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Abstract: In order to describe correctly on-board experiments, where residual acceleration can have a significant
impact in the fluid motion, we consider the effect of a thin immiscible fluid layer on top of a liquid substrate
in incrementing the damping and promoting drift instabilities in spatially uniform standing Faraday waves. It is
seen that the effective surface viscosity of the newtonian liquid film enhances drift instabilities that lead to various
steadily travelling and standing and travelling oscillatory patterns, among others. In particular, travelling waves
appear to be the primary instability of the basic standing wave for deep water problems.
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1 Introduction

In this paper we examine the effect of vertical vi-
bration on an opened-container filled with liquid in
presence of a controlled surface contamination. The
motivation is to describe correctly on-board experi-
ments where residual acceleration, due to crew ma-
noeuvring and machinery, can have a significant im-
pact in the fluid motion. In general, residual oscilla-
tory acceleration, or g-jitter, is broad-band and varies
randomly both in magnitude and direction. This ac-
celeration is usually transmitted through the container
walls of the fluid system. Thus the actual excitation
of the fluid is transmitted via the narrow-band struc-
tural response centered on the natural frequencies of
the support structure. Although the random nature of
the vibration cannot be ignored, the usual first step is
to take the vibration as monochromatic, with a con-
stant amplitude and direction in order to obtain physi-
cal insight into the fundamental mechanisms. The sur-
face waves that appear (also known as Faraday waves
[1]) when the forcing amplitude exceeds a threshold
value have attracted a great deal of attention because
of the rich variety of non-linear pattern forming phe-
nomena that the Faraday instability exhibits (see [2]
and references therein). The correct nonlinear ampli-
tude equations used to described this weakly nonlin-
ear regime ([3],[4],[5]) take into account the presence
of the slow non oscillatory mean flow that is driven

by the boundary layers at the container walls and free
surface and, in the case of a monochromatic wave
([6] and [7]) predicts periodic standing waves (PSW)
and constant velocity travelling waves (TW) after on-
set that have been observed experimentally in annular
containers ([8], [9]) and in semitoroidal water rings
([10]). The presence of surface contamination or con-
trolled surfactants at the free surface is critical for de-
termining not only the critical amplitude above which
the standing waves appear ([11],[12],[13]), but also
the behavior of the Faraday waves after onset, as seen
in [7]. All these free surface alterations change com-
pletely the structure of the oscillating upper bound-
ary layer attached at the free surface and, in conse-
quence, the forcing mechanisms of the mean flow.
In this paper we analyze the effect of a thin float-
ing fluid layer on top of a liquid substrate, modelled
with surface shear and dilatational viscosity based on
the Boussinesq-Scriven surface model ([14], [15] and
[7] for details), in incrementing the damping and pro-
moting drift instabilities in spatially uniform standing
Faraday waves. This paper is organized as follows:
in §2 we shall present the systems of equations for
the slow time evolution of the surface waves and the
mean flow, derived from the full Navier-Stokes equa-
tions that described the problem assuming that the
fluid layer is thick enough to behave like a Newtonian
fluid, yet thin enough for the variation of the velocity
field within the film to be reasonably small. In this
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Figure 1: Sketch of the dimensionless fluid domain.

case the effective surface viscosity is proportional to
µfhf , whereµf is the volumetric viscosity of the liq-
uid film andhf is the film thickness ([16]); the rele-
vant large-time patterns resulting from the primary bi-
furcations will be described in§3 and finally the main
conclusions will be summarize in§4.

2 Coupled Amplitude-Mean Flow
Equations

We consider a horizontal 2-D liquid (of densityρ and
viscosityµ) supported by a vertically vibrating plate.
On top of the liquid there is a floating inmiscible fluid
film of volumetric viscosityµf and thicknesshf . Us-
ing the container’s depthh and the gravitational time√

h/g for nondimensionalization (figure 1), we obtain
the following governing equations

ux + vy = 0, (1)

ut + v(uy − vx) = −qx + C(uxx + uyy), (2)

vt − u(uy − vx) = −qy + C(vxx + vyy), (3)

u = v = 0 at y = −1, (4)

v = ft + ufx, C1/2(ûn + v̂s + κû) = δûss,

q − u2 + v2

2
+ 4ω2εf cos(2ωt)− f + Tκ =

= 2Cv̂n aty = f, (5)

u, v, q andf areL-periodic inx, (6)

where

s =
∫ x

0

√
1 + f2

x dx and κ =
fxx

(1 + f2
x)3/2

(7)

are an arch length parameter and the curvature of the
free surface (defined asy = f ), respectively, andn
is a coordinate along the upward unit normal to the
free surface;̂u and v̂ are the tangential and normal
velocity components at the free surfacey = f , which
are related to the horizontal and vertical components
u andv by

û =
u + fxv√

1 + f2
x

, v̂ =
v − fxu√

1 + f2
x

. (8)

Equations (1)-(6) formulate the problem when
dealing with a floating fluid layer on top of the liq-
uid. The only difference between these equations and
the formulation of the problem for a clean surface is
the boundary condition (5b), whose right hand side
is equal to zero for the clean surface and now ac-
counts for the presence of the fluid film, modelled
in the simplest way, where the resulting tangential
stress includes the surface viscosity effects. Scriven
[15] generalized the mathematical description of the
Boussinesq [14] treatment for a time-dependent inter-
face for which the interfacial stress is a linear function
of two intrinsic properties of the interface, namely the
surface shear viscosityµS

1 and the surface dilatational
viscosityµS

2 , both assumed constants here. The (two
dimensional) surface stress is written asτ = ∇ST ∗+
(µS

2−µS
1 )∇S(∇S ·vS)+µS

1 ∇S ·[∇SvS+(∇SvS)>],
where∇S is the (two dimensional) surface gradient
operator,vS is the (two dimensional) surface veloc-
ity vector, and> denotes the transpose. The bound-
ary condition (5b) results from equating the surface
stress to the viscous shear stress from the bulk at
the free surface, and nondimensionalizing. It follows
that the nondimensional surface viscosity is given by
δ = (µS

1 + µS
2 )/(µh)

√
C, with C defined below.

For very thin films or monolayers of thickness
up to 100-1000 times the length of the molecules of
the film (500-1000 nm) the surface viscositiesµS

1 and
µS

2 do not seem to be simply related to the volumet-
ric viscosity of the fluid in contrast with the case of
a film thick enough to behave like a Newtonian fluid
and sufficiently thin for the variation of the velocity
within the film to be reasonably small. In this case,
assuming that the thickness of the fluid layer is less
than the thickness of the oscillating boundary layer
that can be created in the film, the (two-dimensional)
surface shear viscosity can be expressed asµfhf and
the (two-dimensional) surface dilatational viscosity
as3µfhf ([16]). Since the wave-induced tangential
surface motions are essentially one-dimensional, the
surface shear and dilatational surface viscosities are
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added giving the following effective surface viscosity
number

δ =
4µfhf

µh

√
C (9)

The dimensionless problem (1)-(6) depends on
the following nondimensional parameters: the forc-
ing frequency2ω = 2ω∗

√
h/g and amplitudeε =

ε∗/h, the ratio of viscous to gravitational effectsC =
µ/(ρ

√
gh3), the Bond numberT−1 = ρgh2/T ∗

(T ∗ = surface tension), the horizontal aspect ratio
L = L∗/h (L∗ = horizontal length of the domain)
and the effective surface viscosity numberδ.

We shall consider small, nearly-resonant solu-
tions at small viscosity, i.e.,

|u|+ |v|+ |q|+ |f | ¿ 1, ε ¿ 1,

|ω − ω0| ¿ 1, C ¿ 1.
(10)

The assumption thatC ¿ 1 is reasonable for not too
viscous fluids in not too thin layers. Frequencyω0 in
(10) is a natural frequency in the inviscid limit (C =
0).

The effective surface viscosity numberδ can vary
in a wide range depending on the nature and the thick-
ness of the fluid film and substrate ([16], [17]). As an
example, the surface viscosity number for a container
depth ofh = 10 cm filled with water (C = 10−5)
and a film of silicone oil (Dow Corning 200 Fluid,
νf = 6 × 10−2m2/s, ρf = 969 kg/m3) of thickness
hf = 5 mm is δ = 36.77, while for a 1 mm depth
of SAE-30 oil film (νf = 5.5 × 10−4m2/s,ρf = 727
kg/m3 at 20 C) and the same liquid substrate the ef-
fective surface viscosity number isδ = 0.05. Note
that the film dimensionless thickness must obey the
following relationship

hf

h
¿
√

C
(νf

ν

)1/2
¿ 1, (11)

whereνf and ν are the kinematic viscosities of the
film and substrate respectively, to ensure the thickness
of the fluid layer is smaller than the oscillating film
boundary layer. Thus, in the rest of this work we will
not make any assumption on the value of the effective
surface viscosity numberδ.

As explained in [6] and [18], the solution can be
expanded as an oscillating first part caused by the os-
cillatory inviscid modes (with aO(1) frequency and
aO(

√
C) decay rate) and a slow non-oscillatory sec-

ondary part generated by the viscous modes (with a
O(C) decay rate), that produce the mean flow. The

solution in the bulk region, outside the boundary lay-
ers that appear at the free surface and the bottom plate,
is written as follows

u = U0(y)eiωt[A(t)eikx −B(t)e−ikx] + c.c.+

+ um(x, y, t) + · · · ,

v = iV0(y)eiωt[A(t)eikx + B(t)e−ikx] + c.c.+

+ vm(x, y, t) + · · · ,

q = Q0(y)eiωt[A(t)eikx + B(t)e−ikx] + c.c.+

+ qm(x, y, t) + · · · ,

f = eiωt[A(t)eikx + B(t)e−ikx] + c.c.+

+ fm(x, t) + · · · ,
(12)

where c.c stands for the complex conjugate,k =
2mπ/L (with m a positive integer) is the horizontal
wave number andU0, V0 andQ0 are the correspond-
ing inviscid eigenfunctions

U0 = −kQ0

ω0
, V0 =

Q0y

ω0
, Q0 =

ω2
0 cosh k(y + 1)

k sinh k
,

(13)

ω2
0 = k(1 + Tk2) tanh k. (14)

The terms displayed above correspond to the only sur-
face mode that is sub-harmonically excited by the ex-
ternal forcing and the mean flow, that will be denoted
hereinafter by the superscriptm. Dependence of the
complex amplitudesA andB onx is ignored for sim-
plicity. The weakly nonlinear analysis requires the
amplitudesA andB to be small and depend slowly
on time|A′| ¿ |A| ¿ 1, |B′| ¿ |B| ¿ 1

If we insert expansions (12) into the governing
equations, take into account the boundary layers at the
free surface and the bottom of the container and apply
solvability conditions, the following equations for the
evolution of the complex amplitudes are obtained

A′ = [−d1 − id2 + iα3|A|2 − iα4|B|2−

− i
α6

L

∫ 0

−1

∫ L

0
g(y)umdxdy]A + iεα5B̄, (15)

B′ = [−d1 − id2 + iα3|B|2 − iα4|A|2+

+ i
α6

L

∫ 0

−1

∫ L

0
g(y)umdxdy]B + iεα5Ā, (16)

and depend on the mean flow through a non local
term. See [6] for a more detailed derivation of simi-
lar amplitude equations without the presence of a film
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layer. The expressions of the coefficients and the func-
tion g(y) coincide with their counterparts in [6] and
[7] except ford1 andd2 that now accounts for the ef-
fective surface viscosity of the fluid film

d1 = α1C
1/2, d2 = α2C

1/2 + ω0 − ω, (17)

α1 + iα2 =
k
√

iω0

sinh 2k
+

+
δ
√

iω0ω0k
3

2 tanh k[ω0
√

iω0 + δω0k2]
.

(18)

The damping of the Faraday waves is clearly in-
creased by the presence of the floating film, specially
for deep water problems, as can be seen by compari-
son with the damping for a clean free surface problem
([18]) that becomes of the order ofC for moderately
large values of the surface wave numberk.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

k

α
1

Figure 2: The damping ratioα1 in terms ofk for grav-
ity waves withT = 7.42 · 10−4 and: (——)δ = 10,
(− − −) δ = 1, (− · − · −) δ = 0.1, and (· · · · ·)

δ = 0.01.

After a transient, the solution of equations (15)
and (16) always relaxes to a standing wave (|A| =
|B| = R0) of the form

f(x, t) = 4R0 cos(ωt + φ0) cos[k(x− ψ)] (19)

with constant amplitudeR0 (which depends on the
amplitude of the applied forcing) and spatial phase
ψ(t) that remains coupled to the streaming flow

through the equation (20b)

R2
0 =

d2 ± (α2
5ε

2 − d2
1)

1/2

α3 − α4
,

ψ′ =
α6

kL

∫ 0

−1

∫ L

0
g(y)umdxdy.

(20)

Ignoring the initial transient, taking into account the
last result in expansions (12a)-(12d) and introducing
these expressions into (1)-(6), we obtain the following
equations for the mean flow outside the two boundary
layers

ũx + ṽy = 0, (21)

∂ũ

∂τ
+ ṽ(ũy − ṽx) = −q̃x + Re−1(ũxx + ũyy),

(22)

∂ṽ

∂τ
− ũ(ũy − ṽx) = −q̃y + Re−1(ṽxx + ṽyy), (23)

ũ, ṽ andq̃ arex-periodic, of periodL = 2mπ/k,
(24)

dψ

dτ
=

1
L

∫ 0

−1

∫ L

0
G(y)ũ(x, y, τ)dxdy,

G(y) =
2k cosh 2k(y + 1)

sinh 2k
(25)

ũ = −(1− Γ) sin[2k(x− ψ)], ṽ = 0 aty = −1,
(26)

ũ = −Γ sin[2k(x− ψ)], ṽ = 0, aty = 0, (27)

where, for convenience, we have rescale time and
mean flow variables as

τ = ReCt, ũ =
um

ReC
, ṽ =

vm

ReC
, q̃ =

qm

(ReC)2
,

(28)
with the effective mean flow Reynolds number defined
as follows

Re =
2R2

0

C
(α7 + α8) , (29)

with

α7 =
3ω0k

sinh2 k
,

α8 =
ω0k

tanh2 k

( 4iδω0k
2

ω0
√

iω0 + δω0k2
+ c.c.+

+
3δ2ω2

0k
4

|ω0
√

iω0 + δω0k2|2
)
. (30)

Equations (21)-(27) depend on the wavenumber
k, the spatial periodL = 2πm

k with m = 1, 2, . . ., the
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Figure 3: The film parameterΓ vs. k for T = 7.42 ·
10−4 and: (——)δ = 10, (−−−) δ = 1, (− · − · −)

δ = 0.1, and (· · · · ·) δ = 0.01.
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Figure 4: The maximum value of the film parameter
Γ vs. k for T = 7.42 · 10−4 and varyingδ.

effective Reynolds numberRe, and the film parame-
ter Γ that measures the relative effect of the surface
viscosity of the floating film in the generation of the
streaming flow

Γ = Γ(k, T, δ) ≡ α8

α7 + α8
. (31)

The film parameterΓ can vary in the interval [0,1] and

is plottedvs. the wave numberk in figure 3 for the
indicated values ofδ for T = 7.42 · 10−4, that corre-
sponds to the inverse of the Bond number for a 10 cm
depth water container. It can be seen that for deep wa-
ter problems, namelyk > π, the film parameter is of
the order of 1, even for quite small values of the effec-
tive surface viscosity of the fluid film. Its maximum
value is plotted in figure 4vs. k. Note that the pres-
ence of the floating layer enhances the strength of the
mean flow produced by the surface wave by substitut-
ing the upper boundary condition for the mean flow of
zero tangential stress (that is, for spatial uniform sur-
face waves with clean free surface should beũy = 0 at
y = 1) for theO(1) forcing tangential velocity (27).
Detailed deduction of a boundary condition qualita-
tively similar to (27), that require to solve the upper
boundary layer, is explained in [7].

The effective Reynolds numberRe is propor-
tional to the wave steepness,R0k that should be small.
SinceC is also small,Re can vary in a wide range. A
good estimate for the Reynolds number is

0 ≤ Re ≤ 2× 104(α7 + α8)/k2, (32)

which for, e.g.k = 2.37 gives0 ≤ Re < 5000 for
small values ofδ and at least0 ≤ Re < 5 × 104 for
values ofδ of order 1. We integrate numerically (21)-
(27) for some values of the wavenumberk and the
spatial periodL, varying both theRe andΓ values.

3 Large time patterns

For small values of the effective mean flow Reynolds
numberRe, the solution relaxes to the basic stand-
ing wave (SW) withψ′ = 0. The mean flow as-
sociated with this basic SW consists of an array of
pairs of steady counterrotating eddies that fulfills all
the symmetries of equations (21)-(27), that is, it is re-
flection symmetric inx (thusψ′ = 0 and the stream-
ing flow does not affect the surface SW) andL/2-
symmetric (the solution is repeated twice in the con-
tainer). Examples of mean flow streamlines for these
states (named SW(L/2)) are plotted in fig.5(a)-5(c)
for increasing values of the film parameter. The bigger
the film parameter is, the more important the surface
eddies are.

This basic state destabilizes through a primary in-
stability that depends on the value of the film param-
eter. Thus, we chose a value ofk = 2.37 that mimic
a shallow problem because allows as(i) to varyΓ in
a wide range and(ii) to compare with the clean free
surface results in [6]. In figure 6(b) it can be seen that

WSEAS TRANSACTIONS on FLUID MECHANICS Elena B. Mart´In, Jose M. Vega

ISSN: 1790-5087
5

Issue 1, Volume 3, January 2008



(a)

L�1 x0
0y

(b)

L�1 x0
0y

(c)

L�1 x0
0y

Figure 5: Mean flow streamlines of (21)-(27), fork =
2.37, L = 2.65 (m = 1), and(Re, Γ): (a) (200, 0.1),

(b) (160, 0.5), (c) (60, 0.9).

for small values ofΓ (approximately0 < Γ < 0.371)
the instability takes place through a Hopf bifurcation
and pulsating standing waves (PSW) with no net drift
are obtained. Figure 7 shows the mean flow stream-
lines of a PSW solution as a function of time along
the pulsating period of the wave. Note that the mean
flow is still L/2-symmetric. In order to compare this
fluid film case with the clean surface problem ([6])
the critic Reynolds number of destabilization for the
clean free surface problem (for the same values ofk
andL) is marked with a large point in the horizon-
tal axe of figure 6. Thus, for quite small values of
the film parameterΓ the film effect seems to stabilize
the basic SWs. Secondary bifurcations take place for
bigger values ofRe that lead, among others, to PSW

no longerL/2-symmetric, travelling pulsating waves,
and chaotic solutions.

50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TW(L/2) 

SW(L) 

PSW(L/2) 
SW(L/2) 

Re
Figure 6: The primary instability of the basic SW
for different film parameter values fork = 2.37,
L = 2.65m (checked form = 1, 2, . . . , 10). The
bifurcation is either a Hopf bifurcation (− · − · −) if
0 < Γ < 0.371, a (L/2)-symmetry breaking bifur-
cation (− − −) if 0.371 < Γ < 0.588, or a parity

breaking bifurcation (——) if0.588 < Γ < 1.

For an intermediate value ofΓ (0.371 < Γ <
0.588) a symmetry breaking bifurcation to another
type of SW no longerL/2 symmetric (SW(L)) occurs,
see streamlines in figure 8(a) as an example. This type
of solution is stable for quite large values of the ef-
fective mean flow Reynolds numberRe. For larger
values of the film parameter (that is, for0.588 <
Γ < 1) the basic SW(L/2) destabilizes through a par-
ity breaking bifurcation that leads to TWs (TW(L/2))
whose streamlines for the mean flow in a moving ref-
erence frame (that moves with the surface wave veloc-
ity) are similar to the one plotted in 8(b). Note that the
mean flow is stillL/2-symmetric. For larger values of
the Reynolds numberRe, different secondary instabil-
ities are obtained, which include another type of TWs
with no L/2-symmetric mean flow (figure 5(c)), pul-
sating travelling waves, more complicated solutions
and even chaotic attractors.

We may also note that these three primary insta-
bilities shown in figure 6 fork = 2.37 remain un-
changed for larger domains (checked forL = 2πm

k
with m = 1, 2, . . . , 10). For different values of the
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Figure 7: Streamlines of a pulsating standing wave
for different values ofτ along the periodT , (τ =
T
6 , 2T

6 , 3T
6 , 4T

6 , 5T
6 ) for k = 2.37, L = 2.65 (m = 1),

and(Re,Γ) = (400, 0.2)

wave numberk for deep water problems, whereγ '
1, qualitatively similar results are obtained and the pri-
mary instability is always through a parity breaking
bifurcation from SWs to TWs.

(a)

L�1 x0
0y

(b)

0
0
�1 Ly

(c)

0
0
�1 Ly
Figure 8: The streamlines for some representative
steady (a) and steadily travelling ((b),(c)) attractors
of (21)-(27), fork = 2.37, L = 2.65 (m = 1) and
the following values of(Re, Γ): (a) (200, 0.5), (b)
(200, 0.9), and (c)(600, 0.9). The streamlines of (b)
and (c) correspond to moving axesξ = x− ψ′τ , with
the constant drift velocityψ′ = −0.072,−0.097, and

−0.049, respectively.

4 Conclusions

We analyze the effect of a thin liquid film on top of a
liquid substrate that is vertically vibrated with a forc-
ing amplitude sufficiently strong to produce surface
waves but weak enough to allow a weakly nonlinear
analysis. We assume that the immiscible fluid layer is
thick enough to behave as a Newtonian fluid and suffi-
ciently thin for the variation of the velocity within the
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film to be reasonably small. Thus, the fluid film sur-
face viscosities can be expressed as function of liquid
substrate properties and a set of coupled amplitude-
mean flow equations that depend on a film parameter
namedΓ are derived in the nearly inviscid limit.

For shallow water problems, namelyk < π, dif-
ferent states appear depending on the effective surface
viscosity numberδ. For quite small values ofδ, the
effective film parameterΓ is moderately small and in
this case the primary instability that takes place is a
Hopf bifurcation that gives a direct transition from
SWs to PSWs. This is also the first instability that
occurs in the clean surface case ([6]) (if surface con-
tamination is not present) although for smaller effec-
tive Reynolds numbersRe. Thus, the presence of the
fluid film (that leads to an small tangential forcing ve-
locity of the mean flow in the upper boundary layer
instead of the zero tangential shear stress of the clean
surface problem) seems to stabilize the SWs solution.
For intermediate values of the film parameter a tran-
sition between two steady states for the mean flow is
obtained, not affecting the surface wave. This SWs so-
lution is stable for a very wide range of values ofRe
and this fact might point out to the use of a fluid film
as an stabilization mechanism of the surface standing
wave by controlling the relative film thicknesshf/h.

For deep water problems, and in contrast with the
clean case, a direct primary bifurcation from SWs to
TWs appear for nearly all fluid film configurations.
This transition is quite robust (remain unchanged for
larger domains and appear for all values of the wave
number we have checked) and takes place for quite
smallRe. Thus, the presence of the fluid film destabi-
lizes the surface standing wave.

Therefore, film effects seem to play an important
role in the surface waves dynamics. For all these states
that are not steady SW, the coupling with the mean
flow is an essential ingredient that should not be ig-
nored. For deep water configurations the presence of
the fluid film enhances dramatically this coupling be-
tween the surface wave and the streaming flow. We
expect even more coupling in the three-dimensional
annular container as a result of the Stokes bound-
ary layers attached to the lateral walls, which are not
present in the two-dimensional model. We encour-
age further experimental work in the Faraday system
in annular containers with a special attention to the
streaming flow with and without the presence of a
fluid film, in order to achieve a better understanding
of the physical mechanisms involved in on-board fluid
experiments.

This work was supported by the National

Aeronautics and Space Administration (Grant
NNC04GA47G) and the Spanish Ministry of Educa-
tion (Grant MTM2004-03808).
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