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Abstract: - A theory of sound waves propagation in porous media that includes the nonlinear effects of 
Forchheimer type with nonzero radial velocity effects is laid out utilizing variational solutions technique. It is 
shown that the main parameters governing the propagation of sound waves are shear wave number, reduced 
frequency number, porosity, Darcy number, and Forchheimer number. The manner in which the flow 
influences the attenuation and the phase velocities of forward and backward propagating isentropic acoustic 
waves is deduced. It is found that increasing Darcy number and Forchheimer number increased wave’s 
attenuation and phase velocity for both forward and backward sound waves, whereas increasing the porosity 
decreased attenuation and phase velocity for both waves. The effect of increasing the reduced frequency is 
found to increase attenuation of the forward waves and decrease attenuation and phase velocity of the backward 
sound waves. Moreover, the effect of the steady flow is found to decrease the attenuation and phase velocities 
for forward sound waves and enhance them for the backward sound waves. 
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1 Introduction 
The acoustic wave propagation problem finds its 
application in many engineering applications such 
as geophysical exploration, seismology, earthquake 
engineering, and rock dynamics, etc. For instance, if 
the acoustic improvements are restricted to interior 
spaces, porous material such as mineral wools or 
open pore foams are utilized to fill double wall 
cavities, and floors and ceilings as noise isolators, 
which helps control reverberation time, and avoid 
undesired reflections. If acoustic improvements are 
restricted to outdoor problems, granular materials 
such as porous concrete or similar materials are 
utilized as acoustic noise barriers against traffic 
noise, as such materials behave better with bad 
weather and other atmospheric phenomena. 

In porous materials the absorption process of the 
acoustic wave takes place through viscosity and 
thermal losses of the acoustic energy inside the 
micro tubes forming the material. The problem of 
propagation of sound waves in fluids contained in a 
plain medium is a classical one, to which famous 
names are tied to, like Helmholtz [1], Kirchhoff [2] 
and Rayleigh [3]. By extending the problem of a 
single tube model to a bulk porous media, the basic 
equations for the wave propagation in anisotropic 
porous media were first formulated by Biot [4] [5]. 
A variational treatment of the problem of sound 
transmission in narrow tubes is described by 

Cummings [6] as an alternative to the more popular 
analytical procedure, which is limited to 
mathematically tractable geometries. A first 
approximation to the effects of mean flow on sound 
propagation through cylindrical capillary tubes is 
achieved by Peat [7].  Furthermore, sound 
transmission in narrow pipes with superimposed 
uniform mean flow and acoustic modeling of 
automobile catalytic converters is achieved by 
Dokumaci [8]. Jeong and Ih [9] studied numerically 
the propagation of sound waves through capillary 
tubes with mean flow, whereas an approximate 
dispersion equation for sound waves in a narrow 
pipe with ambient gradients is formulated by 
Dokumaci [10]. Recently, a thermoacoustic theory 
for a bulk random medium is developed from that 
for a single pore, based on parallel, capillary-tube-
based theories by Roh et al [11]. In their work, basic 
equations such as the Navier-Stokes equation, the 
equation of state, and the equation of heat transfer 
for a bulk porous medium are formulated for the 
derivation of the thermoacoustic wave equation as 
analogously as possible to those for a single pore. 

The problem of sound waves propagation in a 
stationary or flowing fluid in a porous medium is 
not addressed yet. An attempt is made in this article 
to develop a simplified nonlinear theory that 
predicts the propagation characteristics of a 
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stationary or flowing fluid in saturated porous 
media. This theory is an extension of the classical 
plain medium theory, utilizing a modification to 
Darcy’s law due to the Forchheimer effects and 
assuming a nonzero radial velocity effects. 
Analytical expressions for the propagation constant 
are obtained from variational solutions. Comparison 
with previous work in the limit of plain medium 
shows an excellent agreement. 
 
 
2 Problem Formulation 
Consider a rigid tube filled with a saturated porous 
material, the fluid is assumed to be stationary or 
moving inside the tube. The x-coordinate is 
measured along the tube and the r-coordinate is 
measured normal to the axial direction. Under the 
boundary layer approximations the basic equations 
which govern acoustic wave propagation in a rigid 
tube filled with a porous media are the continuity 
and momentum equations, as given below: 
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Where are the velocity components in the 
axial and normal directions; respectively.  
are the fluid density and pressure, 

** ,vu
**and pρ

μ  is the absolute 
viscosity, K and ε  are the permeability and 
porosity of the porous medium, respectively. Since 
one is dealing not only with capillary tubes, the 
radial velocity effect might be expected to be 
significant. This effect of the radial velocity couples 
the continuity equation (3) and the momentum 
equation (4). It is assumed that the flow through the 
capillary duct is a superposition of a fully developed 
laminar, incompressible, axial steady flow and a 
small harmonic acoustic disturbance f 
frequency

o
ω . The steady flow is taken to hav  

constant density 
e

ρ  and a speed of sound a  such 
that the fluid variables can be expanded in the form: 
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Where 1<<α  and γ  is the ratio of specific heats. 
It is seen that the steady flow variables  and 

Mach number  together with acoustic variables 0M
pvu and,,ρ  are dimensionless. Now, introduce 

the following variables in the transformations: 
;                                              (8) ax /*ωξ = Rr /*=η

Where R is the radius of the capillary duct. 
Assume that the axial acoustic wave motion has a 
complex propagation constant , which can be 
expanded in the form: 

Γ

                                                             (9) ΓΓΓ ′′+′= i
Γ ′Where  represents the wave attenuation per 

unit distance and Γ ′′  represents the phase shift over 
the same distance. The assumed forms of the 
variables, equations (4-7) are substituted into the 
governing equations (1), (2) and (3), while terms of 
similar order of α  are equated. It is found that for 
zeroth order, the steady flow solution, equations of 
continuity and radial momentum are identically 
satisfied, thus the axial momentum equation (3) 
takes the following form: 
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Here  is the shear wave number, μωρ /Rs =
aRk /ω=  is the reduced frequency parameter, 
2=Da R K is the Darcy number and  is the 

Forchheimer number. This is the classical equation 
of Hagen-Poiseuilli flow, the solution of which, 
with no-slip boundary conditions, gives a parabolic 
velocity profile: 
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MWhere  is the mean Mach number of the 
steady flow. The linearized acoustic equations 
follow from equating terms of first order of α  in 
the governing equations, are: 
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The case of 0or1 == Daε   corresponds to the 
plain medium without the presence of the solid 
matrix, and any values of 0or10 ><< Daε   
represent a porous medium with different pore 
spaces. For the case of 0and1 == Daε , the 
governing equations (12) and (13) reduces to the 
case of a pure plain medium obtained by Peat [5]. In 
the limit of zero steady flow, 0=M , these equations 
are found to be reduced to those for the reduced 
frequency solution of Tijdeman [12].  

It will be assumed that the tubes are rigid, which 
0p
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implies the no-slip boundary condition of the fluid 
velocity at the wall of the tube, i.e., 
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                                                          (14) 1at0 == ηu
The solution of equations (12)-(13) is greatly 

simplified if one assumes that the acoustic 
disturbances occur isentropically, i.e., 

Substitution the same trial solution of u into 
equation (17) and utilizing the boundary condition 
of ργ=p 1at0 == ηv  leads to a second expression of the 
propagation constant, 

                                                                         (15) 
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(22) 

 
3 Variational Solution 
As the pressure, p , is constant over the radial cross-
section, the problem reduced to only solving the 
continuity and momentum equations for the velocity 
components and pressure. Variational solutions will 
be obtained based on the following trial parabolic 
form of acoustic velocity variation, 

Equations (21) and (22) enable C to be eliminated 
which results in an expression for the propagation 
constant: 
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                  (16) constantiswhere)1( 2 cCu η−=
Consider the continuity equation (12), with the 

assumption of isentropic disturbances and the given 
form of the trial solution of the axial velocity, 
equations (15) and (16), and integrating the resulted 
expression with the boundary condition of  

Solving for the propagation constant yields the 
following formula: 
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This expression can now be substituted into the 
full momentum equation (13) to give: 
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Note that when 0or1 == Daε  the propagation 
constant, equation (23) is reduced to those obtained 
by Peat [5] for the case of a pure plain medium. It is 
important also to note that the where * 2=s FC C . Equation (18) corresponds to 

the minimum of the functional: 
M  number will 

reflect the effect of steady flow on the acoustic 
problem under consideration; the case of 0=M  
corresponds to the absence of mean flow velocity 
and to the acoustic problem in a stationary porous 
media. 
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4 Results and Discussion 
Comparison of variational solution with exact 
solution as given by Peat [5] in the limits of plain 
medium for The assumed form of trial solution for u, 

equation (16), is substituted into this expression and 
the minimum is found by setting: 

0and1 == Daε   is shown in Table 1. 
The table shows a good agreement between present 
results and Peat’s results for both attenuation and 
phase shift.  

                                                                    (20) 0=∂∂ CG
This results in an expression for the constant C; 

as in equation (20), Figure 1 is a plot of the modulus of wave 
attenuation per unit distance, , and phase shift, Γ ′

, for varying shear wave number, Mach number, Γ ′′
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and for  π15.0and =k8.0,1.0,10 * === εsCDa  . It 
is clear that as the Mach number is increased the 
attenuation is decreased and the phase velocities are 
increased for the forward waves, whereas both the 
attenuation and phase velocities for the backward 
sound waves increased; this result is due to the 
collision effects of the forward sound waves and 
favorable vertical velocity effects which results in 
more damping of the backward sound waves. For 
shear wavenumber less than one and the limit of 
zero steady flow, the attenuation of the forward and 
backward waves decreased rapidly and reached a 
constant plateau. 

Figure 2 shows the effect of increasing Darcy 
numbers  for 10,5,1,1.0,0=Da 1.0,1.0 * == sCM , it is 
clear that as the Darcy number is increased the 
attenuation and phase velocities for both the forward 
and backward sound waves decreased; this is due to 
favorable effects of the solid matrix in damping 
sound waves.  

Figure 3 shows the effect of porosity on 
attenuation and phase velocities for selected values 
of ,1.0,10 * == sCDa π15.0and1.0 == kM , it is shown 
that increasing the porosity decreases the attenuation 
and phase velocities for both the forward and 
backward waves; this is due to the small effect of 
the solid matrix as moving toward the plain media 
limit. Figure 4 shows the effect of Forchheimer term 

 on attenuation and phase velocities 
for selected values of Darcy number and reduced 
frequency, it is found that as the Forchheimer term 
is increased the attenuation and phase velocities are 
increased for the forward and backward sound 
waves; this is due to favorable damping effects of 
the fluid inside the large pores of the solid matrix. 
Finally, Figure 5 shows the effect of increasing 
reduced frequency parameter   on the attenuation 
and phase velocities for Darcy number of 10, 
porosity of 0.8, and Mach number of 0.1 , it is found 
that as the reduced frequency is increased, the 
attenuation is increased and the phase velocities are 
decreased for the forward sound waves, whereas 
both the attenuation and phase velocities are 
decreased for the backward sound waves; this is 
could be attributed to the higher frequency of the 
impacted sound waves on the solid matrix. It is 
important to note that the same behavior is noticed 
for sound waves propagated in a plain medium. 

10,5,1,1.0* =sC

 
4 Conclusion 
A simplified nonlinear theory which predicts the 
propagation characteristics of sound wave in a 
stationary or flowing fluid in saturated porous media 

has been developed. Based on the results presented 
in this article: 
1- It is demonstrated that the main parameters 
governing the propagation of sound waves are shear 
wavenumber, reduced frequency number, porosity, 
Darcy number, and Forchheimer number. 
2- It is found that the effect of increasing Darcy 
number or Forchheimer number is to increase the 
attenuation and phase velocities for both forward 
and backward sound waves; this is due to favorable 
role of solid matrix in damping sound waves. 
3- It is also found that the effect of increasing 
porosity or reduced frequency parameter is to 
decrease attenuation and phase velocities for both 
forward and backward sound waves; this is due to 
the absence of the role of porous matrix and high 
incident sound waves strength, respectively.  
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Greek symbols: Nomenclature 
  

a α  Mean speed of sound of steady flow    Perturbation parameter 
ρC   Constant defined in equation (16)  Acoustic density  

Da  Darcy number, KR 2 ρ   Mean steady flow density  
*ρi  Imaginary number, 1−   Fluid density  

0M ξ  Steady flow Mach number   Dimensionless axial coordinate  
η   Dimensionless normal coordinate M   Mean Mach number of steady flow,  
γ   Ratio of specific heats p  Acoustic pressure 

0p ω  Steady flow pressure   Harmonic disturbance frequency 
ε   Porosity s  Shear wave number 
μ   Dynamic viscosity  ** ,vu  The velocity components in x-and 

y-directions  Γ   Propagation constant 
Γ ′   Attenuation u,v  Acoustic velocity components in x-

and y-directions  Γ ′′   Phase shift angle 
 ** ,rx   Axial and normal coordinates   
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Table 1. Comparison of the results of attenuation 'Γ and phase 
shift 0=   M for the case of "Γ

'Γ   "Γ   Shear 
wavenumber, 

s Present Peat [5] Present Peat [5] 
9.967 9.975 10.033 10.025 0.2 
4.934 4.950 5.067 5.050 0.4 
3.235 3.259 3.435 3.409 0.6 
2.370 2.402 2.637 2.602 0.8 
1.841 1.879 2.173 2.129 1.0 
0.732 0.786 1.367 1.272 2.0 
0.367 0.411 1.212 1.081 3.0 
0.213 0.243 1.174 1.029 4.0 
0.138 0.158 1.163 1.012 5.0 
0.096 0.110 1.159 1.006 6.0 
0.071 0.081 1.157 1.003 7.0 
0.054 0.062 1.156 1.002 8.0 
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(a) Attenuation  and Phase Shift – Forward wave 
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(b) Attenuation  and Phase Shift – Backward wave 

Fig. 1 Effect of Mach number on attenuation and phase shift 
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   (a) Attenuation  and Phase Shift – Forward wave 
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(b) Attenuation  and Phase Shift – Backward wave 

Fig. 2 Effect of Darcy number on attenuation and phase shift 
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(a) Attenuation  and Phase Shift – Forward wave 
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(b) Attenuation  and Phase Shift – Backward wave 

Fig. 3 Effect of Porosity on attenuation and phase shift 
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   (a) Attenuation  and Phase Shift – Forward wave 
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(b) Attenuation  and Phase Shift – Backward wave 

Fig. 4 Effect of Forchheimer on attenuation and phase shift 
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(a) Attenuation  and Phase Shift – Forward wave 
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(b) Attenuation  and Phase Shift – Backward wave 

Fig. 5 Effect of k on attenuation and phase shift for Mach number 0.1=  M
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