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Abstract: - Elastic structures subjected to a flowing fluid undergo a considerable change in their dynamic 
behaviour and can lose their stability. In this article we describe the development of a fluid-solid finite element 
to model plates subjected to flowing fluid under various boundary conditions. The mathematical model for the 
structure is developed using a combination of a hybrid finite element method and Sanders’ shell theory. The 
membrane displacement field is approximated by bilinear polynomials and the transversal displacement by an 
exponential function. Fluid pressure is expressed by inertial, Coriolis and centrifugal fluid forces, written 
respectively as function of acceleration, velocity and transversal displacement. Bernoulli’s equation for the 
fluid-solid interface and a partial differential equation of potential flow are applied to calculate the fluid 
pressure. The impermeability condition ensures contact between the system of plates and the fluid. Mass and 
rigidity matrices for each element are calculated by exact integration. Calculated results are in reasonable 
agreement with other analytical theories. 
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1 Introduction 
Systems of plates subjected to fluid flow are often 
found in contemporary industries such as nuclear 
reactors and aerospace. Generally these industries 
require high rates of fluid flow and low plate 
thicknesses. Under these conditions, if the length of 
the plates is excessive the structure becomes very 
susceptible to failure.  
 Earlier works in this field were carried out on 
engineering test reactor (ETR) systems consisting of 
many thin plates stacked in parallel with narrow 
channels between the plates to let coolant flow 
through. Miller [13] was the first to present a 
theoretical analysis predicting the critical flow 
velocity for divergence. His analysis applies a 
method of ‘neutral equilibrium’ whereby pressure 
and plate restoring forces are balanced, leading to a 
derivation of critical velocity of flow for various 
types of support. It is important to underline that the 
motion of a plate excited by fluid flow displaces the 
nearby fluid, and then the fluid reactive motion may 
further deform the plate. Excessive fluid reactive 
motion at a certain flow velocity over the surface of 
the plate is referred to as the divergent velocity, 
which may also be considered a critical flow 
velocity [8]. Rosenberg and Youngdahl [14] have 
formulated a dynamic model describing the motion 

of a fuel plate in a parallel plate assembly. They 
found that good agreement exists between the 
results of the dynamic model and that of the neutral 
equilibrium used by Miller [13]. Three parallel plate 
assemblies were tested by Groninger and Kane [2] 
to investigate the flow-induced deflections of the 
individual plates. The model showed that adjacent 
plates always move in opposite directions at high 
flow rates, causing alternate opening and closing of 
the channel. They detected a violent dynamic 
instability at 1.9 times Miller’s collapse velocity. 
 The assumptions of Miller [13], and Rosenberg 
and Youngdahl [14] were the same. They linearized 
the pressure drop expression using only a first-order 
approximation. Wambsganss [19] retained the 
second-order terms in an attempt to assess their 
influence on stability. The second-order terms 
generate an additional stability criterion in the form 
of an upper bound on the amplitude of quasi-static 
deflections for stable oscillations. He derived a new 
expression for critical velocity. Smissaert [17 and 
18] performed analytical and experimental 
investigations on an MTR-type flat-plate fuel 
element. The experimental results [17] show that for 
low velocities the plates will deform as a result of 
static pressure differences in the channels between 
these plates. At high fluid velocities a high-
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amplitude flutter vibration is observed. This flutter 
does not appear below a minimum average water 
velocity referred to as the flutter velocity, which is 
approximately equal to two times the Miller velocity 
of the assembly. In the analytical study, Smissaert 
[18] indicated that a plate assembly is characterized 
by two velocities; Miller’s velocity and flutter 
velocity. One explanation of the dynamic instability 
is that the exciting frequency of the fully-developed 
turbulent flow approaches the in-fluid natural 
frequency of the plate. Theoretically, under this 
condition the amplitude of the plate vibration 
becomes large. Weaver and Unny [20] studied the 
dynamic behaviour of a single flat plate, one side of 
which is exposed to high flow velocity of a heavy 
fluid such as water. They examined the variation of 
natural frequencies according to the rate of flow. 
They concluded that for a given mass rapport, the 
neutral zone of stability is followed by a zone of 
static instability. After this stage the plate quickly 
returns to neutral stability, which continues until the 
occurrence of dynamic instability. Kornecki et al. 
[9] considered a flat panel of infinite width and 
finite length embedded in an infinite rigid plane 
with uniform incompressible potential flow over its 
upper surface. The studied plates were constrained 
(clamped or simply supported) along their leading 
and trailing edges. The case of a panel clamped at its 
leading edge and free at its trailing edge was 
investigated both theoretically and experimentally. 
The obtained results demonstrate that a panel fixed 
at its leading and trailing edges loses its stability by 
divergence (static instability), while the cantilevered 
panel loses its stability by flutter. Other 
investigators have studied the fluid flow effect on 
dynamic behaviour of rectangular plates; i.e. Ishii 
[6], Dowell [1] and Holmes [5]. More recently, Kim 
and Davis [8] developed an analytical model of a 
system of thin rectangular flat plates. Their model 
was used to investigate static and dynamic 
instabilities of the system. Guo and Paidoussis [3]  
studied theoretically the stability of rectangular 
plates with free side-edges in inviscid channel flow. 
They treated the plate as one dimensional and the 
channel flow as two-dimensional. The Galerkin 
method was employed to solve the plate equation, 
while the Fourier transform technique was 
employed to obtain the perturbation pressure from 
the potential flow equations. They investigated 
every possible combination of classical supports at 
the leading and trailing edges of the plates. They 
concluded that divergence and coupled mode flutter 
may occur for plates with any type of end supports, 

while single mode flutter only arises for non-
symmetrically supported plates. Guo and Paidoussis 
[4] have also conducted a theoretical study of the 
hydro-elastic instabilities of rectangular parallel-
plate assemblies. They considered the plates as two-
dimensional, with a finite length, and the flow field 
was assumed to be inviscid and three-dimensional. 
Two types of instability were found; single-mode 
flutter and coupled-mode flutter. They also 
concluded that the frequency at a given flow 
velocity decreases as the aspect ratio increases and 
the channel height to plate-width ratio decreases.  

The purpose of this paper is to develop a solid-
fluid finite element to study the dynamic response of 
a rectangular plate subjected to potential flow. This 
new finite element permits us to obtain the low as 
well as the high frequencies of fluid-structure 
systems with precision for any combination of 
boundary conditions without changing the 
displacement field. This finite element is applied to 
simulate a number of plates and set of parallel plates 
subjected to flowing fluid. The mathematical model 
for the structure is developed using a combination of 
the finite element method and Sanders’ shell theory. 
The velocity potential and Bernoulli’s equation are 
adopted to express the fluid pressure acting on the 
structure. 
 
 
2 Solid finite element 
The geometry of the mean surface of the rectangular 
plate and the co-ordinate systems used for this 
analysis are shown in Fig. 1.b. A typical four-node 
element and nodal degrees of freedom are shown in 
Fig. 1.a. Each node has six degrees of freedom 
consisting of in-plane and out-of-plane displacement 
components and their spatial derivatives. 
 
 
2.1 Equilibrium equations and displacement 
functions 
To develop the equilibrium equations for 
rectangular plates, the Sanders’ equations for 
cylindrical shells are used assuming the radius to be 
infinite, θ=y and rdθ =dy. Both membrane and 
bending effects are taken into account in this theory. 
It is worthy to note that Sanders’ shell theory is 
based on Love’s first approximation theory but 
leads to zero strains for the case of rigid body 
motion. The developed displacement functions 
therefore satisfy the convergence criteria for the 
proposed finite element. 
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The equilibrium equations of a rectangular plate 
according to Sanders’ theory can be written as a 
function of displacement components with respect 
to the reference surface: 
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Fig. 1: (a) Geometry and displacement field of a 

typical element, (b) Finite element discretization of 
a rectangular plate 

 
Note that both circumferential and longitudinal 

hybrid elements used in the dynamic analysis of 
vertical Lakis and Paidoussis [22] and horizontal 
Lakis and Selmane [23] open cylindrical shells were 
developed  based on exact solution of the 
equilibrium equations. This approach resulted in a 
very precise element which leads to fast 
convergence and less numerical difficulties from the 
computational point of view. This encouraged us to 
develop a new finite element using the same 
approach for dynamic analysis of rectangular plates. 

Generally, exact solution of the equilibrium 
equations for the case of rectangular plates is 
difficult. To overcome this we present the in-plane 
membrane displacement components in terms of 
bilinear polynomials and the out-of-plane bending 
displacement component by an exponential 
function. Hence, the displacement field may be 
defined as follows: 
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where U and V represent the in-plane displacement 
components of the middle surface in X and Y 
directions, respectively, W is the transversal 
displacement of the middle surface, A and B are the 
plate dimensions in X and Y directions, “ω” is the 
natural frequency of the plate (rad/sec), “i” is a 
complex number and Cj are unknown constants. 
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Equation (1.c) can be developed in Taylor’s 
series as follows: 
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We can write the displacements U, V and W in 
matrix form: 

[ ]{ }CR
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⎪
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where [R] is a matrix of order (3x24) in which the 
components are the x and y terms of Equations (2.a, 
2.b and 3) without the unknown constants (see 
Appendix) and { }C  is the vector for the unknown 
constants.  

The components of this last vector can be 
determined using twenty-four degrees of freedom 
for a plate element as shown in Fig. 1. The 
displacement vector of each element is given as: 

{ } { } { } { } { }{ }TT
l

T
k

T
j

T
i ,,, δδδδδ =     (5) 

 Each node, i.e. “node i”, possesses a nodal 
displacement vector composed of the following 
terms: 
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where Ui and Vi are nodal in-plane displacement 
components and Wi represent the nodal 
displacement components normal to the middle 
surface as shown in Fig. 1.a.  

By introducing Equations (2.a, 2.b and 3) into 
relation (5), the elementary displacement vector can 
be defined as: 

{ } [ ]{ }CA=δ              (7) 
 The vector {  in Equation (7) will be then 
replaced by the generalized displacement vector of a 
quadrilateral finite element. The displacement field 
may be described by the following relation: 
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where matrix [N] of order (3×24) is the displacement 
shape function of the finite element and the terms of 
matrix [A]-1 are given in the Appendix. 
 
 
2.2 Kinematics Relations  
Strain-displacement relations for the rectangular 
plates are given as Sanders [15]: 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∂∂∂−
∂∂−
∂∂−

∂∂+∂∂
∂∂
∂∂

=

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

)(2

2

2

22

22

yxW
yW
xW

yUxV
yV
xU

xy

x

x

xy

y

x

κ
κ
κ
ε
ε
ε

          (9) 

 Substituting the displacement components 
defined in Equation (8) into the strain-displacement 
relationship (9), one obtains an expression for the 
strain vector as a function of nodal displacements. 

{ } [ ][ ] { } [ ]{ }δδε BAQ 1 == −        (10) 
where matrix [Q] of order (6 ×24) is given in the 
Appendix. 

 
 
2.3 Constitutive Equations 
The stress-strain relationship of an isotropic 
rectangular plate is defined as follows: 

{ } [ ]{ }εσ P=           (11) 
where [P] is the elasticity matrix for an isotropic 
plate and no bending-membrane coupling is present 
(see Appendix). Substituting Equation (10) into 

Equation (11) results in the following expression for 
the stress tensor: 
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 The mass and stiffness matrices for one finite 
element can be expressed as: 
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where S is the element surface area, h is the plate 
thickness, ρs is the material density and [P], [N] and 
[B] are defined in Equations (11, 8 and 10), 
substituting them into Equations (13.a and 13.b) we 
obtain: 
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where xe and ye are dimensions of an element 
according to the X and Y coordinates, respectively. 
These integrals are calculated analytically using 
Maple mathematical software. 
 
 
3 Fluid-solid interaction  
The fluid pressure acting upon the structure is 
generally expressed as a function of out-of-plane 
displacement and its derivatives i.e. velocity and 
acceleration. These three terms are respectively 
known as the centrifugal, Coriolis and inertial forces 
[16]. The fluid matrices will be combined with solid 
matrices as follows: 
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where [ ]sM , [ ]sC  and [ ]sK  are the global matrices 
of mass, damping and rigidity of the elastic plate, 
[ ]fM , [ ]fC  and [ ]fK  represent the inertial, Coriolis 

and centrifugal forces of potential flow and { }Tδ  is 
the global displacement vector. The elementary 
matrices of solid are calculated in Equation (14). 
 
 
3.1 Fluid-solid finite element 
The fluid-solid model is developed based on the 
following hypotheses: (i) the fluid flow is potential; 
(ii) vibration is linear (small deformations); (iii) the 
fluid mean velocity distribution (Ux) is constant 
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across a plate section and (iv) the fluid is 
incompressible. 

Taking these assumptions into consideration, 
the velocity potential must satisfy the Laplace 
equation. This relation is expressed in the Cartesian 
system by: 
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where φ  is the potential function. The Bernoulli 
equation is given by:  
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where P is the fluid pressure,  is the fluid 
velocity and 
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The components of fluid velocity along X, Y, Z 
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where Ux is the mean velocity of fluid in the x-
direction. Fig. 2 depicts a fluid-solid finite element 
subjected to flowing fluid on its upper surface. 

Introducing Equation (18) into (17) and 
neglecting the non-linear terms we can write the 
dynamic pressure at the solid-fluid interface as 
follows (see Fig. 2): 
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Fig. 2:  Fluid-solid finite element 

 
The impermeability condition ensures contact 

between the shell and the fluid. This should be:  
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The following separate variable relation is 
assumed for the potential velocity function: 

( ) ( ) ( )t,y,xSzFt,z,y,x =φ         (21) 
where F(z) and S(x. y, t) are two separate functions 
to be defined.  

The following expression may be defined by 
introducing Equation (21) into (20) 
 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=
x

WU
t

W
dz)0(dF

1)t,y,x(S x     (22) 

For x and y in the finite element domain (see 
Fig. 2) the potential and pressure at the interface are 
coupled by the transverse movement of the plate 
W(x,y,t) and its derivatives. Equation (22) describes 
the function S(x,y,t) in terms of this transverse 
movement of the plate which itself varies as a 
function of plate geometry and time. Therefore, the 
movement of the fluid at any point on the interface 
(including the boundaries x and y) is intimately 
linked to the movement of the edges of the structure. 
Then, substituting Equation (22) into (21), results in 
the following expression for the potential function: 
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The only unknown function in Equation (22) is 
F(z). By introducing Equation (23) into Equation 
(16), we obtain the following differential equation 
of second order: 
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where A1 and A2 are unknown constants. By 
substituting Equation (25) into Equation (23) the 
potential function becomes:  
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A1 and A2 are two constants to be determined 
using the fluid boundary conditions. We note that at 
the solid-fluid interface (Z=0) we have the 
impermeability condition (20) which is common for 
all cases. At the second limit of fluid (Z=h1), we 
have a boundary condition corresponding to either a 
rigid wall, an elastic plate or an infinite fluid level.  

For each case we have a distinct solution. Below 
we will calculate the pressure of fluid acting on only 
one side (Z=h1) of the plate. If the fluid pressure acts 
on two sides, the total dynamic pressure will be a 
combination of the pressures corresponding to the 
fluid boundary conditions at both top and bottom 
(Z=h2) surfaces of the plate. 

The presented approach may be adapted to 
model curved structures subjected to flowing fluid 
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such as turbine blades. To accomplish this the local 
matrices must be transformed to the global system 
before assembling into the global matrices [21]. 
  
 
3.1.1 Fluid-solid finite element subject to flowing 
fluid with infinite level of fluid 
When the flowing fluid height on and/or under the 
plate (h1 and/or h2) is infinite (see Fig. 3), we 
assume that very far from the plate the potential is 
null. This boundary condition is written as follows: 

±∞→
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0φ

      (27) 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Fluid-solid finite element subjected to 

flowing fluid with infinite height 
 
In order to avoid an infinite potential, the 

constant A1 of Equation (26) must be null. Equation 
(20) permits us to calculate the second constant A2. 
The potential expression becomes:  
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The introduction of Equation (28) into relation 
(19), results in the following expression for the 
pressure function 
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3.1.2 Fluid-solid finite element subject to flowing 
fluid bounded by rigid wall 
As shown in Fig. 4, fluid flows between a rigid wall 
and an elastic plate. This provides another boundary 
condition at Z=h1 when the impermeability 
condition is taken into account. This boundary 

condition is adopted by Lamb [11], McLachlan [12] 
and is expressed by:  
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Fig. 4: Fluid solid finite element in contact with 
flowing fluid bounded by a rigid wall 

 
Using Equations (20) and (31) we can calculate 

the constants A1 and A2 corresponding to this last 
boundary condition. Substituting these constants 
into (26) we obtain:  
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Replacing Equation (32) into (19), the 
corresponding dynamic pressure becomes:  
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3.1.3 Fluid-solid finite element subject to flowing 
fluid bounded by elastic plate 
When fluid flows through two parallel elastic plates 
(see Fig. 5) two transverse vibration modes, in-
phase and out-of-phase, should be considered. The 
impermeability condition at the solid-fluid interface 
remains the same for both modes while the 
boundary condition at Z=h1 changes according to the 
mode of vibration (in-phase or out-of-phase). 
 
 
3.1.3.1 In-phase mode 
In the case of the in-phase mode the boundary 
condition at fluid limits Z=h1 is expressed as follows 
[10]: 
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⎟
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=
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t
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z x
hz 1

φ       (35) 

 
 
 
 
 
 
 
 
 
 

Fig. 5: Fluid-solid finite element in contact with 
flowing fluid bounded by an elastic plate 

 
Similarly, A1 and A2 can be calculated by 

introducing Equation (26) into relations (20) and 
(35). The substitution of these constants in Equation 
(26) enables us to develop the following expression 
for the potential: 
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By replacing Equation (36) into (19) we obtain 
the following expression for pressure:  
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or: 
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3.1.3.2 Out-of-phase mode 
The boundary condition for the out-of-phase mode 
is expressed as follows [10]:  

0
z

2
hz 1

=
∂
∂

=

φ        (39) 

Here again, A1 and A2 can be calculated using 
Equations (26, 39 and 20). The potential function 
may be written as follows:  
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Using Equations (40) and (19) we obtain the 
following dynamic pressure:  
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or: 
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3.2 Calculation of Fluid-Induced Force 
The elementary vector of fluid-induced force is 
expressed by:  

{ } [ ] { }∫=
A

v
Te dSPNF          (43) 

where [ ]N  is the shape function matrix of the finite 
element defined in Equation (8), {  is a tensor 
expressing the pressure applied by the fluid on the 
plate and S is the elementary fluid-structure 
interface area. 

}vP

By placing the matrix [  of Equation (8) into 
Equation (43), the element load vector becomes:  

]N

{ } [ ][ ] [ ] { }∫ −=
A

v
TT1e dSPRAF   (44) 

The dynamic pressures of Equations (29, 33, 37 
and 41) may be rewritten as: 

⎥
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where Zfi (i=1, 4), depends on the boundary 
conditions (see Equations  30, 34, 38 and 42) and P 
is the only non-zero component in the pressure 
tensor{ }vP . Substituting Equation (2.c) into (45) the 
pressure expression becomes: 

⎥
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+
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iU
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22
2

2

2

2 ππ    (46) 

The transversal displacement can be separated 
from Equation (8) as follows: 

[ ][ ] { }δ1
f AR

W
0
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−=
⎪
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⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
  (47) 

where [Rf] is a (3x24) matrix given in the Appendix. 
Substituting Equation (47) into (46), we obtain the 
following expression for pressure:  
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++= − δπδπδ

2

22
21 2

A
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A
iUARZP xxffiv

&&& (48) 

By combining Equations (44) and (48) the 
element load vector is given by the following 
relation: 
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Note that the force induced by a flowing fluid is 
a function of acceleration, velocity and displacement 
of the solid finite element. From Equation (49) we 
can separate the added matrices induced by flowing 
fluid, respectively describing inertial, Coriolis and 
centrifugal effects as follows: 

[ ] [ ][ ] [ ] [ ][ ] dAARRAZm 1
f

T

A

T1
fi

e
f

−−∫=       (50.a) 
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A

iZU2c 1
f

T
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e
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π  (50.b) 
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e
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⎠
⎞

⎜
⎝
⎛=
π (50.c) 

Dynamic equilibrium requires a combination of 
the last three elementary matrices with 
corresponding matrices given in Equation (14). 
 
 
4 Eigenvalue problem  
A rectangular plate is subdivided into a series of 
quadrilateral finite elements such that each of them 
is a smaller rectangular plate (see Fig. 1.b). The 
positions of the nodal points of the elements are 
chosen in such a way that the local and global 
coordinates are parallel. An in-house computer code 
has been developed to establish the structural 
matrices of each element based on the equations 
developed using this theoretical approach. The 
global matrices mentioned in Equation (15) are 
obtained by superimposing the matrices for each 
individual element. After applying the boundary 
conditions these matrices are reduced to square 
matrices of order 6*N-NC, where N is the number 
of nodes in the structure and NC is the number of 
constraints applied. The eigenvalue problem is 
solved by means of the equation reduction 
technique. Equation (15) may be rewritten as 
follows:  
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where: 

[ ] [ ] [ ]fs MMM −= , [ ] [ ]fCC = , [ ] [ ] [ ]fs KKK −= , 

{ }Tδ  is the global displacement vector and 
structural damping is neglected. The eigenvalue 
problem is given by: 

[ ] [ ] 0IDD =− Λ           (52) 
where : 

[ ] [ ]
[ ] [ ] [ ] [ ]⎥⎦

⎤
⎢
⎣

⎡
= −− CKMK

I
DD 11

0
, and 2i/1 ωΛ = [ ]I  is 

the identity matrix. 
 
 
5 Results and discussions 
The precision of the finite element method depends 
on the number of elements used to discretize the 
physical problem. The first set of calculations is 
therefore to determine the requisite number of 
elements for a precise determination of the natural 
frequencies.  

The variation of the first five frequencies versus 
the number of finite elements of rectangular plate 
simply supported on its four sides is plotted in Fig. 6 
and shows the minimum required number of 
elements to assure fast convergence in determining 
both low and high frequencies. The values of the 
material and geometrical properties used in the 
calculations are: Young’s modulus E=196GPa, 
material density ρ=7860 kg/m3

, Poissson’s ratio 
ν=0.3, thickness h=2.54 mm, A=609.6 mm and 
B=304.8mm.  

Eight elements are sufficient to calculate the 
two first modes, whereas for other modes 
convergence requires at least twenty five elements. 
This number of elements required by the present 
method is much lower than that of other existing 
approaches. In all of the following examples 64 
elements are used, which assures that the results will 
be independent of mesh size. 

In order to show that the developed model 
provides accurate results, calculations were 
performed on the same plate used in the 
convergence test. The first six natural frequencies 
are listed in Table 1 along with analytical results 
and ANSYS output data. It can be seen that the 
present method gives fairly good results compared 
to the exact solution and the commercial finite 
element code 

An extensive study has been conducted to test 
the solid finite element in vacuum in reference [7]. 
Free vibrations of rectangular plates were obtained 
for a variety of boundary conditions and plate 
dimension ratios (A/B). The computed natural 
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frequencies were compared to those obtained by 
other theories [24] and from experiments. The 
results were in very good agreement.  
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Fig. 6: The five first natural frequencies of a four-
sided simply supported plate as a function of 

number of elements 
 
Table 1 Natural frequency (Hz) of a plate simply 
supported at its four sides  
Mode Present 

model 
ANSYS 

(shell 63) 
Analytical 

solution Leissa 
1 82.93 80.99 83.5 
2 133.44 129.33 133.61 
3 213.72 209.86 217.12 
4 275.27 275.02 283.9 
5 315.52 322.51 334 

 
In the following examples, we present some 

calculations to test the solid-fluid model in the case 
of plates subjected to flowing fluid. To put the 
results in the non-dimensional form, the following 
parameters are defined: 

h
B

s

f

ρ
ρ

ψ =         (53) 

ω
ρ

ω
K

h
B s2=           (54) 

x
s U

K
h

BU
ρ

=           (55) 

where ψ  is the mass ratio, ω is the dimensionless 
frequency, and U is the dimensionless velocity. 
The first example is a thin plate clamped on two 
opposite edges (see Fig. 7) subjected to flowing 
fluid on its upper and lower surfaces. The fluid level 
(h1 and/or h2) is assumed to be infinite. The 
corresponding dynamic pressure would be twice the 

pressure calculated in Equation (29). The geometric 
ratios and dimensionless parameters for the structure 
are: 

1B/A,/Ah,/Ah,93.0 21 =∞→∞→=ψ  
Numerical results were used to plot the curves 

shown in Fig. 8. We note that the plate becomes 
increasingly vulnerable to static instability as the 
rate of flow increases. Beyond the critical velocity 
we expect the occurrence of a large deflection of the 
plate [8].  
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Fig. 7:  Plate clamped on two opposite edges 
subjected to flowing fluid 

( ∞→∞→ AhandAh 21 ) 
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Fig. 8: Variation of frequency ϖ  versus fluid 

velocity U for plate clamped on two opposite edges 
subjected to flowing fluid. 

 
In order to investigate the effect of boundary 

conditions on the critical velocity value, the same 
plate considered in the first example is studied 
again, but this time with the two opposite edges 
simply supported (see Fig. 9) instead of the two 
clamped edges. The variation of dimensionless 
frequencies for the first three modes versus 
dimensionless velocity of the fluid is shown in Fig. 
10. It can be seen that the critical velocities for the 
first three modes are lower than those of the 
clamped plate. It can be concluded that clamped 
plates are more stable than simply supported plates 
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which is in good agreement with the observations of 
Kim and Davis [8]. 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Plate simply supported on two opposite 
edges subjected to flowing fluid 
( ∞→∞→ AhandAh 21 ) 
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Fig. 10: Variation of frequency ϖ  versus fluid 
velocity U for a plate simply supported on two 

opposite edges subjected to flowing fluid.  
 
 
 
 
 
 
 
 
 
Fig. 11:  Cantilevered plate subjected to flowing 

fluid ( ∞→∞→ AhandAh 21 ) 
We have calculated the critical velocities 

corresponding to the first three modes in the case of 
a cantilevered plate (see Fig. 11) which has the same 
material and geometrical parameters as those of the 
two previous examples. The case of a cantilevered 
plate subjected to flowing fluid is often encountered 
in practice. In Table 2 we have compared the critical 
velocities of a cantilevered plate with those of plates 
that are simply supported and clamped on two 
opposite edges (see Figs. 8 and 10). We conclude 

that the cantilevered plate is more vulnerable to 
static instability 
 
Table 2: Dimensionless critical velocity ( )U  of 
plates with various boundary conditions  

Plate X 

Z  h1 ∞→

 h2 ∞→

Ux

Ux

Dimensionless critical 
velocity xs UKhBU  ρ=

 
Boundary 
conditions  Mode 1 Mode 2 Mode 3 

Clamped on 
two opposite 
edges (Fig. 6)

 
9.58 

 
11.36 

 
18.83 

Simply 
supported on 
two opposite 
edges (Fig. 8)

 
4.22 

 
6.98 

 
15.83 

Cantilevered 
(Fig.10)  

1.494 3.73 9.25 

 
Parallel-plate assemblies are often used in 

power nuclear reactors. Many thin plates are stacked 
in parallel and between the plates are narrow 
channels to let coolant flow through (see Fig. 12). 
All the plates have the same size and they are 
uniformly distributed. When channel height is 
relatively low, kinetic energy travels through the 
fluid from one plate to another. Vibration of the 
plates modifies the distribution of pressure and 
velocity along the channel. Therefore the fluid in the 
channels interacts simultaneously with both upper 
and lower plates. As mentioned previously, the 
plates vibrate according to two modes; in-phase and 
out-of-phase. The dynamic pressure for each case is 
distinct. It has been proven that the dynamic 
behaviour of parallel-plate assemblies clamped at 
two lateral walls can be sufficiently predicted using 
only one plate which vibrates in opposite directions 
relatively to its adjacent plates [4]. The model of 
Groninger and Kan [2] showed that the adjacent 
plates always move in opposite directions at high 
flow rates, causing alternate opening and closing of 
the channel. This condition provides the lower 
critical velocity [4]. Miller [13] derived relations 
expressing the critical velocity of an engineering test 
reactor system. For the case of a flat plate clamped 
on two opposite edges (see Fig. 12.a), the developed 
formula is: 

Plate X 

Z  h1 ∞→

 h2 ∞→

Ux

Ux

42
f

3
1

Miller B)1(
hEh15

U
νρ −

=           (56) 

where E is Young modulus, fρ is the fluid density, 
h1 is the channel height, ν  Poisson’s coefficient, h 
is the plate thickness and B is the plate width. 
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Using our numerical model, we have calculated 
the out-of-phase vibrations of an internal plate for 
the parallel-plate assembly shown in Fig. 12.a.  
 
 
 
 
 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 12: Engineering test reactor (ETR) system 
subjected to flowing fluid (a) parallel plates clamped 

to the lateral walls (b) parallel plates simply 
supported at the lateral walls 

 
The corresponding dynamic pressure would be 

twice the pressure calculated in Equation (41). Fig. 
13 shows the variation of the dimensionless critical 
velocities of the first out-of-phase mode as a 
function of channel height to plate length ratio 
computed by the present method and by Miller’s 
analytical formula. By examining Fig. 13 it is clear 
that the critical velocity for a given plate can be 
increased by increasing the channel height. In the 
same figure we can see that at low fluid height good 
agreement is found between the numerical and 
analytical results, however for high fluid levels we 
observe a considerable discrepancy. This can be 
explained by the fact that Miller’s formula is 
derived specifically for parallel plate systems with 
very low ratios (h1/A). On the other hand, it is 
important to note that beyond a certain fluid height, 
increasing ‘h1’ or ‘h2’ doesn’t have any influence on 
the dynamic behaviour of a plate subjected to a 
flowing fluid. This will be confirmed in the 
following examples. 
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Fig. 13: Dimensionless critical velocity ( )U  of an 
internal plate in an ETR system clamped on two 

opposite sides (see Fig. 12.a) versus channel height 
to plate length ratio (h1/A), 1B/A,93.0 ==ψ . 
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Fig. 14:  Dimensionless critical velocity ( )U  of an 
internal plate in  an ETR system simply supported 

on two opposite sides (see Fig. 12.b) versus channel 
height to plate length ratio (h1/A), 

1B/A,93.0 ==ψ . 
 

Miller [13] has also derived a relation 
expressing the critical velocity of an engineering test 
reactor system when the parallel plates are simply 
supported on two opposite edges (see Fig. 12.b), the 
developed formula is: 

)1(B2
hEh5

U 24
f

1
3

Miller νρ −
=   (57) 

where E is Young modulus, fρ is the fluid density, 
h1 is the fluid level on the plate, ν  Poisson’s 
coefficient and B is the width of plate.  

Rigid wall  Simply supported plates 

Flowing fluid 

h1,

h2,

h2,

Flowing fluid 

h1,
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We have used the solid-fluid finite element 
developed in this work to calculate the critical 
velocity corresponding to the first mode when 
adjacent simply supported plates move in opposite 
directions (out-of-phase mode). The results are 
obtained for different channel heights. Fig. 14 
presents the dimensionless critical velocities 
computed for internal simply supported plates in an 
engineering test reactor. The agreement between our 
results and those calculated by Miller’s formula is 
very good, especially for low channel heights. 

The dynamic behaviour of structures may be 
influenced by changing the fluid level and/or fluid 
boundary conditions. Variation of the critical 
velocities as a function of fluid height and fluid 
boundary conditions are verified in the following 
examples. We will determine the limit values of 
fluid level (h1lim) beyond which the increase of fluid 
level doesn’t have any influence on the dynamic 
behaviour of structure. We initially considered the 
case of a plate clamped on two lateral sides placed 
in a channel of rigid walls (see Fig. 15). The plate is 
subjected to flowing fluid on both upper and lower 
surfaces. The corresponding pressure is twice the 
pressure calculated in Equation (33). We have 
gradually increased the fluid height and calculated 
for each (h1) value the corresponding critical 
velocity for the first two modes. Fig. 16 shows that 
initially the critical velocity is increased by 
increasing the ratio (h1/A). However, there is a limit 
value for this ratio beyond which an increase in the 
fluid level doesn’t change the critical velocity. For 
the case of a plate subjected to flowing fluid 
bounded by two rigid walls the limit value of this 
ratio is 0.5. 

 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 15: Plate subjected to flowing fluid bounded by 

two rigid walls 
 

We have also studied the effect of channel 
height on the critical velocity corresponding to the 

first two modes of an internal plate in a parallel-
plate assembly (see Fig.11.a.). The dynamic 
pressure applied on each side is given by Equation 
(41). As shown in Fig. 17, the critical velocity first 
increases as channel height increases. When the 
ratio h1/A reaches a value of 1, the dimensionless 
critical velocity remains constant even if we 
increase the channel height. 
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Fig. 16: Critical velocity of a single plate clamped 
on two opposite edges subjected to flowing fluid 
bounded by two rigid walls (see Fig. 15) versus 

fluid height to plate length ratio (h1/A), 
1BA,93.0 ==ψ  
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Fig. 17: Critical velocity of an internal plate in 

parallel-plate assembly clamped on two opposite 
edges subjected to flowing fluid bounded by two 
elastic plates which vibrate in out-of-phase mode 
versus channel height to plate length ratio (h1/A), 

1/,93.0 == BAψ . 

 
 
6 Conclusions   
A solid-fluid finite element is developed for 
dynamic analysis of plates subjected to the dynamic 
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pressure induced by potential flow. The structural 
mathematical model is developed based on a 
combination of the finite element method and 
Sanders’ shell theory. The in-plane and out-of-plane 
displacement components are modelled using 
bilinear polynomials and exponential functions, 
respectively. The general equations of the 
displacement functions are derived from the 
equilibrium equations of a rectangular plate. 

The mass, damping and stiffness matrices 
corresponding to a solid and fluid are determined by 
exact analytical integration for each element. The 
fluid pressure is derived from a potential; it is a 
function of acceleration, velocity and the transverse 
displacement of the plate, respectively known as 
inertial, Coriolis and centrifugal effects.  

Several plates with various boundary conditions 
were studied. The frequencies of vibration were 
calculated for each mean velocity of flow and for 
each fluid height, until the critical velocity was 
reached. Establishment of the critical velocity is 
very important for the design of plate systems 
subjected to fluid flow. We note that the boundary 
conditions and the fluid level on the plate strongly 
influence the dynamic behaviour of the plate. 

The developed element can be used for analysis 
of rectangular plates with any boundary conditions 
contrary to previous analytical methods which were 
developed for particular cases. 

The critical velocities calculated using our 
element agree well with those obtained using the 
analytical formulas derived by Miller, especially for 
the low fluid heights. 

The limit value of fluid height was calculated for 
a plate subjected to flowing fluid bounded by two 
rigid walls and for an internal plate in an 
engineering test reactor system. The fluid-solid 
finite element developed in this work can be adapted 
to study the dynamic behaviour of structures with 
more complex forms subjected to flowing fluid 
forces. 

Moreover, it is worthy to note that the present 
method can be used for rectangular plates, either 
uniform or non-uniform (thickness or other 
geometric discontinuities) subjected to any 
boundary conditions. 
 
 
References: 
[1] E.H. Dowell, Nonlinear oscillations of a 

fluttering plate II, AIAA journal Vol. 5, No. 10, 
1967, pp. 1856-62. 

[2] R.D. Groninger, J.J. Kane, Flow induced 
deflections of parallel flat plates, Nuclear 
Science and Engineering, Vol.16, 1963, pp. 
218–226.  

[3] C.Q. Guo, M.P. Paidoussis, Stability of 
rectangular plates with free side-edges in two-
dimensional inviscid channel flow, ASME, 
Journal of Applied Mechanics, Vol 67, No. 1, 
2000, pp. 171-176.  

[4] C.Q. Guo, M.P. Paidoussis, Analysis of 
hydroelastic instabilities of rectangular parallel-
plate assemblies, ASME, Pressure Vessels and 
Piping Division, Vol.389, 1999, 191-198. 

[5] P.J. Holmes, Bifurcations to divergence and 
flutter in flow-induced oscillations: a finite 
dimensional analysis, Journal of Sound and 
Vibration, Vol. 53, No. 4, 1977, pp 471-503. 

[6] T. Ishii, Aeroelastic instabilities of simply 
supported panels in subsonic flow. AIAA 
journal, Vol. 65, 1965, pp. 772. 

[7] Y. Kerboua, A.A. Lakis, M. Thomas L. 
Marcouiller, Hybrid method for vibration 
analysis of rectangular plates, Nuclear 
Engineering and Design, Vol.237 No.8 2007, 
pp. 791-801. 

[8] G. Kim, D.C. Davis, Hydrodynamic instabilities 
in flat-plate-type fuel assemblies, Nuclear 
Engineering and Design, Vol.158, No.1, 1995, 
pp. 1-17. 

 [9] A. Kornecki, E.H. Dowell, J. O'Brien, On the 
aeroelastic instability of two-dimensional panels 
in uniform incompressible flow, Journal of 
Sound and Vibration, Vol. 47, No. 2, 1976, pp. 
163-78. 

[10] K.H. Jeong, G.H. Yoo, S.C. Lee, Hydroelastic 
vibration of two identical rectangular plates,  
Journal of Sound and Vibration, Vol.272, No.3-
5, 2004. pp. 539-55. 

[11] H. Lamb, On the Vibrations of an Elastic Plate 
in Contact with Water, Proceedings of the Royal 
Society of London, Vol.98, No. 690, 1920, pp. 
205-216. 

 [12] N.W. McLachlan, Accession to inertia of 
flexible discs vibrating in a fluid, Proceedings 
of the Physical Society, Vol. 44, No. 1, 1932, 
pp. 546-555. 

[13] D.R. Miller, Critical flow velocities for 
collapse of reactor parallel-plate fuel 
assemblies, ASME, Journal of Engineering for 
Power Series A, Vol. 82, No.2, 1960, pp. 83-95. 

[14] G.S. Rosenberg, C.K. Youngdahl, A simplified 
dynamic model for the vibration frequencies and 
critical coolant flow velocities for reactor 

 

WSEAS TRANSACTIONS on FLUID MECHANICS Y. Kerboua and A.A Lakis

ISSN: 1790-5087 113 Issue 2, Volume 3, April 2008



parallel plate fuel assemblies, Nuclear Science 
and Engineering, Vol.13, No.2, 1962, pp. 91-
102. 

[15] J.L. Sanders, An improved first approximation 
theory for thin shell, 1959, NASA TR-24. 

 [16] A. Selmane A.A. Lakis, Vibration analysis of 
anisotropic open cylindrical shells subjected to a 
flowing fluid, Journal of Fluids and Structures, 
Vol.11, No.1, pp. 111-134. 

[17] G.E. Smissaert, Static and dynamic 
hydroelastic instabilities in MTR-type fuel 
elements, Nuclear Engineering and Design, Vol. 
7, No. 6, 1968, pp. 535-546. 

[18] G.E. Smissaert, Static and dynamic 
hydroelastic instabilities in MTR-type fuel 
elements - 2, Nuclear Engineering and Design, 
Vol. 9, No. 1, 1969, pp. 105-122. 

[19] M.W. Wambsganss, Second-order effects as 
related to critical coolant flow velocities and 
reactor parallel plate fuel assemblies, Nuclear 
Engineering and Design, Vol. 5, No.3, 1967, 
pp. 268-276. 

[20] D.S. Weaver, T.E. Unny, The hydroelastic 
stability of a flat plate, Transactions of the 
ASME. Series E, Journal of Applied Mechanics, 
Vol. 37, No. 3, 1970, pp. 823-27. 

[21] Y. Kerboua, A.A. Lakis, M. Thomas, L. 
Marcouiller, M H. Toorani, Dynamic Analysis 
of Coupled-fluid Structure Systems, WSEAS 
Trans. on Applied and Theoretical Mechanics, 
Vol. 1, No. 2, 2006, pp265-274. 

[22] A.A. Lakis, M.P. Paidoussis, Free vibration of 
cylindrical shells partially filled with liquid, 
Journal of Sound and Vibration, Vol. 19, No. 3, 
1971, pp. 1-15. 

[23] A. Selmane, A.A. Lakis, Vibration analysis of 
anisotropic open cylindrical shells subjected to a 
flowing fluid, Journal of Fluids Structures, Vol. 
11 1997, pp. 111–134. 

[24] A.W. Leissa, The free vibration of rectangular 
plates, Journal of Sound and vibration, Vol. 13, 
No. 3, 1973, pp. 257–293. 

 
 
Appendix 
 
 
A.1 Non-zero elements of matrix [R] (3x24) 
   1)1,1(R = Ax)2,1(R =   

By)3,1(R =   ABxy)4,1(R =  
1)5,2(R =   Ax)6,2(R =  

By)7,2(R =   ABxy)8,2(R =  

1)9,3(R =   Ax)10,3(R =  
By)11,3(R =   22 A2x)12,3(R =    

ABxy)13,3(R =  22 B2y)14,3(R =
 33 A6x)15,3(R =  AB2yx)16,3(R 2=  

AB2xy)17,3(R 2=  23 AB2y)18,3(R =  
BA6yx)19,3(R 33=  2222 BA4yx)20,3(R =  
33 AB6xy)21,3(R =  2323 BA12yx)22,3(R =  

3232 BA12yx)23,3(R = 3333 BA36yx)24,3(R =
  
 
A.2 Matrix [Rf] (3x24) 

)j,3(R)j,3(Rf =  for j=1 to24  
0)j,i(Rf = for i=1 to 2 and j=1 to 24 

 
 
A.3 Non-zero elements of Matrix [Q]  

A1)2,1(Q =         ABy)2,1(Q =   
B1)7,2(Q =    ABx)8,2(Q =  
B1)3,3(Q =    ABx)4,3(Q =  
A1)6,3(Q =    ABy)8,3(Q =  

2A1)12,4(Q −=  3Ax)15,4(Q =  
BAy)16,4(Q 2−=   BAxy)19,4(Q 3−=  

222 BA2y)20,4(Q −= 232 BA2xy)22,4(Q −=  
323 BA6y)23,4(Q −=  333 BA6xy)24,4(Q −=  

2B1)14,5(Q −=  2ABx)17,5(Q −=  
3By)18,5(Q −=   222 BA2x)20,5(Q −=   

3ABxy)21,5(Q −=   233 BA2x)22,5(Q −=  
322 BA6yx)23,5(Q −= 333 BA6yx)24,5(Q −=  

AB2)13,6(Q −=   BAx2)16,6(Q 2−=   
BAy2)17,6(Q 2−=  BAx)19,6(Q 32−=  

22BAxy2)20,6(Q −= 32 ABy)21,6(Q −=   
232 BAyx)22,6(Q −=  322 BAxy)23,6(Q −=  

3322 BA2yx)24,6(Q −=  
 
 
A.5 Elasticity matrix P 
The elasticity matrix [ ]P  is of order (6x6). In the 
case of isotropic material the non vanishing terms of 
the elasticity matrix are:  

2K)1(P,2D)1(KPPP
,DPP,KPP,DPP

66335445

211255442211

ννν
ν
−=−===

======
 

where )1(12EhK 23 ν−=  and )1(EhD 2ν−= , 
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A.6 Non-zero elements of matrix [A]-1  
 

e
111 xA)7,2(A)1,2(A,1)1,1(A −=== −−−

e
11 yB)19,3(A)1,3(A −=−= −−  

ee
1111 A)13,4(A))7,4(A)1,4(A −==−= −−−−

1)2,5(A 1 =−

yxAB)19,4( −=

, e
11 xA)8,6(A)2,6(A −=−= −−  

ee
1

e
1 )2,7(A −=− yxAB)20,7(A,yB −=−  

e
1

1111

xAB)20,8(A
)14,8(A)14,8(A)8,8(A)2,8(A

=−

===−=
−

−−−−

 

, ,  1)3,9(A 1 =− A)4,10(A 1 =− B)5,11(A 1 =−

2
e

211 xA6)9,12(A)3,12(A −=−= −−  

e
211 xA4)10,12(A2)4,12(A −== −−  

 B.A)6,13(A 1 =−

2
e

311 xA12)21,14(A)3,14(A −=−= −−   

e
111 yB2)23,14(A2)3,14(A)5,14(A === −−−  

3
e

311 xA12)9,15(A)3,15(A =−= −−  
2
e

311 xA6)10,15(A)4,15(A == −−  
2
e

211 xBA6)11,16(A)5,16(A −=−= −−  
e

211 xBA2)12,16(A)6,16(A −== −−  
2
e

211 yAB6)22,17(A)4,17(A −=−= −−  

e
211 yAB4)24,17(A)6,17(A −== −−  

3
e

311 yB12)21,18(A)3,18(A =−= −−  
2
e

311 yB6)23,18(A)5,18(A == −−  
3
e

311 xBA12)11,19(A)5,19(A == −−  
2
e

311 xBA6)12,19(A)6,19(A == −−  

2
ee

221

111

yxAB24)22,20(A
)16,20(A)10,20(A2)4,20(A

=−

=−==
−

−−−

 

e
2
e

2211

111

yxBA24)23,20(A2)17,20(A2
)11,20(A3)9,20(A2)5,20(A

==−

=−=−=
−−

−−−

 

 
 
 
 
 
 
 
 
 
 
 
 

ee
22

111

yxBA16)24,20(A32
)18,20(A4)12,20(A2)6,20(A

=

=== −−−

 

3
e

311 yAB12)22,21(A)4,21(A =−= −−  
2
e

311 yAB6)24,21(A)6,21(A == −−  

2
e

3
e

21

111

yxAB72)21,22(A
)15,22(A)9,22(A)3,22(A

=−

==−=
−

−−−

2
e

2
e

331

111

yxBA36)22,22(A
)16,22(A)10,22(A)4,22(A

−=−

=−==
−

−−−

e
3
e

231

111

yxBA48)23,22(A2
)17,22(A2)11,22(A)5,22(A

−=

=−=−=
−

−−−

e
2
e

231

111

yxBA24)24,22(A2
)18,22(A2)12,22(A)6,22(A

−=

===
−

−−−

2
e

2
e

321

111

yxBA72)21,23(A
)15,23(A)9,23(A)3,23(A

=

==−=
−

−−−

3
ee

321

111

yxBA48)22,23(A
)16,23(A2)10,23(A2)4,23(A

−=−

=−==
−

−−−

2
e

2
e

321

111

yxBA36)23,23(A
)17,23(A)11,23(A)5,23(A

−=

=−=−=
−

−−−

2
ee

321

111

yxBA24)24,23(A
)18,23(A2)12,23(A2)6,23(A

−=

===
−

−−−

3
e

3
e

331

111

yxBA144)21,24(A
)15,24(A)9,24(A)3,24(A

=−

==−=
−

−−−

3
e

2
e

331

111

yxBA72)22,24(A
)16,24(A)10,24(A)4,24(A

=−

=−==
−

−−−

2
e

2
e

331

111

yxBA72)23,24(A
)17,24(A)11,24(A)5,24(A

−=

=−=−=
−

−−−

2
e

2
e

331

111

yxBA36)24,24(A
)18,24(A)12,24(A)6,24(A

=

===
−

−−−
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