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Abstract:  In this paper, structural optimization of a floating breakwater is addressed through several methods 
concerning its topology and shape, which constitutes a new application. Three methods are introduced to 
handle the optimization problem. The first one discusses the shape optimization of a simple predefined 
geometrical form. The second, studies the topological optimization based on bit array representation of a 
triangular mesh using genetic algorithms.  An attempt to overcome the limitations of bit-array was developed 
through several steps (new partition element, mesh distinguishing between the representation type and finite 
element analysis, varying finite element problem size, creating a density vector to control the presence or 
absence of the boundaries, generating initial population representing void domains instead of void elements). 
The third method concerns shape optimization, based on a variable number of points creating a structural 
domain.  In contrary to traditional methods where the variable points are indicated by the user, it searches for 
the optimum number of points to create the optimum shape. Finally, a comparison between these methods for 
the case of the floating breakwater is discussed.  
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1 Introduction 
Floating breakwaters present an alternative solution 
to conventional fixed breakwaters and can be 
effectively used in coastal areas with mild wave 
environment conditions. Poor foundation or deep-
water conditions as well as environmental 
requirements, such as phenomena of intense shore 
erosion, water quality and aesthetic considerations 
advocate the application of such structures. They 
have many advantages compared to the fixed ones, 
e.g. absence of negative environmental impacts, 
flexibility of future extensions, mobility and 
relocation ability, lower cost and ability of a short 
time transportation and installation. As a result of all 
these positive effects, many types of floating 
breakwaters have been developed. However, the 
most commonly used type of floating breakwaters is 
the one that consists of rectangular pontoons 
connected to each other and moored to the sea 
bottom with cables. Moreover, many studies have 
been developed and mainly concerning the wave 

protection improvement by different types of 
floating structures and their performance. Other 
studies have been directed towards mooring forces 
and motion responses to understand their behaviour 
due to sea waves. For example,  [4] presented a 
simplified analytical model for a floating 
rectangular breakwater in water of finite depth. 
Williams  [20] analyzed the Froude–Krylov force 
coefficients for the case when a rectangular body is 
located close to the free surface or sea bed. Williams 
and Abul-azm  [21] studied the case of a dual 
pontoon floating breakwater and investigated the 
effects of the various wave and structural parameters 
on the efficiency of a dual breakwater. Williams et 
al.  [22] investigated the hydrodynamic properties of 
a pair of long floating pontoon breakwaters of 
rectangular section. Lee and cho  [11] developed a 
numerical analysis using the element free Galerkin 
method and mainly concerning the influence of 
mooring line condition on the performance of 
FBWs. Shen et al  [15]  studied the effects of the 
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bottom sill or simply changing the topography on 
the hydrodynamic and transmission coefficients by a 
semi analytical method. Loukogeorgaki and 
Angelides  [12]  focused on a three dimensional 
modelling of the floating body coupled with a static 
and dynamic model of the mooring lines. Gesraha 
[8] investigated the reflection and transmission of 
incident waves interacting with long rectangular 
floating breakwater with two thin sideboards 
protruding vertically downward, having the shape of 
the Greek letter ∏.  

From the researches of the scholars above, we 
find most of them focus attention on the modelling 
of floating breakwaters. Yet none of these studies 
have been discussing the structural design of 
floating breakwaters or more even its optimization. 
On the other side, optimization of fixed breakwaters 
has been previously discussed in  [13] but focused on 
minimizing the cost function imposed to structural 
failure constraints. Also, we have elaborated a 
previous optimization problem but for a floating 
breakwater based on analytical modelling with a 
simple static approach, which really imposed many 
restrictions on the modelling and optimization of the 
entire problem  [5]. Therefore, in this paper the study 
is directed towards optimization of floating 
breakwaters to reduce its weight, or to represent a 
new resistive form, in accordance to the physical 
and mechanical constraints. The modelling 
procedure in this paper is traditional where an 
optimization problem is studied for a new 
application. Thus, it is necessary to apply various 
methods for this new application, in order to 
compare them and choose the most efficient to be 
applied later on sophisticated wave-structure 
interaction models. Moreover, there are new 
contributions in the applied methods which had 
really been very utile in this practical problem.  

The first method concerns the optimization with 
a predefined rectangular geometrical shape based on 
the Sequential Quadratic programming method 
(SQP), which constitutes a direct approach in the 
optimization world. The second, concerns topology 
optimization based on bit-array using genetic 
algorithms; with a new mass representation type, 
triangular form, based on an elementary mesh 
(Delaunay triangulation). The bit-array 
representation has been widely adopted ( [14],  [10], 
 [16],  [6],  [8],  [3],  [19]). In spite of its success in 
solving topology optimization design problems, bit-
array representation suffers from a strong limitation 
due numerous reasons: dependency of its 
complexity on that of the underlying mesh, fixed 

rectangular finite element mesh, connectivity, and 
initial population generation. The only attempt to 
overcome mesh dependency, the most serious 
obstacle, between the partition of the design and 
domain and the FE computations was introduced by 
Schoenauer and his co-workers  [14], [8]) through the 
voronoi diagrams. But, these voronoi diagrams have 
undesired shapes that surely affect the topology 
representation of the optimal solution. They are 
useful structures encountered in several disciplines 
and mainly appearing in the study of crystal growth 
or in studies on the great structures of the universe.  

Although the Voronoi and the Delaunay 
triangulations are completely determined by each 
other, there exists a significant difference. Whereas 
the Voronoi may differ topologically (i.e., they may 
have different numbers of faces and edges), the 
Delaunay are always topologically equivalent. The 
Voronoi diagram is a division of the plane into 
polygons with different sizes and number of edges. 
Where, a Delaunay triangulation minimizes the 
maximum interior angles, providing the most 
"equable" triangulation of a given set of points. 
Moreover, Delaunay triangulation minimizes the 
distance between all surface points and nodes, 
which results in a highly accurate surface 
representation. Therefore, the triangular partition 
will surely yields to more accurate and representable 
shapes when compared to voronoi. This will appear 
clearly when treating optimization problems that 
demands symmetric repartition (floating structures), 
which is very difficult to obtain with the voronoi 
due to their irregular shapes. On the other side, the 
triangular mesh is also much better than the 
particular rectangular mesh, used in traditional 
bitarray representation, in discretizing complicated 
and non rectangular geometries  [1]. 

The efficiency of different methods can be 
measured by the total number of FE based 
evaluations required in reaching those optimal 
results since the FE analysis is the most consuming 
part of the procedures. Generally, the bit-array and 
the voronoi diagrams are mapped into the two 
dimensional design domain discretized by a fixed 
regular mesh; where the choice of the mesh size is 
considered in accordance to reduce the 
computational cost. The second important idea in 
the present topology algorithm is the varying 
number of FE equations for each individual in 
during optimization, yielding to an effective 
reduction in the entire consumable time. This 
appears also in conjunction with this triangular 
partition, where the density (mass) distribution is 
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defined through a second algorithm that creates a 
new geometrical domain (excluding all the void 
elements). Then a refined mesh is generated on this 
new domain which is completely different from the 
one used in the design domain partition. Thus, we 
solve in each iteration the appropriate number of FE 
equations relevant to the topology of each 
individual. Where all the others ( [19],  [3],  [8],  [6], 
 [10],  [16],  [14]) solve the FE computations on the 
whole design domain due to a fixed finite element 
mesh that does not change its size whatever is the 
topology (a small Young’s modulus is assumed for 
void elements). Therefore, we can use very fine 
meshes without affecting the size of the 
optimization problem.  

Another important contribution is the 
initialization of the topology problem or simply the 
generation of the initial population. All the previous 
topology problems are randomly initialized except 
for the case of  [17] and  [19] that proposed identical 
individuals in the initial population, where the 
whole design domain is filled with material. In this 
study we initialize admissible or physical domains 
instead of void elements, and this surely speeds up 
the convergence of the problem.  

The third method in our paper concerns shape 
optimization by using an optimum number of 
variable points which create an arbitrary valid 
domain, based on the SQP method. The coordinates 
of these points represent the variables for the 
optimization problem. The novelty of this work 
appears in searching for the optimal number of 
points needed to describe the optimal shape. 
Previous methods ( [2],  [18]) select key points from 
existing geometries or some nodal points deduced 
from the meshing procedure of this existing 
geometry to constitute the design variables of the 
optimization. But all of these studies are based on 
the designer selection. In this paper, the goal is not 
only to obtain the optimum shape by varying the 
coordinates of the points, but also to obtain the 
optimum shape by the optimal number of points. In 
optimization problems addressing the interior 
boundaries, it will be very efficient to generalize the 
problem instead of indicating a definite shape 
(rectangle, circle, ellipse,..). Thus, it is very useful 
to vary the number of points yielding to a new 
shape. Finally, a comparison between these methods 
is performed to reveal various methods for our new 
application problem.  

The methodology followed in this paper starts 
by identifying an analytical modelling of waves and 
their induced pressures. Second, the optimization 

problem is defined by introducing the objective 
function and the imposed constraints in a general 
form. After this, the latter are expressed in 
accordance to the representation type of each 
optimization method. Finally, a practical application 
with Matlab is developed. It is interesting to 
consider the case of a breakwater appearing in ports’ 
far from the shore, at a constant depth. Then, the 
problems of waves propagation over a varying 
bathymetry and shallow water consequences are 
eliminated. 
 
 
2-Wave Modelling 
A cartesian coordinate system Oxyz is employed, 
where Oxy coincide with plane of the free surface at 
rest, Oz directed positive upwards, and Ox directed 
positive in the direction of propagation of the 
waves. The incident wave propagates in a straight 
line in the direction of Ox axe to obtain the 
maximum pressure applied by the waves on the 
breakwater (incident wave normal to the 
breakwater) and the movement is reduced to two 
dimensions (Figure 1). The fluid motion is defined 
as follows: Let t denote time, x and z the horizontal 
and vertical coordinates, η  the free-surface 
elevation above the still water level, andΦ the 
velocity potential. The characteristic parameters of 
the wave are defined in (Fig.1). 

 
Figure 1     Wave notations 

 
The boundary value problem is then defined by: 

02 =∆Φ=Φ∇  Laplace equation   (1) 

0=






∂
Φ∂

−= dzz
 Condition at the sea floor; (2)  

0
0
=







∂
Φ∂

=xn
    Kinematic condition at the solid 

boundary;     (3) 

0=







∂
Φ∂

−
∂
∂

∂
Φ∂

+
∂
∂

=η

ηη

zzxxt
  Kinematic condition at 

the free surface;     (4) 

WSEAS TRANSACTIONS on FLUID MECHANICS Ghassan Elchahal, Pascal Lafon, Rafic Younes

ISSN: 1790-5087 188 Issue 2, Volume 3, April 2008



)(
2
1 22

tQg
zxt

z

=












+





















∂
Φ∂

+






∂
Φ∂

+
∂
Φ∂

=η

η    

Dynamic equation at the free surface.   (5) 

Applying the nonlinear theory (Stockes 2nd 
order expansion), based on the perturbation method; 
the expression of the pressure distribution in the 
case of wave-breakwater interaction, where all the 
waves are reflected by the breakwater is given as 
 [5]:  
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(Where Lk /2π= designates the wave number, ω  
the frequency, r the reflection coefficient, t the time, 
d the water depth, H the wave height, L the wave 
length, and eρ the sea water density). This 
hydrodynamic pressure is acting on the exterior 
surface of the breakwater (ocean side). It is reduced 
to an equation with hyperbolic functions of z 
(altitude), where the other variables independent of 
the altitude are collected together in the terms a, b, 
and f. 
 
 
3-Optimization Problem 
In this model, the dynamic movement of the floating 
breakwater is assumed to be small. It is predicated 
on the fact that it is sufficient to prevent the floating 
breakwater from acting as a wavemaker, so that the 
displacements are reasonably small relative to the 
wave height. Another assumption is that the waves 
are totally reflected by the floating breakwater and 
its fixed seawall (water between the breakwater 
lower side and the bottom) and no transmitted 
waves are propagating inside the port. This 
assumption is considered a reasonable 
approximation for the case of small motion.  

A moored floating breakwater should be 
properly designed in order to ensure effective 
reduction of the transmitted energy and, therefore, 
adequate protection of the area behind the floating 
system. This reduction is achieved by the floating 

breakwater itself due to a considerable depth and by 
the fixed seawall concept under the breakwater for 
the rest underwater region. Moreover, for a 
breakwater to float, it is obviously designed with a 
hollow form to reduce the total weight of the 
structure. 

Then, the optimisation problem is assumed to be 
finite dimensional constrained minimization 
problem, which is symbolically expressed as:    
      
Find a design variable vector x ; 

to minimize the weight function )(xfob  
     subjected to the n constraints 0)( ≤xCi ,  n,....,i 1=    
 
 

 
Figure 2  Characteristics of floating breakwater 

 
 
3.1 Objective function 
The optimal solution is to design a breakwater 
respecting all the constraints with a minimum 
volume,   hence the objective is to minimize the 
weight of the breakwater.  

)min(Weightfob =     (7) 

 

3.2 Dynamic pressure constraint 
The concept of the fixed seawall permits to 
determine the height of the breakwater in 
accordance with low hydrodynamic pressure acting 
on this seawall. The dynamic wave pressure is 
mainly concentrated near the free surface and its 
induced perturbation is low under a certain height 
(Figure 3). Then the height of the breakwater can be 
limited to where the pressure is approximately 
unvarying corresponding to an approximate value of 

0max1.0 =− PP , where )0(max == zPP . Finally, 
the height can be considered to be mL 4= , where 
this height is indeed satisfactory for a wave with 
significant height )2( mH = . 
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Figure 3  Wave Pressure Modelling 

This constraint is independent of the other 
constraints, and then the height of the breakwater is 
determined only from it and no need to still consider 
the height as a variable for the rest of the 
optimization process. 
 
 
3.3 Floating constraint 
It is a direct application of Archimedes principle. 
For a moored structure, the floating constraint can 
be expressed in an inequality in order to minimize 
the weight, where the difference between the 
buoyancy force and the weight can be compensated 
by the tension in the mooring lines. 

0)(1 ≤+−= gVgVxC Temm ρρ    (8) 
 
where mρ and eρ designates the densities of the 
material (concrete) and the sea water respectively, 

mV designates the volume of the inside material of 
the whole breakwater, where TV designates the 
volume of the submerged part of the breakwater. 
 
 
3.4 Stability constraint 
Stability is defined as the ability of the breakwater 
to right itself after being heeled over. This ability is 
achieved by developing moments that tend to 
restore the breakwater to its initial position. There 
are a number of parameters that together determine 
the stability of a floating breakwater. 

First of all, this floating breakwater has a 
rectangular shape with an arbitrary core, so initially 
(before any disturbance) it is necessary to maintain a 
horizontal equilibrium position. The calculation is 
based on the basic formula of determining the centre 
of gravity (G) and then aligning it with the centre of 
buoyancy (B) of the floating breakwater (Figure 4) 
which lies at the geometric centre of volume of the 
displaced water ( 2/D ). 

∑
∑ ×

=
i

ii
g A

xAx  where iA  and ix are respectively the 

area and the centre of gravity of the composing 
geometries. Therefore, the horizontal equilibrium 
constraint is expressed as follows: 

0
2

)(2 =−=
DxxC g     (9) 

Second, when the breakwater is disturbed by a 
wave, the centre of buoyancy moves from B to B1 
(Figure 4) because the shape of the submerged 
volume is changed. Then, the weight and the 
buoyancy force form a couple capable to restore the 
breakwater to its original position. Moreover, the 
distance GM known as the metacentric height 
illustrates the fundamental law of stability, where it 
must be always positive to create a restoring couple 
and maintain stability 0≥MG .  
 

 
                  Figure 4   Stability of floating breakwater 
 
Finally, stability is achieved by the restoring couple 
(weight-buoyancy) and by the tension in the 
mooring lines. This stability is determined around 
the centre of gravity, hence the moments developed 
by the restoring couple and the tension in cables 
must equilibrate the moment derived from the 
incoming waves.  

0=−− BF MMMp , where Mp is the moment of 
the disturbing force (wave), MF  is the moment of the 
tension in the mooring lines, and MB is the moment 
of the buoyant fore (restoring couple). The absolute 
value of the disturbing moment guarantees the 
flexibility of the stability relation in the two senses 
of rotation. Hence, the stability constraint can be 
expressed by an inequality: 
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h is the height of the breakwater portion above the 
still water, α being the angle formed by the mooring 
lines and the vertical (α=20°), and θ is the angle of 
disturbance (heeled angle); in fact it is fixed by the 
designer, and since the breakwater must be very 
rigid and stable in order to protect the ports from 
waves, it is taken 1.2°.(slope of 2%) 
 
 
3.5 Structural constraints 
This constraint constitutes a pure structural analysis 
of the floating breakwater (hydrodynamic and 
hydrostatic pressure exerted on the surfaces), where 
a comprehensive numerical analysis, based on the 
finite element method, is requested in order to 
determine the mechanical stresses (Figure 5). It can 
be summarized by maximizing the stiffness of the 
structure having a given amount of mass 
distribution. It is well known that the concrete have 
different compression and traction limits due to its 
nature. Hence, a special criterion, named the 
Parabolic Criteria,  [7] is introduced in terms of the 
principal stresses of the breakwater and the limiting 
stresses of the material. It can be written directly in 
form of an optimization constraint as follows:  

0))(()()( 21
2

214 ≤−++−−= ctctxC σσσσσσσσ  (11) 
where 1σ , 2σ represent the principal stresses of the 
structure and tσ , cσ represent the limiting stresses 
for the material constituting the examined structure. 
This constraint as the others must be computed in 
each iteration, which yields to solve the finite 
element problem in each iteration and for each new 
defined.    

 
Figure 5      Floating breakwater subjected to various loads 

 
The optimization problem defined atop, by the 

objective function and the related constraints, 
constitutes the theory of the floating breakwater 
optimization problem. But, what is altering is the 
representation type of the objective function and the 
relative constraints that are directly related to the 
optimization method itself. Therefore, the objective 
function (Eq.7), the floating condition (Eq.8), and 
the horizontal initial equilibrium condition (Eq.8) 

are repeatedly symbolized in each method. Where, 
the stability and structural constraints (Eq.10,  
Eq.11) are not subjected to any change, since the 
first is symbolized in terms of the coordinates of the 
centre of gravity independent of the type of 
representation, and the second is purely a 
mechanical numerical analysis of the structure and 
related directly to the geometrical form ignoring the 
type of representation of the latter. Moreover, the 
problem is reduced to the optimal design of the 
inward domain of the floating breakwater, since the 
height is indicated only from the pressure constraint 
and then it is eliminated from the optimization 
problem, also the width must be fixed due to 
topological problems, D=8m deduced from 
structural constraint  [5]. 
 
 
4- Shape Optimization With a 
Predefined Geometry 
The shape optimization using a predefined 
geometrical form constitutes a direct approach in 
optimization where it can be applied only if the type 
of the problem permits to create a prospective image 
for the final shape. Hence the problem is initialized 
by a specific geometrical form (rectangle) and 
finally the optimal form will reserve the same shape 
but with different dimensions and location inside the 
outward boundary of the floating breakwater; where 
the variables are reduced to 4321 ,,, xxxx (Figure 6).   

 
Figure 6  Predefined shape inside the floating breakwater 
 
The height of the breakwater is divided into two 

parts (with respect to the calm water level): a lower 
part, L, deduced from the dynamic pressure 
constraint, and an upper part, h, equals to the height 
of a strong wave (H=2m). Because, the optimization 
problem is dealing with a predefined geometry, then 
all constraints can be directly expressed in terms of 
the geometrical dimensions of the breakwater in 
form of mathematical equations. 
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4.1 Objective function 
The objective function can be expressed in terms of 
the geometrical dimensions as:  

)()(),,,( 3214321 xxhLxDhLxxxxf mmob −−+−+= ρρ                 
 
 
4.2 Floating constraint 
The floating constraint can be expressed as: 

0
))((

)(),,,( 32143211 ≤
−+

−−+=
m

em LhLD
 - xxhLxxxxxC

ρ
ρρ

 
4.3 Stability constraint 
The initial horizontal equilibrium and the stability of 
the floating breakwater depend on the calculation of 
the centre of gravity. This is performed by dividing 
the breakwater into 4 rectangles and calculating the 
new position of the centre of gravity (Fig. 5) in 
terms of the variables.  
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The horizontal equilibrium constraint is defined by 
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Finally, it is important to state that the expressions 
of the other constraints ),( 43 CC  are conserved 
without changes in the three different methods, and 
then there will be no need for any repetition. 
 
 
4.4 Application and results 
Based on the SQP method, the numerical 
application yields to the following results:       
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Replacing the variables by their corresponding 
values, it is capable to draw the optimized shape and 
its mechanical stresses distribution. 

 

 
Figure 7   Mechanical stresses  xσ (upper) and yσ (lower) 

We can notice (Fig. 6) the respected limits of 
the mechanical stresses due to the imposed 
structural constraints, where the concrete has its 
traction and compression limits as follows: 

MPat 4=σ , MPac 40−=σ . 
 
 
5- Topology Optimization 
A detailed comparison between the voronoi sites 
and our triangular representation has been explained 
in the introduction. The difference between them 
can be clearly observed in (Figure 8). 
 

 
Figure 8  Voronoi and triangular representation 

 

The objective of this topology section is to 
further address the bit-array representation using an 
elementary triangular mesh for the design domain 
partition (Figure 9a) and a refined triangular mesh 
for FE computations. In fact, this work combines the 
concept of the traditional bit-array representation 
(rectangular repartition) from the point of view of 
the relation between the structure itself and a regular 
partition, and that of the Vornoi representation in 
differentiating between the geometrical partition and 
the mesh used in FE computation. In this manner, 
the design domain is decomposed into 
approximately equable small triangles (Figure 9b) 
which are totally different from those of the refined 
mesh used in the FEM computation (Figure 9c). 
Therefore, the size of the FE problem is different for 
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each individual, where the appropriate FE problem 
size is solved.  

 

 
Figure 9  Different Meshes for optimisation and mechanical 
computation; (a) Partition of the design domain by an 
elementary triangular mesh, (b) Extracting void elements from 
the design domain and defining a new geometrical domain, (c) 
Generating a refined mesh for this new geometrical domain 

 
The geometrical properties of the mesh 

triangulation (nodes coordinates, edges, and triangle 
numbers) play an important role in simplifying the 
procedure of extracting or reserving specific 
elements in the design domain.  It is easy also to 
escape from the problems of fine tuning of the 
domain boundary by reserving all the elements 
adjacent to the boundaries. Then, a density vector is 
introduced having a length equals to the total 
number of meshing triangles and holding only the 
values 0 or 1 corresponding to filled or void 
triangles, describing the density distribution inside 
the geometrical domain. This density vector 
establishes a relation between the geometrical 
identification of each triangle, its location inside the 
domain, and its value in the density vector. The 
labelling or numbering of the triangles (Figure 10) is 
an arbitrary process where adjacent bits in the bit 
string representation do not necessarily correspond 
to neighbour elements of the domain. 

),....................,.........,( 21 nρρρρ =  

This vector undergoes a control process to 
confirm density distribution in specific and desirable 
regions (boundaries) ignoring the mutation and 
crossover operations through the Genetic Algorithm 
procedure. Thus, the optimal shape can be reached 
in reasonable time (especially for structures with 
closed boundaries) since the algorithm is able to 

precisely control the boundaries of the individuals in 
the population.  

 

 
Figure 10 Representation with density control 

This will definitely solve the problem of 
unanalyzable structures by reserving all the 
triangular elements adjacent to the boundary giving 
them the values 1 (Figure 11). Mathematically, it is 
expressed as follows:  

          If 








=

=

by
andor

ax

ki

ki

,

,

)(            ⇒    1=iρ  

     for ni ,,.........1=  ,  and  3,2,1=k  
where n is the total number of triangles or simply it 
is the total number of variables in the GA, k 
represents the number of node in each triangle; 

kix , represents the x coordinates of the node k in the 

triangle number i; kiy , stands for the y coordinates, 
finally a and b stands for the boundary coordinates 
that needs to be conserved in all the optimization 
problem (they can take positive or negative values 
or even linear equations). 

In contrary to previous methods, the initial 
population is generated here in a very 
comprehensive form. To our knowledge no one has 
initialized a population with admissible domains. By 
this way, we avoid falling in trivial solutions when 
the initial population is representing only arbitrary 
void elements. An algorithm is developed as 
follows: 

          If 








<<

<<

4,3

2,1

hyh
and

hxh

ki

ki

          ⇒    0=iρ  

            for ni ,,.........1=  ,  and  3,2,1=k  

where h1,h2,h3,h4 represents correspondingly the x 
and y limits of this void domain. For better 
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performance of the GA, each individual in the initial 
population stands for a different representations 
(different h1,h2,h3,h4). 
 
 

 
Figure 11 Flowchart for genetic algorithm 

The basic algorithm of the topology 
optimization can be summarized in the following 
steps: 
1-Generate an elementary triangular mesh of the 
design domain for structure repartition and develop 
the corresponding  density  vector.  This   mesh  is  
used  for mathematical computations of the relative 
constraints. 
2-Generate an initial population composed from 
admissible domains. (For example see Figure 9b)  
3-Density control process, where all the triangles 
having at least one of their nodes on any of the 
boundaries are marked by filled materials. 
4-Define a new geometrical domain after extracting 
the void elements (Figure 9b). This geometrical 
domain varies with each individual yielding to a 
variable mesh size in the FE analysis. By this step 
we can guarantee consumable time reduction in the 
optimization problem.   
5-Generate a refined mesh for this new structure 
(Figure 9c).  Each individual will define a new 
structure, and thus the mesh size is not fixed, it 
varies with the structure. 

6-Define the load conditions, boundary conditions, 
and material properties. Carry out the FE 
computations. 
7- Computation of the fitness of the individuals. 
8-If the new structural topology is not optimum, 
develop the crossover and mutation operations and 
go to step 3. 
 
 
5.1 Objective function 
Since the geometry of the structure is expressed in 
terms of the density distribution or mesh 
triangulation, the weight will be expressed in terms 
of the latter. 

∑
=

×=
n

i
iimob Af

1
)( ρρρ  

where n  is the number of triangles, iρ and iA  are 
the densities  and  areas of the corresponding 
triangles. The presence or absence of each triangle 
in the weight calculation is guaranteed by its 
corresponding density value in the density vector. 
 

 

5.2 Floating constraint 
Similarly, the floating constraint is expressed as: 
( TS designates the submerged area of breakwater) 

0)(
1

1 ≤−×= ∑
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e
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n
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ii SAC

ρ
ρ

ρρ  

 
5.3 Stability constraint 
In Such problems where the geometry is taking 
different shapes and varying its topology in each 
iteration, it will be impossible to calculate the centre 
of gravity in the traditional or analytical methods. 
Benefiting from various numerical tools, the centre 
of gravity and area of each triangle are calculated in 
the whole elementary mesh triangulation domain 
including both filled and void triangles. Then, we 
multiply their product by the density vector 
excluding in this manner all the void triangles from 
the real calculation of the centre of gravity.  
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where ix  and iy  are the coordinates of the centre of 
gravity of each triangle. Then, the relevant 
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horizontal stability constraint )2/( Dxg =  is written 
as follows: 

0
2

)(

1

1
1 =−

×

××
=

∑

∑

=

= D

A

xA
G n

i
ii

n

i
iii

ρ

ρ
ρ  

 
 
5.4 Application and results 
The main properties of the GA are as follows: 

     Individual length =480,     ( )4801 ..,,......... ρρρ =  
Population type: Bit String 
Crossover fraction:  0.5 
Mutation: Adaptive feasible 
Crossover: Scattered  
 

 

 
Figure 12    Fitness function versus number of generations 

By this formulation we can reproduce half of the 
individuals by mutation and half by scattering in 
each population. This constitutes a reasonable setup 
in the GA since scattering or mutation alone is 
ineffective at all. By specifying the population type 
to Bit String, each density element will conserve its 
binary representation during mutation. 

Once again, in optimization problems the initial 
population plays an important role in drawing a 
general view for the final solution and speeding its 
convergence (Figure 12). This special initialization 
of the problem speeds up the convergence, where it 
reached the optimal solution after 12 generations. 
Although, this work cannot be directly compared to 
previous bit-array methods (different applications), 
surely it is more efficient due to the representation 
form, the appropriate number of FE equations 
solved for each individual, and the physical 
generation of the initial population. Finally, we 
obtain the following mass representation regarding 
its conserved external dimensions (rectangle 8*6). It 

is represented with the refined mesh of the optimal 
domain ( 

Figure 13).    
          

 

 
Figure 13  Mechanical stresses xσ  (upper) and yσ  (lower) 

 
 
6- Shape Optimization Using Variable 
Number of Points 
In this section, we introduce a variable number of 
points which create a valid domain where their 
corresponding coordinates represent the variables of 
the optimization problem. We search for the 
optimum shape composed from the optimum 
number of points. The update of the number of 
points is controlled by the relative error of the 
objective function. If the relative error between the 
objective functions of the shape created by the 
actual number of points and that created by the 
previous number of points is greater than ε (value 
specified by the designer), then the number of points 
must be updated.  In other words, minimize the 
objective function by additional points until no 
improvements are achieved. These points are not 
selected from the meshed domain, but they 
themselves create this new domain. Similarly, to the 
topology problem, a structural domain is defined by 
the variable points in each iteration and then a 
refined mesh is generated for FE analysis. 

WSEAS TRANSACTIONS on FLUID MECHANICS Ghassan Elchahal, Pascal Lafon, Rafic Younes

ISSN: 1790-5087 195 Issue 2, Volume 3, April 2008



Therefore, we do not suffer from the problem of 
elements distortion, sine the mesh is generated after 
indicating the points coordinates. In a shape 
optimization problem, the shape of a structure is 
changed in each iteration during the optimization 
process. In this case, a fixed finite element mesh is 
no longer appropriate. The finite element mesh 
should be updated in each iteration for the new 
shape, loading conditions.  Similarly to the mesh 
procedure used in the topology problem, we use two 
different meshes one for geometrical computations 
and another refined one for FE computations. Also, 
the size of the FE problem is varying in each 
iteration due to the appropriate demand for each 
shape. 

In optimization it is very important to initialize 
with a significant initial solution since it plays an 
important role in drawing a general view for the 
final solution and yielding to speed its convergence 
toward the optimal solution; therefore the n points 
must create an initial valid domain and not just a set 
of arbitrary points.  
 

 
Figure 14  Initialization of a valid domain 

There are two different ways to treat this 
problem: the first one is based on initialization of 
the geometric domain for every new number of 
points n, where the other is based on benefiting 
from the previous results and proceeding ahead by 
introducing new points to the obtained shape for the 
new value of n. For the first one, in order to 
guarantee the existence of analyzable structures in 
the initial solution, and especially when considering 
high values of n, a mathematical trick is 
implemented. It is based on selecting the n points on 
a fictitious circle (Figure 14), where each point 
holds a value between [0,2π]. )2,0( πfl = ,  where 
f represents a function giving spaced points in this 

interval consequently, ⇒  11 +− << ttt lll  , then 
)cos(lrxl ×=  
)sin(lryt ×= ,  nt ...........,.........1=  

Moreover, these points are connected by straight 
lines in an ordered manner: 

 11.....................21 →→−→→→→ nnt  
After, assembling the polygon of n sides, the 
problem is treated in a similar manner to other 
optimization problems. 
 

 
 
The basic algorithm of the shape optimization can 
be summarized in the following steps: 
1-Initialze the number of points (3 or 4), and set i=0 
2-Define the new geometrical shape (rectangle 
including the void domain). 
3-Generate an elementary mesh for the geometrical 
computations (objective function, floating and 
stability constraints) 
4-Generate a refined mesh for the new geometrical 
domain. 
5-Carry out the FE analysis 
6-Evaluation of optimization constraints (SQP 
method) 
7-If optimum shape for the considered value of n is 
obtained, check the objective test with the preceding 
number of points (fob(0)=weight of filled design 
domain to guarantee a correct initialization). If not, 
update the design with the same number of variable 
points. Finally, after the optimum shape is obtained 
for a considered number of points, and the test on 
the objective function is not satisfied, update the 
value of n.  
 Therefore, we confirm obtaining the 
optimum shape for each value of n, and then the 
values of n are updated until its optimum value is 
attained. The value of n can be indicated by the 
designer himself or can be generated through an 
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algorithm. For our case, we chose 
(n=4,5,7,11,15,20,25).   
 
6.1 Objective function 
The objective function can be directly expressed in 
terms of the numerical method as follows: 

∑=
=

nt

it
itmiiob Ayxf

1
),( ρ  

where itA corresponds to the area of each triangle in 
the meshed domain; and the index it corresponds to 
the number of the triangle, where it varies from 1 till 
the total number of triangles nt . 
 
 
6.2 Floating constraint 
The floating constraint can be expressed as follows: 
(transform the volume notations into surface 
notations per 1m length).  
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6.3 Stability constraint 
Similarly to the objective function, the coordinates 
of the centre of gravity are expressed in terms of the 
centres of gravity of the meshing triangles: 
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where itx  and ity  are the coordinates of the centre of 
gravity of each triangle. Then, the relevant 
horizontal stability constraint )/Dx( g 2=  is written 
as follows: 
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6.4 Application and results 
Considering different values for the variable n, it is 
very logical to terminate with such results (Figure 
15). That is, the increase in the number of points 
representing the geometrical domain will yield to a 
decrease in the objective function until a certain 
limiting value where no improvement can be 
achieved after it. Moreover, introducing additional 
points to the obtained results from a previous n 
(benefit from the results of each n), have 

ameliorated the values of the objective function in 
comparison to those obtained by re-initializing the 
problem for each n (Figure 15). 

 
Figure 15  Variation of objective function versus n 

 

 
Figure 16  Optimization with variable number of points 
 
Considering the optimization results ( 
Figure 16), it is obvious to start with the 4 or 5 

points solution and then to go forward until no 
shape improvement is noticed or obtained. In 
consequence, when moving from 5 points to 
7,11,15,20 ( 

Figure 16) there is a visible amelioration in the 
shape and the weight, where the locations of these 
points are also plotted on the same figures in order 
to understand the behaviour or the movement of 
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these variables during the optimization process. But, 
this optimization method does not comprise an 
infinite number of solutions for the shape 
improvement; it is a deterministic optimization 
where after a certain number of points no shape 
improvement can be achieved and hence we can say 
that an optimal solution is found. Finally, it is good 
to expose the optimal shape (n=20) and its relevant 
mechanical stresses distribution inside the studied 
domain (Figure 17). 
 

 

 
Figure 17  Mechanical stresses  xσ (first) and yσ  (second) 

 
 
7-Discussions and Conclusions 
This work constitutes a comprehensive study in 
optimizing floating breakwaters, since it begins with 
modelling sea waves and determining its induced 
pressures on structures. Second, it considered the 
physical constraints such as floating and stability, 
and also the essential constraint in structures design 
represented by limitations on the mechanical 
stresses. Finally, all the preceding constraints are 
assembled in an optimization problem solved by 
three different methods. A comparison between 
these methods is introduced and based on the 
numerical values of the objective function and the 
cost calculation of these methods (Table 1).  
 
  Table  1 Method 1 Method 2 Method 3 

fob/ρm 11.278 m2 12.1 m2 7.76 m2 

f-count 173 11800 819 
 

The third method proved its robustness. It 
produced the best objective function since the n 
points can freely move in the domain without any 
restrictions. The first method produce a bigger 
objective function when compared with the previous 
due to its predefined geometry that cannot be altered 
but only vary in dimensions. On the other side, 
method 2 as we have commented on it earlier cannot 
be compared to values of shape optimization rather 
than it is very effective in problems with irregular 
geometries and domain helping to draw an initial 
image on the mass distribution in this structure to be 
passed later to a shape optimization problem to 
ameliorate its shape and weight. But, what is 
interesting in this method is the new type of 
representation in topology problems summarized by 
the triangular mesh, which holds up many 
advantages when compared to the previous 
(rectangular and voronoi). Also, the variable F.E 
problem size is a new idea in topology problems 
yielding to reduce the entire consumable time. It 
will be very efficient when solving for 3D floating 
breakwaters. Moreover, it is very logical to obtain 
higher mechanical stresses in the third method (Fig. 
16) when compared to those compared in the first 
one (Fig. 7) and this is due to difference in the 
obtained volume for the two cases; where surely the 
structure with less material volume will hold up 
higher mechanical stresses. But in the second one 
(Fig.12), high mechanical stresses are caused by the 
rough surfaces.  

Finally, the third method seems to have an 
accepted computational cost (Table 1) in 
comparison with the others and also due to the 
optimal shapes and results derived from it. In fact, it 
is not only a problem of volume consuming, but also 
a structural advantage where the floating breakwater 
is working approximately in the same stress domain 
(Figure 7); while in the case of a fixed bottom 
breakwater (filled material breakwater) the stress 
domain is largely varying between the points inside 
the breakwater. This is an additional advantage for 
the floating breakwater, since the more the inside 
points are working on closer stresses values the 
more the extended life of the structure is expected 
and vice versa. 
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