0(ǫ) to account for
the effect of the canopy:

d

H
= (1−σ),

z0
H

=
σ

e
,

1

κ

√

ǫσ

2
= tanh





√

2ǫκ2

σ



 .

(6)
The solution of the last equation in system (6) pro-
vides a value ofσ(ǫ) that should be substituted in the
first two equations to obtaind(ǫ), z0(ǫ) and hence a
“canopy-modified” profileU(z) (2), (1). We found
that for a largeǫ value d(ǫ) → 0, z0(ǫ) → 0 as a
power law (i.e. rather slowly) andd(ǫ) = z0(ǫ) = 0
if H = 0. It should be emphasized that in the pro-
posed framework, the entire morphological variety of
canopies manifests itself only in different values of the
parameterǫ.
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Figure 4: Concentration data fit to the “clipped”
model for different downstream distances (Cz for the
left column andCy for the right column). The hori-
zontal axis is the distance from the ground (left col-
umn) and cross-stream distance from the source posi-
tion (right column).

Examples of velocity profiles calculated with (2),
(6) are presented in Fig. 2. In Fig. 3 we present our
experimental data from a water channel experiment
([5]). The urban canopy was modelled by an array
of cubic obstacles that were packed in regular or ran-
dom patterns (see Fig. 1). The velocity measurements
were conducted in various positions within a canopy
cell (including wake areas). The solid line in Fig. 3
is our model prediction, which represents an aver-
age velocity profile for the whole cell. This is to be
compared to the individual point measurements of ve-
locity within each cell, which vary significantly from
point to point. The point C2 corresponds to the po-
sition directly behind the obstacle (wake area) with a
clearly visible reverse flow (negative velocity). Our
simplified models attempt to capture the “averaged-
over-cell” behaviour. For a variety of obstacle array
configurations, we observed a reasonably good agree-
ment between our model and the measured velocity
profiles.

2.2 Mean Concentration Profile

For the derived velocity profile in and above the
canopy we computed the mean concentration field
from the advection-diffusion equation for mean con-
centrationC. It is known that for the power-law mean
wind velocity profile (2), an analytical solution can be
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Figure 5: Concentration data fit to “variableα” model
(see text). All notations are as in Fig 4.

represented by

C(x, y, z) = Cy(x, y)Cz(x, z), (7)

with analytical expressions forCy and Cz derived
from the advection-diffusion equation of turbulent
dispersion [9], [10], [11]. HereCy(x, y) is the
concentration profile in they direction (crosswind),
Cz(x, z) is the vertical concentration profile.

Under the assumption that the source is on the
ground, adopting the velocity profile (2),Cy(x, y) has
aGaussian shape (see [2], [9], [10], [11])

Cy(x, y) =
1√

2πσy

exp(−η2/2), (8)

where η = (y − y0)/σy. Parameterσy(x) is a
plume crosswind spread that increases with the down-
wind distance (see (13)) and the vertical concentration
obeys a stretched-exponential profile (see [9], [10],
[11]):

Cz(x, z) = C0 exp(−ζα). (9)

Hereζ = fzBz/σz, σz(x) is a vertical plume spread
(defined below);

B =
Γ(2/α)

Γ(1/α)
, fz =

Γ(3/α)

Γ(1/α)

1

B2
, (10)

andΓ(·) is the gamma function,

C0 = G
Q0

v0σz

(

z0
σz

)m

, (11)

whereQ0 is an emission rate of the source,

G =
αB

Γ(1/α)

f1+m
z

fu
, fu = Γ

(

1 +m

α

) [

Γ

(

1

α

)

Bm
]

.

(12)
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There are two conventional models of turbulent
diffusion for which the value of the parameterα in (9)
can be derived analytically: the model with a conju-
gate diffusivity profile (α = 1 + 2m) and the model
with a linear diffusivity profile (α = 1 + m), for
details see [11], [9]. For neutral stability conditions
m ≪ 1 and the two profiles are almost identical.
Overall we found that the model of conjugate diffu-
sivity profile provides a better agreement with our ex-
perimental data.

For the plume spread we assume [10]

σz(x) = Hz0

(

x− x0

z0

)1/α

, σy(x) = Dσz(x),

(13)
with D = σv/σw ≈ 1.74 [9] (σv, σw are the standard
deviations of velocity fluctuations in the vertical and
horizontal directions near the surface) and

H =
1

q
[κq(1 +m)/a]

1

1+m , q =

[

α
Γ(2/α)

Γ(1/α)

]

1

1−α

,

(14)
wherea is defined in (3).

It should be emphasized that the model (8), (9)
explicitly takes into account the flow shear (parameter
p), the underlying surface influence (no-flux boundary
condition∂zC = 0 at z = 0) and the strong turbu-
lence anisotropy in the surface layer (parameterD).
As such this model is an evident generalization of the
well known Gaussian plume models. Note however
that even in the limiting casem = 0 (the wind speed
independent of the height), the adopted model (9) be-
comes exponential and thus is different from the cele-
brated Gaussian plume model.

It is evident that the solution given in (9) is a valid
representation for the concentration profile above the
canopy top (i.e. forz ≫ d ). In order to have a con-
sistent profile for allz it should be matched with the
tracer concentration modelled within the canopy (i.e.
for z ≤ d). Two models of the concentration profile
within the canopy were validated. The first model was
a “clipped” profile, where we simply assumed that
Cz(z) = Cz(d) for z ≤ d. The justification for such
a model is the strong process of turbulent mixing that
occurs within the canopy that should “smooth out” all
concentration gradients. The data fit to the “clipped”
model for different downstream positions is presented
in Fig. 4. The left column is the vertical concentration
profile and the right column is the lateral structure of
the plume with a Gaussian fit.

The second evaluated concentration model was
based on allowing the variation ofα with height to
provide the best data fit i.e.α = α(z). The ratio-
nale behind this framework was the known limiting
values ofα: α = 1 + 2m for z ≫ d, andα = 2
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Figure 6: Examples of intermittency profiles as a
function of inverse mean concentration: slices across
the centre of the plume for different downstream posi-
tions (top row - no-obstacle canopy, bottom row -1H
regular obstacle array). Straight lines correspond to
(18).

for z ≤ d (Gaussian diffusion in stagnation areas near
the canopy floor). As a reasonable approximation we
proposed that

α(z) = (1 + 2m)(1 + φ exp(−z/d)), (15)

whereφ = (1 − 2m)/(1 + 2m) is a function of the
velocity profile parameterm and canopy parameterǫ
(sinced = d(ǫ)). It is worth noting thatCz in (9)
depends onα in rather a convoluted way (not only
through an exponential power) causing a complex de-
formation of the concentration profile even with minor
change inα(z).

The data fit to the “variableα” model is presented
in Fig. 5 (left column). As in Fig. 4, the right col-
umn is the lateral structure of the plume with a Gaus-
sian fit. In general we observe that both models are
in good agreement with the experimental data. The
data fits are nearly indistinguishable downstream of
the source. Closer to the source the “variableα”
model seems to be a better representation of the ver-
tical plume structure. The better performance of the
“variableα” model can be attributed to the more ad-
equate description of the process of turbulent mixing
in the canopy layer (i.e. mixing is changing within
the canopy with height). The “clipped” model corre-
sponds to constant mixing in the canopy. For dense
canopies, where near the ground is a stagnation flow
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Figure 7: Examples of concentration intensity pro-
file as a function of inverse mean concentration: slice
across the centre of the plume, different downstream
positions (top row - no-obstacle canopy, bottom row
- 1H regular obstacle array). Solid line is (19) with
ω = 1/3.

zone, height dependence is not so important (see [6])
and both models produce very similar results.

2.3 Concentration Fluctuations

The approach outlined above models the development
of a “mean plume” within a complex environment.
This is the time averaged behaviour of a real dispers-
ing plume, or equivalently, the average pattern that
would be seen if an identical release of material was
performed many times. Model analysis of CBR events
also requires the development of “concentration real-
isation” models that give a statistically sound repre-
sentation of possible instantaneous patterns of plume
dispersion. This is important to enable the investiga-
tion of uncertainty or risk in CBR hazard assessments,
as well as to provide realistic synthetic environments
for operational analysis studies.

It is well-known that tracer fluctuations are very
intermittent, so a correct description of intermittency
is an important step in building realistic models of
tracer fluctuations (see [5], [13] ). Intermittency (i.e.
the fraction of time when concentration is zero) mani-
fests itself as a “singular” term in the PDF (Probability
Density Function) of tracer concentration (see [5])

f(C) = γψ(C) + (1 − γ)δ(C), (16)
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2
(top graph) and

ξ1 = Y 2
c /Zc

2
(bottom graph), see text.

whereδ(·) is the delta function,γ is the intermittency
parameter (γ = 1 corresponds to the no-intermittency
case),ψ(C) is any “regular” concentration PDF (see
[5]).

A simple model of intermittency can be devel-
oped based on the following physics-based considera-
tion. Let us assume that tracer is advected in the form
of consolidated structures (blobs, sheets [4]). This is a
realistic assumption since the system is far from equi-
librium, so the tracer distribution is far from being
perfectly mixed. The existence of discrete structures
of tracer suggest that Poisson statistics may provide a
useful framework for describing tracer fluctuation be-
haviour, with “an individual event” being attributed to
the “tracer blob” passing a particular point of the flow.
Then for the probability ofk occurrences of such an
event we can apply the celebrated formula of the Pois-
son distribution

Prob(k, λ) =
exp(−λ)λk

k!
, (17)

where λ is the average number of occurrences.
Then for the “no-occurrences” event we simply get
Prob(0, λ) = exp(−λ) irrespective of any statistical
properties of “blobs distribution”. This results in the
following formula:

1 − γ ∼ exp

(

−β C

Cmax

)

, (18)
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where we have used the obvious relationships:γ =
Prob(0, λ), λ = βC/Cmax, β = − ln(1 − γmax).
Thus we may expect that intermittency factorγ expo-
nentially decreases withC and that this behavior holds
for a wide range of surface flow regimes (canopies)
since it is not based on a specific mean concentration
profile C. We also expect that the parameterβ has
a rather universal value. Our “data fitting” estimate
providesβ ≈ 0.75.

The formula (18) was validated with our data
from a water channel experiment. The results are pre-
sented in Fig. 6 whereln(1 − γ) is plotted against
Cmax/C on a log-log scale, so straight lines corre-
spond to (18). The solid line corresponds to the value
β = 0.75. As we can see the relationship (18) holds
for a wide range of parameter values: concentrations,
downstream positions and types of obstacle arrays.

Our next step was to developed a simple model
for concentration intensityi = C2/C

2 − 1 which is a
universal parameter describing tracer fluctuations. In
order to have a closed model we needed to express the
concentration intensityi in terms of the mean concen-
trationC (7). An important result was found in [5]
where it was shown that for Gifford’s isotropic mean-
dering plume model

i+ 1 ∼
(

Cmax

C

)ω

, (19)

with 0 ≤ ω ≤ 1.
A similar formula can be derived in another sim-

plified case - tracer dispersion in a surface layer with
a strong velocity gradient. As a reasonable approx-
imation in this case we can neglect any “weak” de-
pendency on cross-stream direction and consider only
the two-dimensional problem (dispersion from a point
source in the vertical plane). For such a problem all
concentration moments can be described by the same
universal profile [7], soC2 ∼ C. Then for i we
arrive at the same expression as (19), but now with
ω = 1. These results provide a solid foundation for
an assumption that the functional relationship of (19)
should hold in a more general case (i.e. when the
plume is strongly anisotropic and 3D effects cannot
be neglected). We also expect the “shape” parameter
ω to have a rather universal value.

The above assumption was validated with our ex-
perimental data and the results are presented in Fig. 7.
The value ofi + 1 is plotted againstCmax/C in the
log-log scale, so straight lines should correspond to
(18). Again, we can see that the relationship (18)
holds over a wide range of the model parameters. The
solid line corresponds to the “fitting” valueω = 1/3.

A more advanced model of plume concentration
fluctuations (including generation of a “synthetic”

time series [16]) has been developed based on the
so-called “fluctuating plume” approach, where over-
all fluctuations are represented as the combined effect
of slowly oscillating plume meander and fast in-plume
fluctuations. Thus, for the conditional PDF of concen-
tration in the absolute framef the following general
representation was adopted ([5]):

f(C, r ) =

∫

fr(C, r − Rc)fc(Rc)dRc, (20)

wherefc is the PDF of centroid meander,r = {y, z},
fr is the concentration PDF in the relative frame (as-
sociated with plume centroid),Rc(t) is the position of
the centroid. Development of realistic models forfr

andfc requires the application of rather complicated
statistical methods and are described in detail in our
other publications (see [5], [13], [12]). The mean cen-
troid position can be calculated from (7) by (see[5])

Rc =

∫

r C(x, r ) dr
∫

C(x, r ) dr
, (21)

It is well-known that the PDF for horizontal me-
ander is always close to Gaussian [5], so it can be
completely characterized by its first two statistical
moments (or by meanYc and standard deviationσcy).
Because of the “averaged” symmetry of the ABL flow
in the cross stream directionYc ≈ 0 and there is only
one free parameter in this model [5]. We proposed the
following model

σcy = Fσy(z0/Zc)
1/2, (22)

whereF ≈ 0.2 (data fit),Zc is defined by (21).
A functional form of the PDF for vertical centroid

meander is less straightforward since it is skewed due
to anisotropy caused by underlying surface and flow
gradients. Based on Large Deviation Theory we have
proposed a model where the PDF for vertical plume
meanderZc can be described by a Gamma distribution
[12]:

fcz(ζ) ∼ ζa−1 exp (−ζ) , (23)

whereζ = Zc/b and, based on the properties of the
Gamma distribution [1], parametersa and b can be
expressed in terms of the the first two moments ofZc:
ab = Zc, ab

2 = Z2
c − Zc

2 ≡ σ2
cz. Since a mean cen-

troid positionZc can be calculated from (21) the dis-
tribution (23) effectively has only one free parameter
(ξ2 = Z2

c /Zc
2

). For plumes in the ABL the estimate
ξ − 1 ≪ 1 holds over a wide range of parameters
[9], so the value ofab2 seems to be rather small. In
Fig. 8 we presented values of the parameterξ2 derived
from our water channel experiment. We observed that
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stream position.

a typical value ofξ2 ≈ 1.05. To describe the sta-
tistical properties of horizontal centroid meander we
calculated a similar parameterξ1 = Y 2

c /Zc
2

and also
presented it in Fig. 8. We found that the value of this
parameter was rather universal for a given obstacle ar-
ray and may be strongly affected by its morphological
structure.

For in-plume fluctuations we used the model pro-
posed in[5]. The PDFfr for in-plume concentration
Cr we expressed in a form similar to (23) withζ =
Cr/Cr using profile (8) forCr (with different “rela-
tive” spreadsσry(x), σrz(x)). The “relative” spreads
σry(x), σrz(x) can be determined from a “squared”
rule [5]: σ2

z = σ2
cz + σ2

rz, σ2
y = σ2

cy + σ2
ry. Parame-

ter a in (23) can be expressed in terms of the relative
fluctuation intensityi defined previously:a = 1/i2

(for details see [5]). For the downstream evolution of
i we used an approach developed in [15] (based on
two-particle statistics). Thus we obtained

i(x) =

(

x

x0

)s 1

(1 + (x/x0)p + J(x)w)q
− 1, (24)

wheres = pq, p = (2 + 2m)/(qβ), β = 1 + 5m/3,
w = 2m/(qβ), x = x/z0, x0 = x0/z0, x0 is a scale
of the tracer source. The value of parameterq depends
on the regime of relative tracer dispersion in the plume
and is always within the range2 ≤ q ≤ 5. For a clas-
sical Richardson regimeq = 3, for a surface layer
turbulence regimeq = 2 [9] and for a convective layer
regimeq = 5 [14]. In generalq is defined byr2 ∼ tq,
wherer is the average distance between tracer parti-
cles. The value ofJ cannot be estimated analytically
and was derived from data fit (J ≈ −1.5).

Obviously this model is valid only untili ≥ 0 and
further downstream we need a modified expression for
i. Nevertheless for short-range dispersion modelling
(24) seems to be sufficient. The data fit for the ana-
lytical form (24) is presented in Fig. 9 with parameter

q = 3.
Equations (23) and (24) provide a simple yet uni-

versal parametrization of tracer plume statistics with
given mean flow and canopy parameters (v0, z0,m, ǫ).

3 Conclusions
Physics based models of a plume in an urban canopy
allow a simplified (but still adequate) analytical de-
scription of pollution transport in a complex environ-
ment which is particularly useful for CBR applica-
tions. The proposed theoretical framework has been
validated against our experimental data (water chan-
nel experiment) and has provided a close match. The
proposed framework can help to validate and justify
some more empirically based and heuristic assump-
tions of some operational dispersion models. Our
modelling framework can thus be used as a valuable
performance check of such models, or be extended to
an operational model prototype, able to be linked to
larger modelling systems.
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