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Abstract: - Oscillations and rotations of a liquid droplet are simulated numerically using the level set method, 
and the combined effects of oscillation amplitude and rotation rate on the drop-shape oscillation is studied. The 
oscillation frequency is shown to decrease as the amplitude of oscillation increases. The oscillation frequency 
increases, in contrast to the effect of amplitude, as the rotation rate increases. The pressure distribution in the 
droplet corresponds to the frequency shift, and it is shown that the oscillations without frequency shift are 
possible. It is found that the relation between the amplitude and the rotation rate is linear both for the frequency 
shift of zero and for the pressure difference of zero even though the fluid properties are different. The flow 
fields in and around the droplet are visualized, and it is shown that the vortices formed by the oscillation are not 
affected by the rotation. Parallel computations are performed with satisfactory high efficiency for the 
calculations of the pressure field, and the importance of the communication rate is demonstrated. 
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1 Introduction 
A levitated liquid droplet is used to measure 
material properties of high temperature molten 
metal, since the levitated droplet is not in contact 
with a container, and the effect of the container wall 
is eliminated for a precise measurement. The 
levitation of liquid droplets, which is also used for 
containerless processing of material, is controlled by 
using electromagnetic force [1], electrostatic force 
[2], or acoustic force [3] under the gravitational 
condition. Viscosity and surface tension are, 
respectively, obtained from the damping and the 
frequency of drop-shape oscillations. The relation 
between material properties and oscillation 
parameters is based on the linear theory [4], and 
small amplitude oscillations are necessary. Large 
amplitude oscillations are, however, desirable from 
the viewpoint of measurement or experiment.  

The oscillation frequency has been shown to 
decrease with increasing amplitude of the drop-
shape oscillations experimentally by Trinh and 
Wang [5]. The decrease in oscillation frequency has 
been calculated for moderate amplitude 
axisymmetric oscillations of incompressible inviscid 
drops by Tsamopoulos and Brown [6]. The 
calculated results were in qualitative agreement with 
the experimental results. The effect of amplitude on 
the oscillation frequency has been discussed 
theoretically by Azuma and Yoshihara [7]. Second 

order small deviations were taken into account for 
the linearized solution, and the oscillation frequency 
was shown to decrease as the amplitude increased. 
The effect of rotation, on the other hand, has been 
discussed by Busse [8] and Lee et al. [9] 
theoretically, and by Wang et al. [10] experimentally. 
In contrast to the effect of amplitude, the oscillation 
frequency increased by rotation. Although effects of 
amplitude and rotation were shown in these studies, 
the relation between the frequency shift and the flow 
field in the droplet has not been considered well. 

In this study, numerical simulations of an 
oscillating-rotating liquid droplet are performed to 
study the effects of amplitude and rotation on the 
oscillation frequency. Three-dimensional Navier-
Stokes equations are solved using the level set 
method [11]. In this method, the level set function, 
which is the distance function from the droplet 
surface, is calculated by solving the transport 
equation to obtain the position of the surface 
correctly. Mass conservation of the droplet is 
especially taken into account in the calculation of 
the level set function. The staggered mesh system is 
used and the second-order upwind difference 
scheme is applied for convective terms. The second-
order Adams-Bashforth method is used for time 
integration. Parallel computations are performed by 
applying domain decomposition technique. The 
oscillation of the rotating droplet is simulated by 
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changing the amplitude and the rotation rate, and the 
combined effects of amplitude and rotation on the 
oscillation frequency and the flow field in and 
around the droplet are studied. The relation between 
the frequency and the flow field is discussed in            
terms of the pressure distribution in the droplet. 
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  where ε is a small positive constant for which 
1|| =∇φ  for εφ ≤|| . The evolution of φ is given 

by 

 
2 Numerical Simulations 
2.1 Governing equations  The level set method [11] is outlined briefly in the 
following. Governing equations for the droplet 
motion are the equation of continuity, 

0=∇⋅+
∂
∂ φφ u

t
.                                                  (8) 

  
In order to maintain the level set function as a 

distance function, an additional equation is solved: 
0=⋅∇ u ,                                                               (1) 

 
 and the incompressible Navier-Stokes equations,  
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 where τ and α are an artificial time and a small 
constant, respectively. The level set function 
becomes a distance function in the steady-state 
solution of the above equation. The following 
equation is also solved to preserve the total mass in 
time [12]: 

where ρ, u, p and μ, respectively, are the density, 
the velocity, the pressure and the viscosity, D is the 
viscous stress tensor, and Fs is a body force due to 
the surface tension. The surface tension force is 
given by 
  

φσκδ∇=sF ,                                                       (3) 
||)1)(( φκ

τ
φ
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where σ, κ, δ  and φ are the surface tension, the 
curvature of the interface, the Dirac delta function 
and the level set function, respectively. The level set 
function, which is the normal distance from the 
interface, is defined as φ=0 at the interface, φ<0 in 
the liquid region, and φ>0 in the gas region. The 
curvature is expressed in terms of φ: 

 
where A0 denotes the total mass for the initial 
condition and A denotes the total mass 
corresponding to the level set function. The total 
mass is conserved in the steady-state solution of the 
above equation. 

All variables are nondimensionalized using 
liquid properties and characteristic values: x’=x/L, 
u’=u/U, t’=t/(L/U), p’=p/(ρlU2), ρ’=ρ/ρl, μ’=μ/μl, 
where the primes denote dimensionless variables, 
and L and U are representative length and velocity, 
respectively. The representative length and velocity 
may be the droplet diameter and the velocity of the 
surface, respectively. In the following numerical 
simulations, however, two non-dimensional 
numbers, the Reynolds number, ρlLU/μl, and the 
Weber number, ρlLU2/σ, are only necessary. 
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The density and viscosity are given by 
 

Hlgl )( ρρρρ −+= ,                                        (5) 
 
and 
  

Hlgl )( μμμμ −+= ,                                        (6)  
2.2 Numerical conditions  
Shape oscillations of a rotating droplet, whose 
rotation axis is vertical and the same as the 
oscillation axis, are simulated in the following.  

where the subscripts g and l denote the gas and 
liquid phase, respectively, and H is a Heaviside-like 
function defined by 
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The finite difference method is used to solve the 
governing equations. The staggered mesh system is 
applied for spatial discretization of velocities. The 
convective terms are discretized using the second 
order upwind scheme and other terms by the central 
difference scheme. Time integration is performed by 
the second order Adams-Bashforth method. The 
SMAC method [13] is used to obtain pressure and 
velocities. The Poisson equation for pressure 
correction is solved using the Bi-CGSTAB method. 
The domain decomposition technique is applied and 
the message passing interface (MPI) library is used 
for parallel numerical simulations. The block Jacobi 
preconditioner [14] is used and the simulations are 
performed with the parallel computer systems in 
JAEA: SGI Altix3700, Altix350, and some PC 
clusters. 

 

 
 

Fig. 1  Schematic of oscillating-rotating droplet. 
 

The effects of region size and noding on 
simulation results have been examined beforehand 
for the average droplet radius of unity. The number 
of calculation nodes in three-dimensional space was 
determined to be 100x100x100 ~ 140x140x140 so 
as to eliminate the size effect. The spatial increment 
was 0.03 in all directions, and the size of the 
simulation region was thus 3.0x3.0x3.0 ~ 
4.2x4.2x4.2. Periodic boundary conditions are 
applied at all the boundaries of the simulation region. 
Figure 1 shows the schematic of an oscillating-
rotating liquid droplet. An ellipsoidal droplet is 
placed at the centre of the simulation region, and the 
initial rotation is imposed as a rigid rotation with a 
constant angular velocity, ω, around the vertical axis. 
The initial amplitude, ΔR, in the vertical direction is 

given as a normalized deformation from the average 
shape of the rotating droplet. The average vertical 
radius, R0, is determined from the rotation of a 
spherical droplet. The density ratio and the viscosity 
ratio are both fixed at 0.01. The time step size is 
determined so as to satisfy the CFL conditions [15]. 

In the nondimensional form of the governing 
equations, the Reynolds number and the Weber 
number are varied from 200 to 400 and from 10 to 
30, respectively, in the following simulations. The 
initial amplitude is varied from 0.02 to 0.83. The 
rotation rate, which is normalized by the oscillation 
frequency for the non-rotating droplet with the 
amplitude of 0.02, is varied from 0.0 to 0.6. 

Calculated oscillation periods using the present 
method for a droplet without rotation have been 
compared with the theoretical values for validation 
[16]. The calculated periods for oscillation mode 2, 
3 and 4 were 10.1, 5.23 and 3.40, respectively, 
while the theoretical values were 10.0, 5.15 and 3.32. 
It was also reported for small rotation rates that the 
calculated frequencies using the present method 
were in good agreement with the theoretical result 
[16]. 
 
 
3 Results and Discussions 
3.1 Velocity fields 
Variations of droplet shape and velocity fields over 
the first oscillation period are shown in Figs. 2 and 3 
as examples of an oscillating-rotating liquid droplet. 
The vertical cross section along the vertical axis in 
Fig. 1 is shown in Fig. 2, and the horizontal cross 
section along the horizontal axes is shown in Fig. 3. 
The rotation rate is 0.3 and the initial amplitude is 
0.38. The Reynolds number and the Weber number 
are 200 and 20, respectively.  

 The initial prolate shape at T=0.0 becomes oblate 
shape gradually as shown in Fig. 2, and the internal 
flow is induced from the vertical top and bottom to 
the centre of the droplet and from the centre to the 
horizontal side direction as shown at T=2.31. The 
external flow field develops immediately according 
to the variation of the droplet shape. Four vortex 
centres are seen in the vertical cross section in 
between the pole and the equator. It indicates that 
two three-dimensional vortices appear around the 
droplet. The vertical radius is almost the smallest at 
T=4.61, and the droplet shape is oblate. The flow 
reversal is clearly seen at T=6.92. The vertical 
radius becomes large at T=9.23, and the droplet 
shape is prolate again. The next oscillation period 
starts, and the flow direction is reversed again at 
T=11.53. The shape oscillation continues around the 
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Fig.2    Velocity field in vertical cross section. 

 
Fig.3    Velocity field in horizontal cross section. 

equilibrium shape of the rotating droplet. The 
velocity fields in and around the droplet are similar 
to those for a non-rotating droplet [16], and it is 
found that the vertical velocity fields are not 
affected much by rotation. 

The rotating velocity field in the horizontal cross 
section is shown in Fig. 3. The rotation rate is 
imposed as a rigid rotation at T=0.0. The initial 
rotation is applied only in the droplet as shown in 
Fig. 3. The external flow field, however, develops 
immediately in the horizontal direction. The flow 
direction is counter clockwise in this example. The 
outward flow is seen at T=2.31, since the droplet 
shape is varying from prolate to oblate. The 
horizontal cross section of the droplet becomes the 
largest at T=4.61, and the velocity at the interface is 
almost tangential. The inward flow is seen at T=6.92, 
and the horizontal cross section becomes the 

smallest at T=9.23. The droplet shape is oblate at 
T=4.61, and prolate at T=9.23 as shown in Fig. 2. 
Vortices do not appear around the droplet in the 
horizontal cross section.  
 
 
3.2 Vortex fields 
Vortex fields around the droplet at several time 
levels are shown in Figs. 4 and 5. The surface with 
the vorticity of 0.03 is visualized. The vortex fields 
corresponding to the oscillating-rotating droplet in 
Figs. 2 and 3 are shown in Fig. 4, while the vortex 
fields for a non-rotating droplet are shown in Fig. 5 
for comparison. The initial amplitude is 0.38 in Figs. 
4 and 5, and the rotation rate is 0.3 in Fig. 4. The 
equilibrium shape is an ellipsoid for the rotating 
droplet, while it is a sphere for the non-rotating 
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Fig.4    Vortex field around rotating droplet. 

 
Fig.6  Effect of amplitude on time history of 

 droplet radius: ω=0.2. 
 

 
Fig.7   Effect of  rotation rate on time history of  

droplet radius: ΔR/R0=0.11. 

 
Fig.5    Vortex field around non-rotating droplet. 

droplet, and the droplet shape is slightly different as 
shown in Figs. 4 and 5.  
   Two large vortices are seen clearly at T=2.31 and 
6.92 in Fig. 4, while vortices almost vanish at 

T=4.61 and 9.23. It is found that large or strong 
vortices appear when the droplet shape is varying 
between prolate and oblate. Large vortices 
correspond to large velocities around the droplet as 
shown in Fig. 2. The vortex fields for the non-
rotating droplet in Fig. 5 are similar to those for the 
oscillating-rotating droplet shown in Fig. 4, though 
the vortex size is slightly smaller for the oscillating-
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rotating droplet. Vortices are seen clearly in the 
vertical velocity fields as shown in Fig. 2, and not in 
the horizontal velocity fields in Fig. 3. It is found in 
Figs. 4 and 5 that the vortex field is not much 
affected by the rotation. 

 
Fig.8   Effect of rotation rate on frequency shift. 

 
Fig.9  Condition for frequency shift of zero:  

effect of viscosity. 
 

 
Fig.10  Condition for frequency shift of zero:  

effect of surface tension. 

 
 
3.3 Oscillation frequency 
Time evolutions of the droplet radius, R, are shown 
in Figs. 6 and 7 for the case with the Reynolds 
number of 200 and the Weber number of 20. The 
droplet radius is defined as the distance between the 
top and the centre of the droplet: initially R0+ΔR in 
Fig. 1. The effect of amplitude is shown in Fig. 6, 
where five cases with different amplitude are shown. 
The rotation rate is 0.2. It is seen in Fig. 6 that the 
oscillation curves shift toward the positive direction 
of the time axis as the amplitude increases. It 
indicates the oscillation period becomes large as the 
amplitude increases. In other words, the oscillation 
frequency decreases as the amplitude increases. The 
effect of rotation is shown in Fig. 7, where five 
cases with different rotation rate are shown. The 
initial amplitude is 0.11. It is seen in Fig. 7 that the 
oscillation curves shift toward the negative direction 
of the time axis as the rotation rate increases. It 
means, in contrast to the effect of amplitude shown 
in Fig. 6, the oscillation period becomes small as the 
rotation rate increases. In other words, the 
oscillation frequency increases as the rotation rate 
increases. The decrease in frequency due to the 
increase in amplitude has been observed in the 
experiment for non-rotating droplets [5], and the 

increase in frequency due to the increase in rotation 
has also been observed [17]. 

The variation of oscillation frequency due to the 
change in amplitude and rotation rate is shown in 
Fig. 8 for the case with the Reynolds number of 200 
and the Weber number of 20. The frequency shift 
indicates the frequency difference, ΔF, normalized 
by the oscillation frequency for the non-rotating 
droplet with the amplitude of 0.02, F0. In the linear 
theory, the oscillation frequency, ω, for the lowest 
mode of oscillation is a constant obtained in terms 
of the surface tension, the density, and the droplet 
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radius [4]:  
 

3
2 8

Rρ
σω =  .                                                        (11) 

 
The oscillation frequency is, however, shown to be 
affected largely by amplitude and rotation. This is 
important for experiments, since large oscillations 
are desirable for measurements and slight rotations 
are sometimes necessary for stability of oscillating 
droplets. It is shown clearly in Fig. 8 that the 
oscillation frequency decreases as the amplitude 
increases, while it increases as the rotation rate 
increases. Each curve with the different rotation rate 
is shown to cross the horizontal line with ΔF/F0=0. 
It is thus found that the oscillations without 
frequency shift are possible even for the cases with 
large amplitude by an appropriate combination 
between the amplitude and the rotation rate [18]. 

 
Fig.11  Vertical pressure distribution. 

 

 
Fig.12   Horizontal pressure distribution. 

The relation between the amplitude and the 
rotation rate for the frequency shift of zero is shown 
in Figs. 9 and 10. Effects of viscosity and surface 
tension are shown by changing the Reynolds 
number and the Weber number, respectively. It is 
found that the conditions for the frequency shift of 
zero are represented by the linear relation between 
the amplitude and the rotation rate through the 
origin even though the fluid properties are different. 
The gradients of linear relation are, however, 
slightly affected by the viscosity and the surface 
tension. 
 
 
3.4 Pressure fields 
The oscillation of the droplet shape is induced by 
the force balance in the droplet, which is the 
pressure distribution corresponding to the difference 
of surface tension force due to the difference of 
surface curvature. The pressure difference in the 
droplet is thus closely related to the frequency shift.  

The pressure distributions along the vertical and 
horizontal axes are shown in Figs. 11 and 12, 
respectively. The rotation rate is 0.2 and the initial 
amplitude is 0.29. The Reynolds number is 200 and 
the Weber number is 20. The average pressure in the 
droplet is about 0.1 in this case, since the pressure 
due to the surface tension is given by 2/We in the 
non-dimensional form. The inside pressure is 
oscillating around the average pressure. The outside 
pressure is set equal to zero in our simulations. The 
pressure distribution is rather flat and the droplet 
radius is almost 1.0 at T=2.31 in Figs. 11 and 12. At 
T=4.61, however, it is seen in Fig. 11 that the polar 
pressure is low and the vertical radius is small. The 

equatorial pressure becomes high simultaneously 
and the horizontal radius is large as shown in Fig. 
12. The droplet shape is oblate at this time and the 
surface curvature is large at the equator. The 
pressure distribution becomes rather flat again and 
the droplet shape becomes nearly a sphere at T=6.92. 
The droplet shape is prolate at T=9.23, and the polar 
pressure is high, while the equatorial pressure is low. 
The centre pressure is always in between the polar 
and equatorial pressures. It is seen in Figs. 11 and 
12 that the pressure distribution in the droplet 
oscillates corresponding to the droplet shape. 
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3.5 Pressure difference 
The variation of pressure difference in the droplet is 
shown in Figs. 13 and 14 corresponding to the 
variation of droplet radius shown in Figs. 6 and 7. 
The pressure difference, ΔP, is defined as the 
pressure difference between the vertical top (pole) 

and the horizontal side (equator) of the droplet as 
shown in Fig. 1. The pressure difference is positive 
when the droplet shape is prolate, while it is 
negative when the droplet shape is oblate. The time 
history of the pressure difference in Figs. 13 and 14 
are, thus, similar to the evolution of the droplet 
radius shown in Figs. 6 and 7.  

The variation of average pressure difference due 
to the change in amplitude and rotation rate is 
shown in Fig. 15 for the case with the Reynolds 
number of 200 and the Weber number of 20. It is 
found that the pressure difference has the opposite 
tendency to the frequency shift shown in Fig. 8. The 
pressure difference increases as the amplitude 
increases, and decreases as the rotation rate 
increases. The pressure at the top of the droplet 
becomes higher than that at the side as the 
amplitude increases, since the curvature and the 
surface tension force become larger at the top. The 
pressure difference thus increases as the amplitude 
increases. On the other hand, the pressure at the side 
of the droplet becomes higher than that at the top as 
the rotation rate increases, since the centrifugal 
force increases. The pressure difference thus 
decreases as the rotation rate increases. These 
effects are combined in the oscillating-rotating 
liquid droplets. It is found in Fig. 15 that each curve 
with the different rotation rate crosses the horizontal 
line with ΔP=0. The average flow fields without 
pressure difference are thus possible by imposing an 
appropriate rotation on oscillating droplets [16]. 

 
Fig.13  Effect of amplitude on time history of

 pressure difference: ω=0.2.  
 

Fig.14  Effect of  rotation rate on time history  
of pressure difference: ΔR/R0=0.11. 

The relation between the amplitude and the 

 
Fig.15     Effect of rotation rate on pressure 

                       difference. 
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rotation rate for the pressure difference of zero is 
shown in Figs. 16 and 17. The effects of viscosity 
and surface tension are indicated in terms of the 
Reynolds number and the Weber number, 
respectively. The condition for the pressure 
difference of zero is seen to be similar to that for the 
frequency shift of zero: the conditions for the 
pressure difference of zero are represented by the 
linear relation between the amplitude and the 
rotation rate through the origin even for different 
fluid properties.  The gradient is, however, slightly 
affected by the fluid properties. It is confirmed in 

Figs. 16 and 17 that the pressure difference in the 
droplet corresponds to the frequency shift. 
 
 
3.6 Parallel calculations 
The incompressible Navier-Stokes equations are 
solved to obtain the flow fields in the above level set 
method. The pressure Poisson equations are 
calculated iteratively at each time step using the Bi-
CGSTAB method. The parallel computations are 
applied to solve the Poisson equations, since this 
part is the most time consuming part in our 
simulations. The domain decomposition technique is 
applied and the message passing interface (MPI) 
libraries are used for parallelization. 

 
Fig.16  Condition for pressure difference of zero: 

effect of viscosity. 
 

 
Fig.17  Condition for pressure difference of zero: 

effect of surface tension. 

The speed up of parallel numerical simulation is 
shown in Fig. 18. The total calculation time is 
indicated by ‘Elapse Time’, while the time for 
matrix calculations to solve the pressure Poison 
equations using the parallel Bi-CGSTAB method by 
‘Matrix Calculation Time’. Two parallel computer 
systems are compared in Fig. 18: Altix3700 and 
Altix350. Both the systems are made by SGI, and 
Intel Itanium2 processors are used with a clock rate 
of 1.6 GHz. It is shown for Altix3700 that the speed 
up of total calculation time is about 32 with 48 
processors, and the speedup of matrix calculation 
time is about 48 with 48 processors. The parallel 
efficiency for the Bi-CGSTAB method is found to 
be satisfactory in our simulations. Altix350 shows 
the same tendency, but the speed up is slightly lower. 
This is due to the difference in communication rate. 
Altix3700 has 128 processors on a node, while 
Altix350 has 2. The inter node data communication 
is necessary for Altix350, and this affects the speed 
up as shown in Fig. 18. The effect of the inter node 
communication is small when the number of 
processors is smaller than 8. 

The speed up for small scale parallel 
calculations is shown in Fig. 19. The results with a 
PC cluster, which is composed of AMD Athlon 3.4 
GHz connected with 1 Gbps network, are shown 
along with the Altix350 results. It is shown in Fig. 
19 that the speed up is largely affected by the 
communication rate. The inter node communication 
rate of Altix350 is 8 Gbps, and thus 8 times faster 
than the ordinary network for the PC cluster. It is 
also seen in Fig. 19 that the speed up decreases for 
the PC cluster when more than 5 processors are used. 
The total calculation time and the matrix calculation 
time using a single processor are 640.04 s and 
573.85 s, respectively for Altix350, while 417.87 s 
and 363.39 s for the PC cluster. The calculation 
speed using a single processor is, thus, faster for the 
PC cluster. The iterative calculations are the most 

WSEAS TRANSACTIONS on FLUID MECHANICS Tadashi Watanabe

ISSN: 1790-5087 172 Issue 2, Volume 3, April 2008



 
Fig.18  Speed up of parallel computations:  

comparison of parallel computer systems.
 

 
Fig.19  Speed up of parallel computations: 

comparison between parallel computer 
 and PC cluster. 

time consuming part, and the Bi-CGSTAB method 
is parallelized in our simulations. The data 
communication is, however, necessary for each 
iteration step. It is shown in Figs. 18 and 19 that the 
data communication rate is important and critical for 

the parallel calculation of the pressure Poisson 
equations. 
 
 
4 Conclusion 
Three-dimensional shape oscillations of a rotating 
liquid droplet have been simulated numerically 
using the level set method, and the combined effects 
of amplitude and rotation on the oscillation 
frequency was studied. It was shown that the 
oscillation frequency decreased as the oscillation 
amplitude increased, while it increased as the 
rotation rate increased. The pressure difference 
between the top and the side of the droplet 
corresponded to the frequency shift. The oscillations 
without frequency shift and pressure difference were 
possible by an appropriate combination between the 
amplitude and the rotation rate. It was found that the 
relation between the amplitude and the rotation rate 
was linear both for the frequency shift of zero and 
for the pressure difference of zero even though the 
fluid properties were different. The flow fields in 
and around the droplet have been visualized, and it 
was shown that the vortices, which were formed by 
the shape oscillation, were not much affected by the 
rotation. The calculation of pressure Poisson 
equation using the Bi-CGSTAB method has been 
parallelized. The parallel efficiency was satisfactory, 
and the importance of the communication rate was 
demonstrated. Our approach using the parallel level 
set method would be an accurate and efficient 
simulation method for simulations of complicated 
fluid phenomena involving two-phase interfaces 
[19] or free surfaces [20,21].  
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