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Abstract: - This article addresses the issue of selecting surrogate models suitable for the global optimization of 
turbomachinery flows. As a first step towards this goal the analysis of a family of 2D flows on a two-parameter 
design space is presented. Four types of surrogate models are considered: least square polynomials, artificial 
neural networks (multi-layer perceptron and radial basis function) and Kriging. Discussed is the ability of these 
surrogate functions to give a satisfactory description of the exact function of interest on the design space, 
during a global optimization. The number of CFD evaluations for an adequate description of the exact function 
is presented 
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Nomenclature 

),( 21 ααα =  Design variable vector 

)(αJ  Exact function of interest 

)(αJ  Surrogate model 

sn  Sampling size 

sJ  Vector of sampling values 

E  Mean square error 

jii ,,ΨΨ  Polynomial regression coefficients 

],...,[ pnm ba=ω  Multilayer perceptron weights 

if  Radial basis function 

ir  Radius of the radial function 

cn  Number of radial functions 
m  Mean value of  J 
θ  Kriging’s correlation parameter 
β  Kriging’s regression constant 

if  Kriging’s regression function 
2σ  Kriging’s variance 

Cv  Kriging’s covariance function 
Err  Mean error on the design space 
 
 
1 Introduction 
Shape optimization is one of the most important 
applications of computational fluid dynamics 
(CFD). For example, the drag reduction of an 
aircraft with constraints on the lift, geometry and 
momentums is a prominent issue of external 
aerodynamics. In the field of internal flows, 

minimization of total-pressure losses of a blade row 
is an important and classical issue. Despite the huge 
amount of work devoted to aerodynamic shape 
optimization during the three last decades, no 
specific algorithm has appeared to be really 
adequate for all problems or at least for a very wide 
range of problems. 

Since the mid 70’s and the landmark paper 
of Hicks and VanderPlaats, local optimization using 
the gradient of functions of interest with respect to 
the design parameters has focused much attention 
[31]. In the late 80’s and the beginning of the 90’s it 
appeared that those gradients could be computed by 
the so-called adjoint vector method [14] or direct 
differentiation method [3] instead of the costly finite 
difference method. Local optimization of a 
parameterized solid shape, combining adjoint vector 
method, a descent method – like feasible descent 
[30] – and some kind of mesh deformation tool 
became very popular. ONERA has developed both 
discrete adjoint vector and discrete direct method in 
the aerodynamic code elsA [5, 19, 20], and 
demonstrated its ability to carry out optimization of 
3D industrial configurations [26]. In other respects, 
several authors considered the issue of global 
aerodynamic optimization. Almost all types of 
global optimization strategies were considered with 
a significant emphasis on genetic algorithms [9]. 
The authors interested in this method had to face the 
bottleneck of the huge cost of the numerous exact 
evaluations of design requested by the optimization 
algorithm. 

To circumvent this issue, since the mid 
1990’s many authors replaced some of the exact 
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evaluations (by the CFD and post-processing codes) 
by those provided by a well defined surrogate-
model. Baron published a review in 1994 dealing 
with polynomial, spline, radial basis function, kernel 
smoothing and Kriging (called spatial correlation) 
metamodel [2]. In 2000, Jin et al. published a 
description of almost the same types of surrogate 
models and also a comparison of their efficiency for 
mathematical functions [15]. One year later, 
Simpson et al. wrote a broad survey about the use of 
metamodels including description of response 
surfaces, neural networks, Kriging and references to 
articles describing less popular types of surrogate 
functions [27]. Van Beers and Kleijen published in 
2004 a specific survey for Kriging method [4]. At 
last, Queipo et al. wrote very recently a review 
including considerations on polynomial regression, 
Kriging and radial basis function metamodels. Also 
included are descriptions of several designs of 
experiments and surrogate based strategies [22]. 

In other respect, several recent publications 
deal with the assessment of surrogate functions for 
actual aerodynamic optimizations. The metamodel 
is used by some authors to provide inexpensive 
function evaluations to a genetic algorithm in charge 
of the optimization process. Demeulaere and Pierret 
associated a multilayer-perceptron network and a 
genetic algorithm for the optimization of a 3D 
compressor blade with 9 design parameters [7]. 
Giannacoglou and coworkers have numerous 
contributions to this subject: [10] considers radial 
basis and multi-layer neural networks, [11] 
describes how to take into account gradient 
information in this network. The latter also presents 
optimization of a 3D turbine blade with Euler 
equations. Polini et al. described the global 
optimization of wing with Euler or thin-layer 
Navier-Stokes equations using 24 parameters. The 
optimization process involves both a genetic 
algorithm and Kriging [21]. In many other 
publications, the i9nexpensive evaluations of the 
metamodel are used for the global optimization. 
Giu8nta et al. considered rational and polynomial 
functions for the global optimization (2 design 
variables) of a HSCT plane [12]. In 1999, Papila et 
al. assessed neural networks and polynomial 
regression for potential flows around an airfoil and a 
wing (2 design variables) [18]. Rai et al. carried out 
the global optimization of a 2D turbine airfoil (3 to 
15 design variables) combining response surfaces 
and artificial neural networks [23]. Simpson et al. 
optimized a nozzle with structural and aerodynamic 
criteria (considering finite elements for elasticity 
and Euler equations) with polynomial response 
surfaces and Kriging model (2 design variables) 

[28]. More recently Jouhault et al. presented the 
global optimization of an airfoil with RANS 
equations using Kriging (2 design variables) [16]. 

Our work is related to those quoted in the 
second part of the previous paragraph. Our goal is to 
assess the use of metamodels for actual 
aerodynamic optimizations, but not only for one or 
two classes of surrogates but for four among the 
most widely used. We focus on the actual search of 
the most adapted surrogate model for 
turbomachinery design optimization problem. The 
article is organized as follows. Geometry, governing 
equations and design space are presented in section 
2. The surrogate models we consider are detailed in 
section 3. The ability of these surrogate functions to 
give a satisfactory description of the exact function 
of interest on the design space is discussed in 
section 4. 
 
 
2 Description and Analysis of the 
Turbomachinery Flow 
 
2.1 Nominal Geometry 
 

 
Figure 1: mesh of nominal 2D configuration. 
 
The considered test case is derived from the stator 
blade of VEGA2 configuration, which is a classical 
stator rotor turbine configuration [6]. Due to the 
high cost of global optimization, only a 2D 
geometry deduced from a n appropriate projection 
of the 3D geometry at the hub, is studied. The 4 
domains mesh with matching joins is presented in 
figure 2, where the characteristics length of the 
blade, L = 90mm, can be measured. The total 
number of mesh points is 11,816. Periodicity 
conditions are applied at the lower and upper 
borders. The aerodynamic data of the subsonic inlet 
are Ti = 288.27 K, pi = 101,325 Pa. the direction of 
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the flow at the inlet is also constrained along the x 
axis. At the outlet the static pressure is fixed. Its 
ratio to the inlet total pressure is ps exit/pi = 0.35. The 
eddy viscosity is determined by Sutherland law. The 
Reynolds number of the flow based on the 
stagnation condition is then Re = ρiaiL)/μ(Ti) =  2.09 
105. 
 
2.2 Flow Computation 
The Reynolds averaged Navier-Stokes equations are 
considered. The turbulent viscosity is computed by 
the Smith k-l model [29]. The seven-equation non-
linear system is solved numerically by the ONERA 
finite-volume cell-centered code for structured 
meshes, called elsA [5]. Second order Roe-flux 
(using MUSCL approach with Van Albada limiting 
function) is used for mean flow convective term, the 
first order Roe flux is used for turbulent variable 
convective term, centered fluxes with interface 
centered evaluation of gradients are used for both 
diffusive terms. Centered formula is used for the 
source term of turbulent variables equations. More 
details can be found in [24], which also indicates a 
good comparison with experimental data for the 
original 3D geometry. 
 

 
Figure 2: iso Mach-number lines of nominal 2D 
configuration. 
 

Due to the low value of the static pressure at 
the exit, the flow is sonic at the narrowest section 
between two blades, near the trailing edge (just like 
in a shocked nozzle). Two strong shock lines (one 
going along the x axis, the other oblique) start from 
the trailing edge of the blade. A view of the iso-
Mach number lines is presented. 
 
2.3 Design Space 
The geometric deformation of the blade consists in 
moving the trailing edge along both x and y axis. 
The leading edge is fixed. The deformed shape of 

the blade is defined by a smooth algebraic function 
of the curvilinear coordinate. The displacement is 
damped out from the solid shape to the fixed 
boundary of the blade domain (see mesh plot). The 
maximum displacement in each direction is +/-
0.4mm. The displacement along the x axis is the 
first design parameter α1, the displacement along the 
y axis is the second design parameter α2. The main 
output of the comparison is the total pressure at the 
exit, computed by integration on the exit surface. Its 
non dimensional value (actual value divided by inlet 
value) varies from 0.918 to 0.924 on the design 
space. Of course such low values appear because of 
the strong shocks. This variation is large enough to 
define an optimization problem. 

A large regular sampling of the design 
space with 21x21 points is considered. All 
corresponding flows are computed with exactly the 
same numerical parameters. The explicit space 
residual of the scheme is decreased for all design by 
four to five orders of magnitude for all 
computations. The plot of the exit total pressure on 
the design space is presented. It was checked that 
the variation of total pressure when the design 
changes corresponds to a change in the strength of 
the oblique shock. 
 

 
Figure 3: exit total pressure as function of design 
parameters (axis plane does not correspond to zero). 
 
 
3 Brief Description of the Surrogate 
Models 
The exact function of interest (exit total pressure for 
the application) is )(αJ . The description of the 
surrogate models is limited to the case of a two-
component design vector α. The number of 
available exact evaluations of the function )(αJ  is 
noted ns. The mean square error (MSE) on the 
sampling between the exact function )(αJ  and the 
surrogate model )(αJ . Is denoted by E . 
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3.1 Least Square Polynomial Regression 
This method is both simple and well-known. Hence 
its presentation is limited to a degree two 
polynomials, although polynomials of degree two, 
four, six and eight have been considered for the 
application. Suppose 
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3.2 Multi-Layer Perceptron 
 

 
Figure 4: two layer perceptron 

 
Although a wide range of multi-layer perceptrons 
can be conceived, referring to the universal 
approximation theorem for neural networks [13], we 
have decided to use the multi-layer perceptron with 
just one hidden layer pictured in figure 4. The 
activation function of the hidden layer units is the 
sigmoid function and the final output of the network 
is simply a weighted sum of the hidden layer 

outputs. A bias value is added to the inputs and to 
the outputs of the hidden layer. 

Given ns exact computed responses, the 
4nc+1 unknown coefficients are computed by 
minimizing the mean square error E. 
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To do so, a steepest descent optimization is 
performed. Once the gradient of the MSE with 
respect to the unknown coefficients is calculated, 
the Wolfe method is used to minimize the MSE in 
the gradient opposite direction and a new set of 
coefficients is chosen. 
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An iterative process is carried out till the value of 
the gradient of the MSE with respect to the 
unknown coefficients is equal to zero (according to 
a user tolerance). The initialization of the unknown 
coefficients set is an important matter for the 
method. In the present work, the initial guess of the 
gradient based search is chosen randomly. 
 
3.3 radial Basis Function Network 
The radial basis function network [17] used in this 
study is composed of nc radial functions if . 
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centre and the radius of the radial function. The 
output of the network is given by the following 
formula: 
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Taking the assumption that the number of centers 
has been fixed, the RBF approximation model is 
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fully determined once the center and radius of every 
function is chosen. In this article, every function has 
the same radius 
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Moreover, we have picked the radial function 
centers to coincide with the exact function 
evaluations points, so that sJXA 1−= . 
 
3.4 Simple Kriging 
Considering that the value of J at the center of the 
design space is a good approximation of its mean 
value m, simple Kriging is considered [25]. The 
statistical basis of the method cannot be described in 
the limited space of this article. Based on ns 
sampling points, the formula of the simple Kriging 
is a linear interpolation of the known values (applied 
to mJZ −= )()( αα ). 
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The method is fully defined when the function vC is 
selected (it is the covariance of the function Z  in 
the statistical framework of the method description). 
Most often the following function is chosen 

||)||exp())(),(( baba
v ZZC ααθαα −−= . 

The parameter θ  is chosen according to a classical 
heuristic. Its value is determined so that all 

||)||exp( ba ααθ −−  terms are greater than 0.2. 
 
3.5 Advanced Kriging Methods 
In the most general form of the method, called 
universal Kriging, the approximate function is the 
sum of a regression and deviation term. The 
regression is a linear combination on a basis of 
independent functions 
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where F is the matrix of the evaluations of the 
sampling by the if  functions 
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Moreover, in an advanced stochastic framework, an 
estimation of Mean Square Error (MSE) of the 
approximate function is available 
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It can be checked that )(αE is null at sampling 
points, which is in coherence with the property 
of data interpolation of Kriging methods. At last 
a maximum likelihood computation, indicates 
the optimal value for parameter θ  for a given 
sampling 
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The benefit of those advanced features of Kriging 
for the test case of the next section will be discussed 
in a specific subsection. 
 
 
4 Evaluations of the Surrogate Model 
for Design Optimization 
The goal of this section is to discuss the efficiency 
of the surrogate models for the sake of optimization. 
No optimization tool-box has been used in our 
study, but our coding relies on a classical linear 
algebra package – LAPACK [1]. For the studied 
two-parameter problem, the computation of the 
surrogate model coefficients can be neglected 
compared to the cost of one CFD computation. For 
this reason the efficiency of a surrogate 
approximation for the optimization problem can be 
measured by the requested number of exact 
evaluations. 

For all surrogate functions the strategy of 
sampling enrichment is the same: 
A- start with a large enough sampling to determine 
all coefficients. This initial sampling is built on latin 
hypercubes 
B- add points if criterion (C*) – see below – is not 
achieved 
B1- if the min and max locations of the surrogate 
model are not all in the sampling then add up four of 
the missing one 
B2- else add to the sampling four points with 
maximum distance to the points of the sampling 
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4.1 Definition of the Evaluation Criterion 
The function of interest exhibits one global 
maximum (-0.4,0.4), one local maximum (0.04,0.4), 
two local minima (-0.2,-0.2), (0.4,0.08) and one 
global minima (0.4,-0.4) on the 21x21 sample. A 
surrogate reconstruction will be tested against the 
following criterion: 
(C1) ability to build an approximation with mean 
error Err on the 21x21 sampling lower than 2 10-3. 
The mean error Err being adimensioned by the 
variation of exit static pressure on the design space 
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(C2) find the global and the local maxima, their 
location being exact or in a neighboring point of the 
exact place on the 21x21 sampling 
(C3) find the global and the local maxima at the 
right place on the 21x21 sampling. 
The reason for (C2) is that the second order 
derivatives values are rather low near the maxima so 
that (C3) is difficult to reach. The results are 
summarized in Table 1. (IT) indicates the number of 
exact evaluations needed to satisfy a criterion. 
Indicated is also the value of Err after 100 CFD 
computations for all four surrogate models. 
 

Sur. Mod. C1 IT C2 IT C3 IT Err 
Pol. 

2 KO - KO - KO - 2.3 
10-3 

Pol. 
4 KO - KO - KO - 2.1 

10-3 
Pol. 

6 OK 47 KO - KO - 1.2 
10-3 

3.1 
MLP 

Pol. 
8 OK 53 OK 65 OK 73 4.9 

10-4 

3.2 Mu. Pe. OK 300 KO - KO - 2.5 
10-3 

3.3 RBF OK 37 OK 38 OK 46 1.6 
10-3 

3.4 Sim. Kri. OK 25 OK 62 OK 17
0 

3.7 
10-4 

Table1: Summary of surrogate model performances. 
 
4.2 Discussion of the Results 
From a general point of view, it is clear that RBF 
(figure 6) and Simple Kriging (figure 5) lead to the 
best results. Both of them satisfy the (C2) criterion 
with a reasonable number of exact evaluations. As 
concerning (C3) only (RBF) and degree-8 
polynomial satisfy it with an acceptable number of 
exact evaluations. The surrogate function surfaces 
satisfying (C3) are presented in figures 5 and 6. 

More details are given below concerning the 
different surrogate models. 

• Least square polynomials 
Obviously the exact surface cross-sections (α1=const 
or α2=const on figure 3) are much more complicated 
than parabola, which means that the exact function 
cannot be well fitted with a second order 
polynomial. Considering the plots obtained with 
degree-4 and 6 polynomials, this seems also to be 
the case. 

• Radial basis function 
It has also been checked for (RBF) network that the 
results depend only slightly on the initial six-point 
sampling 

• Multi-layer perceptron 
Two multi-layer perceptrons have been tested, 
respectively with 5 and 10 units in the hidden layer. 
The first requires almost the whole exact CFD 
evaluations to satisfy (C1). As for the second, up to 
200 evaluations are actually needed. But in spite of 
the global optima being located from 42 evaluations, 
none of these perceptrons succeeds in locating the 
local optima. Besides, from a sampling of 50 
evaluations, the computed error does not vary much 
from 2.4 10-3. 

• Simple Kriging 
This method leads to the lower error (Err) after a 
definite number of iterations. Nevertheless it is not 
the most efficient for the accurate detection of the 
two maxima. 
 
Sur. 

Mod. C1 IT C20 IT C3 IT Err(100)

Sim. 
K. OK 25 OK 62 OK 170 3.7 10-4 

Ord. 
K. OK 25 OK 62 OK 170 3.7 10-4 

Uni. 
Kdeg 1 OK 28 OK 65 OK 65 3.6 10-4 

Uni. 
Kdeg 2 OK 28 OK 65 OK 65 3.6 10-4 

UKd1 
MSE OK 28 OK 57 OK 57 4.1 10-4 

Table2: Summary of Kriging metamodel 
performances. 
 
4.3 Assessment of Advanced Kriging 
Features 
First of all, the benefit of ordinary Kriging – 
obtained with minimal regression function basis 

]1[=αf  - and universal Kriging with polynomial 
regression is studied. Polynomials of degree one and 
two were considered, ],,1[ 21

1deg ααα =f  and 
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2deg ααααααα =f  being the 
corresponding basis. The way those algorithms 
satisfy the evaluation criterions is summarized in 
table 2. The performances of the advanced Kriging 
method on our test case have been observed to be 
similar to the simple Kriging ones’ except for the 
ability to accurately locate the two maxima (where 
advanced methods are better). 
 

 
Figure 5: Kriging surface satisfying (C3). 
 

 
Figure 6: RBF surface satisfying (C3). 
 
 The mean square error of the model allows 
a specific sampling strategy. Step (B2) of the 
sampling enrichment strategy can be replaced by: 
B2K – else add to the sampling the four points with 
maximum predicted mean square error. 
 This strategy has been applied to universal 
Kriging computation with degree one polynomial. 
For an unknown reason the error after hundred 
evaluations is slightly increased, but the capability 
of quickly locating maxima is improved. 
 At last, some practical trials have been 
carried out for θ  parameter. For all previous 
computations a value of 2.84 was used, which had 
been deduced from a common heuristic (“no term in 
C matrix lower than 0.2”). This value appeared as 
the upper bound of a very large domain – about [5, 2 

10-5] – where the Kriging performances, estimated 
by all four previous criterions, are almost 
unchanged. For larger values, approximated 
functions have almost as many local optimum as 
sampling points, whereas for very small values of 
θ , the matrix C is ill-conditioned. Due to those 
practical considerations, the theoretical optimal 
value of θ  - as defined at the end of section 3.5 – 
was not computed in this study. 
 
 
5 Conclusion 
This article presented how four types of surrogate 
models can be used in an industrial context to 
design a stator blade so as to optimize the local 
pressure at the exit. Among all the models that have 
been tested the Kriging models and the radial basis 
function network appear to give the best results in 
terms of approximation of the exact function. 
In a near future, the gradients of the function of 
interest with respect to the design variables will also 
be used as a way to enhance the level of 
approximation reached by the metamodels. Only a 
2D configuration was considered. We also plan to 
extend the depicted framework to 3d cases. 
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