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Abstract: The aim of this paper is to present the numerical simulation of the evolution of the viscous, low Reynolds 
flows in two-dimensional cases with the use of the Smoothed Particle Hydrodynamics (SPH) method. This work is 
considered as the first step towards the simulation of complex three-dimensional flows, which occur in impulse 
water turbines. The method was originally developed for solving problems of astrophysical nature and belongs to 
the meshless methods, as it does not require any computational grid. A set of descrete fluid particles is used to 
represent the continuous fluid, and their trajectories are being calculated in a Lagrangian sense through time. The 2-
D test cases examined in this paper are the Couette and the Poiseuille Flow, and the basic problem of the liquid 
column collapse (Dam Break). For the first two test cases the numerical results were tested against analytical 
solutions from the literature, while for the third test case experimental measurements were used for the validation 
of the calculations. The agreement of the numerical results with the corresponding analytical and experimental data 
is quite good and encouraging towards the use of the SPH method in modelling of more complex, unsteady and 
multiphase flow fields, while the performance of the algorithm referring to the speed of the calculations and the 
qualitative results is remarkable. 
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1  Introduction 
Initially the SPH method was expressed by 

Lucy [1] and then used in astrophysical problems, 
such as the movement of the stars and the asteroids 
by Gingold and Monaghan [2], while later it was 
applied for problems of continuum solid and fluid 
mechanics. Monaghan in [3] presents an extended 
review on the SPH method. The method was initially 
developed for compressible flows and then it was 
extended to be applied in free surface flows [4], [5] 
through an artificial fluid which can be considered 
slightly compressible. Such an assumption was 
necessary in order to overcome the problem of large 
sonic velocities and allowed the use of larger 
computational time step.  

The SPH method is characterised as a mesh-
free particle method since it does not involve any 
mesh during the calculation procedure and its aim is 
only to track the trajectories of the particles that 
represent the moving fluid [3]. The mesh-free nature 
of the method allows overcoming problems such as 
the generation of the grid, which sometimes can be 

very time consuming, or the simulation of the flow 
field near complex boundary geometries or even the 
simulation of free surface flows, as no special 
conditions are required at the interface. It also gives 
the opportunity to model flows with moving or 
deforming boundaries or simulate the interaction of 
several fluid phases [6]. Apart from the above the 
main advantages of the SPH method are that pure 
advection can be treated accurately and that when 
more than one materials are involved in the 
calculations then the interface problems may be 
solved easily. Moreover the resolution of the problem 
can be made easily adapted to the location and to the 
time while due to the close similarity between SPH 
and molecular dynamics it is permitted to include 
complex physics as well [3].  It should also be noted 
that the SPH is quickly approaching its mature stage, 
which means that it can be applied for micro-scale to 
macro-scale problems and from discrete to 
continuum systems. Some of the fields that the SPH 
method is already been applied are the modelling of 
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the casting process [7] or the simulation of interfacial 
flows [8]. It is also applied for the simulation of 
viscous flows [9] and water waves as well [5] and 
[10]. However, the numerical errors of SPH can be 
larger than those of grid-based methods, and also it 
can be more computational expensive for a given 
application [6].  

The aim of this work is to develop and 
evaluate a numerical algorithm based on the SPH 
method, as a first step towards the modelling of the 
complex, unsteady flow in impulse water turbines. 
The results are compared with experimental and 
analytical data from the literature with encouraging 
agreement. 
 
 
2  The SPH Method 
2.1  Theoretical Background 

The SPH method uses the Lagrangian 
concept. Most commercial codes for simulating fluid 
dynamics problems are based on the continuous 
Eulerian method. The disadvantages, which arise 
during such a simulation, may sometimes not be 
negligible. The most important of them is that when 
using a fixed mesh the time history of the flow 
variables at a fixed point of the fluid cannot be 
tracked as these variables are being calculated 
according to the cells. Irregular or complicated 
geometries are also difficult and extremely time 
consuming in order to be represented when using a 
fixed mesh method. The accurate determination of 
the position of free surfaces, deforming boundaries or 
even material interfaces is very difficult to achieve in 
the Eulerian method. Finally in many cases the 
resolution of the domain discretization- and hence the 
accuracy of the results- has to be sacrificed because 
the use of a more coarse grid is necessary. Such 
problems could be overcome if a gridless method, 
which follows the trajectories of fluid particles, is 
applied.  

According to the theory of the SPH method, 
the fluid is represented by a set of particles, which 
follow the movement of the fluid. These particles 
carry all the physical quantities of the fluid, such as 
its density, velocity and pressure. Depending on the 
problem, the particles may also carry the local energy 
of the fluid.  

One of the main features of the SPH method 
is its adaptive nature, which enables it not to be 
affected by the arbitrariness of the particles 

distribution. This leads to the advantage of handling 
situations of large deformations. The SPH 
approximation does not require any pre-defined mesh 
to provide any connective of the particles in the 
process of computation and it works well enough 
even without any particle refinement procedure [6]. 
The representative particles are free to move in the 
computational domain and since they carry all the 
fluid properties they form the computational frame 
for solving the partial differential equations, which 
describe the conservation laws of the continuum fluid 
dynamics.  

 

 
 

Figure 1. Geometric characteristics of the grid and 
the initial distribution of the particles. 

 
 
The equations governing the movement and the 
properties of the fluid particles are expressed as 
summation interpolants using a kernel function W. 
Theoretically, the calculation of the properties of a 
particle α requires knowledge of the interaction 
between the particle α and the rest of the particles in 
the flow field. In practice though, a procedure like 
this would be extremely time consuming so each 
particle is affected only from those particles that are 
within a certain distance from it, which is the 
smoothing length h. 

If A is a property function of the fluid then 
the value of Aα for the particle α will be:  

 

                           a b ab abA A W dr= ∫                           (1)                     
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where Ab is the value of the function A for the 
neighbor particle b, Wab is the value of the kernel 
function and abr  is the distance between particles α 
and b. So in SPH formulation Eq. (1) becomes: 
 

b
a b ab

b b

AA m W
ρ

=∑                          (2) 

 
From the above equation the calculation of the first 
derivative can be expressed as follows: 
 

ab
a b ab

b a

AA m W
ρ

∇ = ∇∑                      (3) 

 
where Aαb=Aα-Ab.  

In order to numerically simulate a flow field 
using the SPH method there are 4 basic steps. First of 
all the problem domain where the partial differential 
equations are defined must be discretized. Then a 
certain method must be applied in order to provide an 
approximation of the values of the field functions and 
their derivatives, followed by the function 
approximation, which is applied to the partial 
differential equations in order to produce a set of 
ordinary differential equations in a discretized form 
with respect only to time. Finally, the set of ordinary 
differential equations is solved using a numerical 
integration scheme. 
 

2.2  The Kernel Function 
There are several expressions of the kernel 

function which can be applied for the calculations of 
the properties of the fluid particles. For the 
simulation of the movement of spherical stars 
Gingold and Monaghan [2] used a Gaussian kernel, 
while at the same time Lucy [1] used a bell-shaped 
function. Monaghan and Lattanzio [11] introduced a 
kernel based on the B-spline function and Morris [12] 
applied higher order splines, which proved to be 
more stable than the previous expressions.  

The kernel function, apart from being 
spatially differentiable, must satisfy some other 
conditions as well, as the positivity in order to avoid 
unacceptable results such as negative density or 
energy, and the monotonicity, according to which the 
influence that one particle exerts to the other must be 
monotonically decreasing with the increase of their 
distance. Moreover, it must be even, so that particles 

from the same distance but opposite sides should 
have the same influence on a given particle, smooth, 
in order to produce more accurate results, and finally 
satisfy the Dirac delta function condition: 

 

0
lim abh

W δ
→

=                                    (4) 

 
The kernel function used in this work is the one 
originally proposed by Violeau, [13]: 
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where h is the smoothing length, and q is the ratio 
|rαb|/h. The term αd is equal to (96π/1199) for 2D 
problems and (π/20) when the problem expands in 
the 3D space. The general behavior of the kernel 
function is shown in Figure 2., [13]. 
 

 

Figure 2. Kernel Function behavior in the 2D space. 
 

 
2.3  Equations of Motion 
The fluid flow simulation is based on the continuity 
and momentum Navier-Stokes equations: 

Continuity: d u
dt
ρ ρ= − ∇ ⋅  (6) 

W
 

y
x
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Momentum: 21du p u g
dt

ν
ρ

= − ∇ + ∇ +           (7) 

where ρ is the density, p the pressure, ν the kinematic 
viscosity and g the gravity acceleration. According to 
the SPH method, Eqs. (6) and (7) can be written for a 
2D field as follows: 
 
Continuity: 

( ) ( )a
b b a b a

b

d W Wm u u v v
dt x y
ρ ⎡ ⎤∂ ∂

= − + −∑ ⎢ ⎥∂ ∂⎣ ⎦
 (8) 

 
Momentum: 

2 2

2 2

a a b
b ab x

b a b

a a b
b ab y

b a b

du p p Wm g
dt x

dv p p Wm g
dt y

ρ ρ

ρ ρ

⎫⎡ ⎤⎛ ⎞ ∂
= − + −Π +∑ ⎪⎢ ⎥⎜ ⎟ ∂⎢ ⎥ ⎪⎝ ⎠⎣ ⎦

⎬
⎡ ⎤⎛ ⎞ ∂ ⎪= − + −Π +∑ ⎢ ⎥⎜ ⎟ ⎪∂⎢ ⎥⎝ ⎠⎣ ⎦ ⎭

 (9) 

 
where the term Παb contains the viscous forces. 
Various expressions have been proposed for this term 
[14], [7], [15] and here we use the one of Monaghan 
[3]:  

( ) 216 a b ab ab
ab ab

a b a b ab

v r W
r

µ µ
ρ ρ µ µ

⎛ ⎞⋅
Π = − ∇⎜ ⎟+ ⎝ ⎠        

(10) 

 

2.4  Equation of State 
As mentioned before the fluid particles carry 

with them all the properties of the fluid itself. The 
fluid pressure calculation is a critical point of the 
SPH method, and due to the lack of an adequate 
analytical expression, it is usually estimated through 
an equation of state, as first suggested by Monaghan 
[4]: 

 

 
2

0 0

0

1a
a

cp
γ

ρ ρ
γ ρ

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦              

 (11)  

 
in which ρ0 is a reference density, c0 the local speed 
of sound and γ=7 for water. Eq. (11) may be applied 
for weakly incompressible fluids as it can simulate 
incompressibility with sufficient accuracy. However, 
for numerical reasons, the speed of sound is set to an 
artificial value, and not its physical one, which is 

usually taken 10 times of the maximum flow speed, 
keeping this way the density fluctuations below 1%.  
Adopting such an approximation for the pressure the 
SPH method appears to be a weakly compressible 
one. Solving a pressure Poisson equation is 
sometimes preferred because of the possible 
instabilities that Eq. (11) may add to the calculations. 
The good balance between accuracy and simplicity 
for SPH making use of Eq. (11) is the feature that 
makes it so commonly used. 
 

2.5  Solid Boundaries Treatment 
Three main ways of treatment have been 

used for the solid boundaries of the flow field. Their 
influence may be modelled by using repulsive forces 
to assure the particle non-penetration condition, 
which usually have the Lennard-Jones form [4].  

 

 ( )
1 2

0 0
2

p pr r rf r D
r r r

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (12) 

 
As the fluid particles move closer to the wall the L-J 
forces evolve and decelerate them leading to the 
appropriate non-penetration condition, Fig. 3(a). This 
way of boundary treatment is necessary for the cases 
where the fluid particles tend to move towards the 
wall surface, and their velocity is not exactly parallel 
to the boundary.  

A second technique uses ‘ghost’ or ‘mirror’ 
particles to represent the solid wall. The wall surface 
is considered locally as a symmetry plane in order to 
create and locate the ‘mirror’ particle of an 
approaching fluid particle [14], [16], Fig. 3(b). The 
‘mirror’ particles have the same properties with their 
corresponding fluid ones but opposite normal 
velocities, to prevent particle penetration.  

The third method to represent the walls is 
through the use of a number of ‘fixed’ particles, the 
properties of which remain constant in time except 
from their density [13], Fig. 3(c). The latter increases 
as the fluid particles get closer to the wall thus 
leading to a pressure increase of the wall particles 
and finally decreasing the fluid particles velocity near 
this region securing again the non-penetration. The 
formation of the ways of treating the boundaries is 
shown in Fig. 3. 
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Figure 3. Solid Boundaries Treatment: (a) L-J Forces, 
(b) ‘Ghost-Mirror’ Particles and (c) ‘Fixed’ Particles 
 

2.6  Computational details 
The accuracy of the numerical results 

depends on the number of representative fluid 
particles which are tracked. The latter may also 
depend on the specific flow conditions (e.g. 
geometry, Re), and must be determined for each 
examined case.  

The particle equations are integrated in time 
usually with a predictor-corrector scheme or other 
high-order numerical methods (e.g. Runge-Kutta), 
using constant or adaptive time-step. The maximum 
permissible step for stability is obtained by Courant 
type criteria [14]. 

In order to produce an algorithm, which can 
be used in various test cases, two independency 
studies were conducted. The first one had to do with 
the number of representative particles for the fluid 
and the second one with the time step of the 
integration. Results for both these studies will be 
presented below. 

Despite the fact that SPH is a gridless 
method, a so-called “background” grid was adopted. 
This grid helped towards the calculation of the time 
and space averaged values of the velocities, density 
and pressure. At each time step the average value of 

these properties is being calculated for each grid cell 
from the particles that are within its limits. After the 
steady state of the flow is reached the space average 
values are stored for several time steps in order to 
finally compute the time-average values. With this 
approximation the algorithm allows the contour 
plotting of the fluid properties at the steady state flow 
field conditions. Figure 4 exhibits the initial 
distribution of the particles in a 2-D Couette flow 
between two parallel plates.  
 
 

 
 

Figure 4. Initial particles distribution for the 2-D 
Couette flow. 

 
 
3  Evaluation of the Model 
3.1  Couette Flow 

The first test case is the modelling of the 2D 
Couette flow between two infinite plates located at 
y=-L/2 and y=+L/2, respectively (Fig. 5).  
 

 
Figure 5.  Couette Flow. 

 
At the beginning of the simulation the system is at 
rest and at time t=0 the upper plate starts to move 
with a constant horizontal velocity Uo. The flow 
finally reaches the steady state, with a linear velocity 
profile (Fig. 5).  

y 

x

-L/2

L/2

Ux ( )ty,  
Ux ( )∞,y  

Uo Uo 

(a) 

(c) 

(b) 
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The transient behaviour of this flow can be 
obtained by the following analytical expression [14]: 

( ) ( )0
0

1

2 2

2

2, -1

sin exp

∞

=

⎛ ⎞⎛ ⎞ −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ n
x

n

Uyu y t =U +
L n

y n               n t
L L

π

ππ ν

  (13)  
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Figure 6.  Comparison of the results with different 
particles number, at: (a) t=0.1 sec and (b) t=0.3 sec. 

 
 
A numerical study is conducted at first in 

order to find the number of representative fluid 
particles that produce independent results for the 
average flow field. The calculations were made for 
Reynolds number equal to 50 (defined as Re=UoL/ν), 

and five different cases were simulated using initial 
particle distances of L/20, L/30, L/40, L/50 and L/60, 
respectively.  

The axial velocity profiles of the particles for 
two of the above cases are compared with the 
analytical solution in Fig. 6 at two time instants, one 
during the transient period (t = 0.1 sec), Fig. 6a, and 
the second when approaching the steady state (t = 0.3 
sec), Fig. 6b. The use of 20 particles across the plates 
produces more scattered results, which deviate from 
the analytical solution (Fig. 6b), whereas for the 60 
particles case the results precision is clearly enhanced 
and the agreement with theory is very good. It was 
found that the results become practically identical 
when more than 40 particles are used, as it is showed 
in Fig. 7, therefore the L/50 arrangement is selected 
for all the rest numerical experiments.  
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Figure 7. Results comparison for L/40, L/50 and L/60 
distance between the fluid particles, at t=0.3 sec. 

 
 
Apart from the particles’ independency, a 

time step independency study was also conducted for 
the same test case. A small time step, dt=6.25x10-4 
sec, was found to be necessary in order to avoid 
instabilities of the numerical integration scheme. The 
simulation of the flow using dt/2 and dt/4 values gave 
exactly the same results, therefore no smaller time 
step is needed, Fig. 8. 

The model results with the above space and 
time discretization are plotted for various time 
instants until the steady state in Fig. 9, and compared 
well with the corresponding analytical solutions. 
Finally, Fig. 10 shows the particles position and 

(a) 

(b) 
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velocity at two instant frames, one during the 
transient phase and the other during the steady state 
flow. From these two frames it can be observed that 
during the transient phase the influence from the 
movement of the upper plate has not yet reached the 
fluid particles that are closer to the lower one, while 
during the steady state the horizontal velocity of all 
the particles has evolved and reached its final linear 
profile. 
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Figure 8. Results comparison for time independency. 
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Figure 9. Comparative plots of velocity profiles at 
various time instants. 

 

 
 
 

 
 

Figure 10.  Frames for (a) Transient phase at t=0.02 
sec. and (b) Steady state of the Couette Flow. 

 
3.2  Poiseuille Flow 

The second test case refers to the modelling 
of the 2D Poiseuille Flow. Once again the flow field 
is evolved between two infinite plates, which are 
located at y=-L/2 and y=+L/2, respectively (Fig. 11). 
 

 
Figure 11. Poiseulle Flow 

 
 

Initially for the simulation the system is at 
rest and at time t=0 a horizontal force F is exerted on 
the fluid particles, which sets them in motion. The 
flow field gradually evolves and finally reaches its 
steady state with a parabolic velocity distribution 
(Fig. 12). 

y 

x 

-L/2

L/2

Ux ( ),y t  Ux ( ),y ∞  
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WSEAS TRANSACTIONS on FLUID MECHANICS Fotios G. Stamatelos, John S. Anagnostopoulos

ISSN: 1790-5087 385 Issue 4, Volume 3, October 2008



-0.4 -0.2 0 0.2 0.4
y/L

0

0.2

0.4

0.6

0.8

1

U
/U

o

SPH predictions
Analytical solution

t=0.02 sec

t=0.04

t=0.12

t=0.22

t=0.4

 
 

Figure 12. Results comparison for the velocity 
profiles at various time instants 

 

 
 

 
 

Figure 13. Transient phase and Steady state frames of 
the Poiseuille Flow. 

 
 
The numerical results, which were obtained 

using the previous space and time resolution (L/50 
and 6.25x10-4) were tested against the analytical 
solution, which for the transient phase is expressed as 
follows [14]: 

 

( ) ( )
( )

( ) ( )

2

33
0

2 2

2

4,
2 2 1

2 1
               sin 2 1 exp

x
n

F FLu y t y y L
n

ny n t
L L

ν νπ

π νπ

∞

=

= − +
+

⎛ ⎞+⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑
 (14) 

 
where F is the horizontal force, which is calculated 
from the equation: 
 

 
( )

0
2

2
/ 2

=
UF

L
ν

 (15) 

 
In the above equation U0 is the peak fluid velocity at 
the steady state of the flow field evolution.  

The comparison of the numerical results 
against the ones taken from the analytical solution is 
shown in Fig. 12, at various time instants. Once again 
the agreement of the results is very good and 
promising towards the use of the SPH method for the 
simulation of transient flow fields. Two instant 
frames showing the particles position and horizontal 
velocity during the transient phase and the steady 
state are shown in Figure 13. 

In Fig. 13 it can be observed that during the 
transient phase the existence of the viscosity forces 
decelerates the velocity evolution of the particles, 
while during the steady state the velocity distribution 
has reached its final parabolic profile. 
  

3.2  Dam break  
The classical problem of Dam Break [17]-

[18] is also used for the validation of the developed 
model. The test case refers to a water column, which 
is suddenly allowed to collapse into a rectangular 
tank (Fig. 14).  
 

 
 

Figure 14.  Setup of the Dam Break problem. 

WSEAS TRANSACTIONS on FLUID MECHANICS Fotios G. Stamatelos, John S. Anagnostopoulos

ISSN: 1790-5087 386 Issue 4, Volume 3, October 2008



0 1 2 3 4 5
0,2

0,4

0,6

0,8

1,0

 SPH Results
 Experimental

y/
H

d

t*(2g/Wd)
0,5

 
 

0 1 2 3

1

2

3

4

x/
W

d

t*(2g/Wd)
0.5

 SPH Results
 Experimental
 SPH Literature [8]

 
 

Figure 15.  (a) Maximum column height and (b) 
position of the leading edge versus time. 

 
The experimental data [17] for this test case 

contain the maximum height and the leading edge 
position of the collapsing column versus time. The 
SPH model results are compared with the 
measurements in Fig. 15, showing quite good 
agreement when referring to the decrease of the 
maximum height of the column. The deviation of the 
leading edge position curve from the experimental 
data , Fig. 15(b), is expected as from [8]. 

Finally, an important advantage of the SPH 
method is its ability to provide a good qualitative 
view of complex, unsteady two-phase flows in a fast 
and reliable way. Some indicative plots showing the 

evolution of the liquid column collapse are given in 
Fig. 16, for various non-dimensional time instants. 

 
 

4  Conclusions 
A gridless flow simulation algorithm based 

on the SPH method was developed and applied for 
the simulation of three test cases of 2D viscous 
incompressible flows. The numerical experiments 
confirmed at first the efficiency of the method in 
reproducing complex transient and multiphase flows. 
The capability of providing in a fast and robust way a 
detailed and reliable qualitative picture of the flow 
evolution, in an animation form, is valuable for the 
study and better understanding of such flows, and 
cannot be easily obtained by other continuous 
methods (Eulerian or Navier-Stokes). Also, the 
quantitative results were very encouraging showing 
that the method is trustworthy for further 
investigation in order to apply in complex practical 
flows encountered in impulse water turbines.  
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Figure 16.  Instant frames of the collapsing water 
column, where t*=t(2g/Wd)0.5. 
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