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Abstract: - This work demonstrates the efficiency of using linear statistical modelling for estimation of 
concentrations of various substances in lake water using remotely sensed multi- and hyperspectral images 
together with extensive field measurements collected over Lake Erken in Sweden. A linear relationship was 
assumed between image data and the corresponding field measurements, and the transformation coefficients 
were estimated using the least squares method. The resulting coefficients were used to transform new image 
data into the corresponding substance concentrations. Estimation errors were computed and concentration maps 
were generated for chlorophyll-a and phaeophytine-a, suspended particulate organic matter SPOM, suspended 
particulate inorganic matter SPIM, as well as total suspended particulate matter SPM (SPOM+SPIM). Good 
correlation was obtained between estimated and measured values. Backward elimination was performed to find 
the most useful spectral bands for the case study of this work. Descriptive spectral signatures, describing the 
impact of underlying processes on the spectral characteristics of water, were generated, analysed and also used 
to predict the corresponding water quality parameters in image data, with the same estimation accuracy as the 
linear statistical model. Feature vector based analysis FVBA was also employed to generate transformation 
coefficients that could be used to estimate water quality parameters from image data, also, with the same 
accuracy as the previous methods. Finally, the impact of performing atmospheric correction was investigated, 
in addition to applying linear statistical modelling for the purpose of combined atmospheric correction and 
ground reflectance estimation. 
 
 
Key-Words: - Remote sensing, Statistical modelling, Water quality, Descriptive spectral signatures 
 
1 Introduction 
Fortunately, inland waters (e.g. lakes and water 
reservoirs) with different water types and qualities 
show different spectral characteristics that can be 
remotely sensed, e.g. using satellite- , airborne, ship-
mounted or handheld spectroscopy systems. Unique 
spectral signatures (i.e. spectra) can be generated, 
assuming that the spectral resolution of acquired 
data (number and quality of spectral bands) is high 
enough. Multispectral data has up to 10 spectral 
bands, while more than 10 bands were recorded in 
hyperspectral data. An important advantage of 
satellite- and airborne remote sensing techniques is 
that it can provide information over the whole 
region of interest (e.g. a large lake) in a single data 
set. 
     Remotely sensed multi- and hyperspectral image 
data were employed in numerous studies (Lindell et 
al. 1999 [29]; McCluney 1975 [30]; Philipson et al. 
2003 [36]; Östlund et al. 2001 [34]; Strömbeck et al. 
2003 [41]; Dekker et al 1993 [7]; Bukata et al. 1991 

[3], 1995 [4]; Kutser 1997 [24]; Giardino et al. 2001 
[11]; Koponen et al. 2002 [23]; Lathrop et al. 1986 
[25], 1990 [26], 1991 [27]; Lillesand et al. 1983 
[28]; Olmanson et al. 2000 [33]; Baruah et al. 2000 
[2]; Cairns et al. 1997 [5]) which have shown that it 
was possible to observe optically active substances 
in inland waters. This is possible because these 
substances affect and change the spectral properties 
of water. 
     Numerous studies addressed various observation, 
detection, prediction, quantification and analysis of 
chlorophyll-a and phaeophytine-a in the 
investigated water regions (Strong 1974 [42]; 
Philipson et al. 2003 [36]; Östlund et al. 2001 [34]; 
Han et al. 1997 [17]; Mittenzewy et al. 1992 [31]; 
Koponen et al. 2001 [22]; Schalles et al. 1998 [39]; 
Giardino et al. 2001 [11]; Baruah et al. 2000 [2]; 
Ibrahim et al. 2004 [20]). Suspended particulate 
matter SPM, both organic and inorganic, was 
targeted in many studies utilizing remotely sensed 
spectral data (Schiebe et al. 1975 [40]; Han 1997 
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[16]; Curran et al. 1988 [6]; Baruah et al. 2000 [2]; 
Tassan 1994 [44]; Doerffer et al. 1989 [8]). 
Dissolved organic matter DOM (or yellow 
substance) was also studied and retrieved from this 
type of data (Tassan 1988 [43], 1994 [44]; Davies-
Colley et al. 1990), in addition to other interesting 
water quality parameters that were remotely 
predicted, such as turbidity, secchi disk depth and 
surface temperature (Giardino et al. 2001 [11]; 
Lidell et al. 1985; McCluney 1975 [30]). 
     Various techniques (including analytical, semi-
analytical/semi-empirical and empirical approaches) 
were developed to estimate water quality parameters 
from remotely sensed multi- and hyperspectral data. 
Among the analytical and semi-analytical 
approaches one can for instance find inverse 
modelling (Morel 1988 [32]; Sathyendranath et al. 
1989; Doerffer 1994 [9]) and bio-optical modelling 
(Ammenberg et al. 2002 [1]; Strömbeck et al. 2003 
[41]). Empirical approaches include linear simple 
regression (Pena-Martinez et al. 2003 [35]), linear 
multivariate regression (Koponen et al 2001 [22]) 
and neural network algorithms (Zhang et al. 2003 
[47]; Baruah et al 2000 [2]), as well as statistical 
approaches, such as principal component analysis 
PCA (Ibrahim et al 2004 [20]), characteristic vector 
analysis (Fischer et al. 1986 [10]; Zalloum et al. 
1992 [46]; Roger 1996 [38]) and feature vector 
based analysis FVBA (Hamid Muhammed et al. 
2001 [13]). 
     In this paper, FVBA as well as linear statistical 
models are developed to predict surface water 
quality, to generate descriptive spectral signatures 
for different water quality parameters, and to 
convert raw upwelling radiance data into ground 
reflectance data. Furthermore, backward elimination 
is employed to find the most useful spectral bands 
for each water quality parameter of interest. 
 
 
2 Area of Investigation 
Lake Erken (Fig. 1a) which is located about 75 
kilometers north-east of Stockholm, Sweden, is a 
moderately eutrophic lake with a surface area of 24 
km2, a mean depth of 9 m, and a maximum depth of 
21 m. the lake has a drainage basin of 140 km2 and a 
residence time of 7.4 years. The summer thermal 
stratification usually begins between May and June, 
and disappears in August or early September. 
Between mid July and early August, a bloom of the 
colonial cyanobacterium, Gloeotrichia echinulata, 
regularly occurs. At such times Gloeotrichia 
echinulata can account for up to 50% of 
chlorophyll-a in the lake, and this algae rapidly 

migrates to the surface under periods of low vertical 
mixing. 
 

 
(a) 

 
(b) 

 
(c) 
Fig. 1. (a) Map of the research area of Lake 
Erken, north-east of Stockholm, Sweden. (b) 
Spatial-mode mosaic-image. (c) Spectral-mode 
mosaic-image, with overlaid white trace for the 
continuous measurements and black stars showing 
the sampling stations’ positions in the lake. 
 
     In August 1997, there was a bloom of 
Gloeotrichia echinulata with colonies clearly 
accumulating at the surface. The bloom was not 
evenly distributed and higher concentrations were 
found at the western end of the lake where surface 
chlorophyll concentrations could exceed 50 μg/l. 
 
 
3 Image and Ground Truth Data 
Hyperspectral images were acquired, by using the 
Compact Airborne Spectrographic Imager 1 (CASI), 
over Lake Erken (Fig. 1a) in Sweden, during a 
CASI campaign in August 1997. Altitude of 
operation was 3000 m (10,000 ft). 

                                                 
1 CASI is produced by: ITRES Research Limited, 
Calgary, Canada. 
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     At approximately the same time of recording 
these image data, water samples were collected 
(approximately 30 cm below water surface at 22 
sampling stations with known coordinates measured 
by using a dGPS unit) and analysed in laboratory to 
measure the concentration of combined chlorophyll-
a + phaeophytine-a (referred to as “Chl-a” in this 
paper), suspended particulate organic matter, 
SPOM, suspended particulate inorganic matter, 
SPIM, and suspended particulate matter, SPM, in 
these samples. Table 1 presents the ranges of these 
measured values. A Dual GER 1500 
spectroradiometer 2 was used to measure the up- and 
downwelling radiance above the lake surface at all 
sampling stations, and to finally compute the 
reflectance spectra at these stations. The measured 
spectra had 513 spectral bands in the wavelength 
range 400 – 900 nm. 
 

 
 
     In addition to that, a dataset of 1722 continuous 
field measurements were acquired. This dataset 
included concentrations of Chl-a, SPM, SPOM and 
SPIM, sampled with 2 second interval. The 
measurements were performed on a boat which 
scanned the lake in a zigzag manner, as shown in 
Figures (1b) and (1c). These figures present spatial-
mode respectively spectral-mode mosaic-images 
generated by putting together spatially neighbouring 
CASI-scan lines. The white trace in Figures (1b) 
and (1c) illustrates the continuous measurements 
while the sampling stations are marked with black 
stars. The ranges of the values of these 
measurements are listed in Table 1. 
     Two spatial mode images, referred to as “Image 
1” and “Image 2”, were acquired on August 6th and 
7th, respectively, during the CASI campaign in 1997. 
Each of these images had 14 spectral bands and 

                                                 
2 The GER 1500 spectroradiometer is produced by: 
Geophysical & Environmental Research 
Corperation, New York, USA, while the dual GER 
was built at Uppsala University. 

850×2650 pixels, where each pixel covered 4×4 
meters of the lake surface. Table 2 presents the band 
specifications of CASI spatial mode. On the other 
hand, only one spectral-mode mosaic-image, 
referred to as “Image 3”, was obtained. It had 288 
spectral bands and 61×110 pixels, where each pixel 
covered about 57×105 meters of the lake surface. 
These bands covered an approximate wavelength 
range of 400-900 nm. 
 

 
 
 
4 Image Pre-processing 
The CASI data were geometrically corrected and 
radiometrically calibrated at delivery 3. These data 
were then atmospherically corrected by using the 
6S-code (Vermote et al. 1997 [45]), which 
compensated for the atmospheric effects and 
converted the data (which represent upwelling 
radiance at the sensor) into ground reflectance. Edge 
correction was employed to compensate for the 
across-track variations in brightness (considerably 
higher brightness-values were observed near the 
edges of the CASI-scan line). 
     Thereafter, water areas in the imaged regions 
were identified and extracted by the following 
method. The mean images were computed for the 

                                                 
3 The CASI data were provided by Borstad 
Associates Ltd., which was also the CASI operator. 
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three hyperspectral images: “Image 1”, “Image 2” 
and “Image 3”. Finally, global thresholding was 
applied to each of these mean images to find and 
then extract the water-region hyperspectral pixels 
from the corresponding images. 
 
 
5 Methodology 
The aim of the methods presented in this section is 
to generate transformation coefficients that can be 
used for surface water quality parameter retrieval 
from multi- and hyperspectral image data. 
     Let S be the spectral-data matrix containing 
spectral vectors on its columns (i.e. each column 
represents a measured spectrum – e.g. a 
hyperspectral pixel from a CASI image). The 
transformation into water quality parameters 
(forming column vector p) is performed as follows 
 
 pT = a + b tT  S   (1) 
 
where (•)T denotes matrix transpose, a and b are 
scalars, while t is a transformation column vector 
computed by one of the approaches presented in this 
section (Linear statistical modelling, descriptive 
spectral signatures, or feature vector based analysis 
FVBA). Vector t is estimated by using a training 
data set consisting of measurements performed on 
water samples to obtain spectral vectors (arranged 
as columns in a matrix St) and the corresponding 
water quality parameter values (forming a column 
vector pt). 
     Thereafter, linear regression, between pt and the 
result of computing (tT St-img), is employed to 
estimate the values of the scalars a and b to be used 
in eq. (1), where St-img is the spectral matrix, 
extracted from the image, which corresponds to St. 
How each of the three approaches estimates the 
vector t is explained in the following subsections. 
 
5.1 Linear statistical modelling 
In this approach, vector t is estimated by solving the 
linear system of equations 
 
 pt

T = tT  St   (2) 
 
     The least squares method can, for instance, be 
used to estimate t. Applying this approach is 
equivalent to using linear multivariate regression. 
 
5.2 Descriptive spectral signatures 
In Hamid Muhammed et al. (2003) [14] and Hamid 
Muhammed (2005) [15], these signatures were 
computed and employed to analyse the impact of the 

parameter of interest on the spectral properties of 
the target object. 
     The training spectral data St were, at first, 
normalised into zero-mean and unit-variance data 
(i.e. whitened), by employing two iterative 
normalisation approaches, where a number of 
alternating pixel-wise (Pw) and band-wise (Bw) 
whitening operations were performed. In Pw-
whitening, each multi- or hyperspectral pixel vector 
was whitened, while each spectral image band was 
whitened when Bw-whitening was performed. In the 
first iterative approach, a series of alternating Pw- 
and Bw-whitening operations, beginning and ending 
with Pw-operations, were performed. On the other 
hand, the second iterative approach started with Bw-
whitening and ended with a Pw-operation. 
 

 
Fig. 2. Iterative normalisation. 

 
     Figure 2 illustrates this iterative procedure, 
where spectral data are inserted as columns or rows 
(in the case of performing the first respectively the 
second approach) in matrix St on which a series of 
alternating column-wise whitening and matrix 
transposing operations are performed. In each 
approach, a unique stationary result (matrices St1 
and St2 result from the first and the second approach, 
respectively) is achieved after a limited number of 
iterations. 
     Linear relationship is assumed between vector pt 
and the resulting St1 or St2 matrices from the first or 
the second normalisation approach, respectively. 
The systems of linear equations can be written as 
follows 
 
 St1

T  t1 = pt   (3)  
 St2

T  t2 = pt   (4) 
 
where the vectors t1 and t2, that can be computed by 
using the least squares method, function as spectral 
signatures describing the changes in spectral 
characteristics with respect to the parameters of 
interest, which are, in this paper, a number of water 
quality parameters. A descriptive spectral signature 
pair, t1 and t2, should be computed for each of the 
parameters of interest. 
     The required t vector to be used in eq. (1) can 
simply be either t1 or t2, but since each of these 
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vectors describes a different part of the dynamics of 
the spectral properties with respect to the considered 
parameter, it should be more efficient if a 
combination of t1 and t2 was used. Good candidates 
for t can be (t1 + t2) or (t1 * t2), where + and * are 
element wise addition and multiplication, 
respectively. 
 
5.3 Feature vector based analysis (FVBA) 
A recently developed technique called Feature-
Vector Based Analysis (FVBA) was used for 
mapping the relative concentrations of the prime or 
desired substances in inland waters (Hamid 
Muhammed et al. 2001 [13]). This technique was 
based on using linear transformation methods, such 
as Principal Component Analysis (PCA) (Jolliffe 
1986 [21]) and Independent Component Analysis 
(ICA) (Hyvärinen 1999 [18]; Hyvärinen and Oja 
2000 [19]), to obtain a number of pairs of basis 
vectors and the projections of the hyperspectral data 
on these vectors. 
     These results were considered as Component-
Feature Vector pairs, as the FVBA-task took over. 
In the case of hyperspectral image data, the Feature 
Vectors represent spectral signatures while the 
Components are maps showing the correlation 
between the corresponding feature vectors and 
hyperspectral image data. Thereafter, linear 
combinations of the spectral feature vectors were 
taken to construct spectral signatures that were as 
close as possible to selected spectral signatures, 
obtained by laboratory measurements, of the desired 
substances (such as the absorption spectra of 
chlorophyll-a and chlorophyll-b, shown in Fig. 3, 
depicted from Robinson 1983 [37]). 
 

 
Fig. 3. Absorption spectra of chlorophyll-a and 
chlorophyll-b. Reproduced from Robinson (1983) 
[37]. 
 
     Projecting the hyperspectral image data on these 
spectral signatures (after shifting the values to get 
rid of negative elements) produced maps 
representing the relative concentration maps of the 
desired substances in the area of investigation. This 

means that these spectral signatures represent good 
estimates for the required vector t in eq. (1). 
     In this work, ICA was used to produce the 
required Component-Feature Vector pairs, since it 
could produce more easy-to-use feature vectors 
(according to Hamid Muhammed et al. 2001 [13]), 
and the computationally efficient FastICA algorithm 
was selected among many other available ICA 
algorithms. The FastICA algorithm was downloaded 
from the Neural Networks Research Centre, 
Laboratory of Computer and Information Science 
(CIS), Helsinki University of Technology, Finland. 
     The desired linear combinations of the feature 
vectors were found by employing a genetic 
optimisation algorithm, which simply tried a 
number of linear combinations chosen according to 
a mechanism imitating biological genetic evolution 
(Goldberg 1989 [12]). The used coefficients were 
limited to the set {-1, 0, +1} leading to considerable 
simplification of the genetic algorithm, in addition 
to simulating a more realistic approach. The linear 
combination, with the least deviation from the target 
spectrum, was selected to be used as the desired 
vector t. 
 
5.4 Backward Elimination 
This method was applied to Image 3 that had 288 
narrow spectral bands, in order to find out which of 
these bands could be excluded and still get the same 
or maybe better parameter-prediction results, when 
using the methods presented previously. The 
method started by including all narrow bands in the 
used model and then removing those bands that 
were not useful, one by one. Two band removal 
approaches were used. The first one started from 
band 1, continued towards band 288, and then went 
back to band 1. The second one started from band 
288, towards band 1, and went back to band 288. 
     After reviewing the retained narrow spectral 
bands, further simplifications were performed so 
that broad spectral bands were formed of nearby 
narrow bands in wavelength regions, where the 
majority of the narrow bands were retained. 
     By this way, two respectively three broad 
spectral bands were obtained (by taking the mean 
values of each narrow-bands group) when using the 
first and the second backward elimination 
approaches, respectively, as illustrated by Fig. 4, 
where broad bands a and d resulted from the first 
backward elimination approach, while broad bands 
a, b and c were obtained when applying the second 
approach. Broad band a was computed as the mean 
value of narrow bands 66-108 (covering the 
wavelengths 517-591.5 nm), broad band b was the 
average of narrow bands 203-206 (761.7-766.4 nm), 
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broad band c combined narrow bands 229-266 
(807.6-874.4 nm), and broad band d covered narrow 
bands 232-288 (813.5-914.6 nm). 
 

 
Fig. 4. The backward elimination results when using 
the first approach (producing broad bands a and d), 
and the second approach (producing broad bands a, 
b and c). Four randomly selected field reflectance 
spectra were also plotted for comparison. 
 
     Approximately the same performance was 
achieved when using the a+d or a+b+c broad band 
sets, leading to the conclusion that the a+d broad 
band set was a better and more cost-effective choice 
to use, since band a represented a green band while 
band d represented a near infrared band. Band b, on 
the other hand, was much narrower than a and d and 
more expensive and difficult to achieve physically, 
by using an optical filter. 
 
Note: Tables 3-14 are presented in Appendix A 
and Figures 5-22 are presented in Appendix B. 
These tables and figures are needed to be able 
to understand the subject and reproduce the 
results achieved in this work easily. 
 
6 Experimental Results and discussion 
Extensive experiments were performed to evaluate 
the performance of the approaches proposed in this 
work, using three CASI images of Lake Erken 
(Image 1 and Image 2 with 14 spectral bands and 
850×2650 pixels, and Image 3 with 288 bands and 
61×110 pixels), a set of measurements from 22 
sampling stations (of 513-bands reflectance spectra 
and the corresponding Chl-a, SPM, SPOM and 
SPIM concentrations), as well as a set of continuous 

measurements of the concentrations of Chl-a, SPM, 
SPOM and SPIM. 
     The more accurate measurements, at the 22 
sampling stations, were used as training data in all 
experiments with the exception that field reflectance 
spectra (referred to as FRS) were replaced by image 
(reflectance) spectra (referred to as IS or IRS) 
extracted from the image-pixels that correspond to 
the sampling stations in the image of the lake. Note 
that Image 1 and Image 2 (both have 14 bands) were 
atmospherically corrected and consequently contain 
ground-reflectance spectra (referred to as IRS), 
while two versions of Image 3 (288 bands) were 
available, one before and one after atmospheric 
correction (referred to as Image 3-Raw and Image 3-
AtmCorr, respectively), providing upwelling 
radiance (referred to as image spectra IS) and 
ground reflectance (referred to as image reflectance 
spectra IRS), respectively. 
     Reduced band set images, consisting of 14 and 2 
bands, were generated from each of the two versions 
of Image 3. The simulated 14-bands images 
(referred to as Image 3-Raw-14-bands and Image 3-
AtmCorr-14-bands) followed the same band settings 
listed in Table 2, while the 2-bands images (referred 
to as Image 3-Raw-2-bands and Image 3-AtmCorr-
2-bands) were constructed according to the first 
backward elimination approach (consisting of broad 
bands a and d, as explained in Fig. 4). 
     The left column of Figure 5 shows four graphs 
each of which presents four field reflectance spectra 
(FRS), measured with the Dual GER 1500 
spectroradiometer, then resampled into 288 spectral 
bands according to the band specifications of Image 
3. These spectra correspond to various levels of 
concentrations of Chl-a, SPM, SPOM and SPIM in 
the graphs on rows 1, 2, 3 and 4, respectively. On 
each row in the right column, the corresponding 
simulated 14-bands FRS, generated according to the 
band settings found in Table 2, are presented. 
     Figure 6 presents graphs with four image 
reflectance spectra (IRS) corresponding to various 
concentrations of Chl-a, SPM, SPOM and SPIM, on 
rows 1, 2, 3 and 4, respectively. IRS extracted from 
Image 1 and Image 2 are presented in the left and 
right columns, respectively. 
     Figures 7 and 8 have the same structure as Fig. 5, 
but show image spectra (IS) respectively image 
reflectance spectra (IRS), extracted from Image 3-
Raw and Image 3-Raw-14-bands, respectively, 
Image 3-AtmCorr and Image 3-AtmCorr-14-bands. 
     To start with, estimation results from all 
approaches were compared with corresponding field 
measurements and common shifts between these 
values were found, despite the small time lag 
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between field measurements and CASI image data, 
which was, in the case of Image 1, less than 15 
minutes in the western part of the lake where the 
measurements started. The most likely reason for 
this observation could simply be bad geometric 
correction of image data due to large errors in the 
GPS measurements. Hence, the different CASI-scan 
lines were badly aligned when building a mosaic 
image covering the whole lake. Distortions in the 
correspondence between estimated and measured 
values were clearly observed when the boat went 
forth and back between the two main CASI-scan 
lines forming Image 1; e.g., roughly, in the case of 
Image 1 (see Figure 15), samples 1-100, 340-560, 
720-1722 belong to the scan line in the middle, 
while the rest belong to the upper scan line. The 
bottom scan line (in Image 1) also contributes to 
some distortion as some samples belong to it. 
     Therefore, simple matching was performed 
between estimated and measured values, to achieve 
more fair comparison results. For example, in the 
case of Image 1, the matching was performed by 
roughly discarding the first 100 estimated and 
measured values, shifting estimated values 400-
1722 to the right with respect to the measured 
values, and discarding the measured values around 
400. The graphs, in the left and right columns of 
Fig. 11, show comparisons between estimated and 
measured values, before and after matching, 
respectively. 
     First of all, the concentrations of Chl-a, SPM, 
SPOM and SPIM were estimated using spectral 
band 10 (in the 14-bands images), as suggested by 
Östlund et al. (2001) [34]. Table 3 presents the 
results when applying this approach to the 14-bands 
images: Image 1, Image 2, Image 3-AtmCorr-14-
bands and Image 3-Raw-14-bands. This approach is 
referred to as the band-10 approach. 
     The estimation results of the band-10 approach 
were much better than those of the bio-optical 
modelling approach presented by Ammenberg et al. 
(2002) [1] and Philipson et al. (2003) [36]. Note that 
the correlation coefficient R, not the coefficient of 
determination R2, was used as an evaluation 
measure in these two papers. Applying this 
approach to CASI data acquired over Lake Malaren 
(near Stockholm, Sweden) resulted in R2=78% and 
R2=69% in the case of estimating Chl-a and SPIM, 
respectively. The used model was derived using a 
large amount of historical measurements concerning 
Lake Malaren. The results were much worse when 
applying this model to the Lake Erken’s 14-bands 
images, 1 and 2, used in this work (R2=44% when 
estimating Chl-a). 

     Tables 4, 5 and 6 present the estimation results of 
applying the linear statistical method to all available 
images: Image 1, Image 2, Image 3-AtmCorr and 
Image 3-Raw, Image 3-AtmCorr-14-bands and 
Image 3-Raw-14-bands, Image 3-AtmCorr-2-bands 
as well as Image 3-Raw-2-bands. The results of 
Image 1 were slightly better, while the other images 
gave slightly worse results, than the band-10 
approach, except Image 2 which gave 
approximately the same results in both approaches. 
These results also show the clear impact of the 
spatial resolution on the estimation accuracy; the 
finer resolution, the better. It is also shown that the 
image Image 3-Raw-2-bands, generated by the 
backward elimination procedure, gave much better 
results than those of the original one. On the other 
hand, the results are approximately the same when 
using Image 3-AtmCorr, Image 3-AtmCorr-14-
bands or Image 3-AtmCorr-2-bands. 
     Figures 9 and 10 present the descriptive spectral 
signatures pairs (when considering the field 
concentrations of Chl-a, SPM, SPOM and SPIM) 
obtained when using the simulated 14-bands and the 
288-bands field reflectance spectra, respectively. 
These signatures describe the variations in the 
spectral characteristics with respect to each of the 
water quality parameters (i.e. Chl-a, SPM, SPOM or 
SPIM). The descriptive spectral signatures resulting 
from the second normalisation approach (Bw...Pw), 
presented in the left columns of Figs. 9 and 10, 
show if there is a relative decrease or increase in the 
amplitude at each band, while the signatures 
generated by the first normalisation approach 
(Pw...Pw), presented in the right columns of Figs. 9 
and 10, describe how fast the variations are at each 
band (e.g. a steeper or sharper peak, or a deeper 
trough). 
     In the cases of Chl-a, SPM and SPOM, the 
descriptive spectral signatures pairs were similar, 
describing overall increase in reflectance in the 
wavelength intervals 490-670 nm and 700-735 nm. 
Also, steeper peaks appear in the wavelength 
intervals 540-670 nm and 690-845 nm, while deeper 
troughs can be found in the wavelength intervals 
400-530 nm and 670-690 nm. In the case of SPIM, 
overall reflectance increase can be observed in the 
wavelength intervals 500-530 nm and 560-690 nm, 
a deeper trough at wavelengths below 530 nm, and 
steeper peaks in the wavelength intervals 550-690 
nm and 760-775 nm. 
     Table 7 gives a brief presentation of the 
estimation errors (the root mean square errors, 
RMSE, in addition to the percentage results with 
errors larger than certain levels), while Figures 12, 
13 and 14 present histograms of the estimation 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT Hamed Hamid Muhammed

ISSN: 1790-5079 291 Issue 10, Volume 7, October 2011



errors when applying the linear statistical method to 
Image 1, Image 3-AtmCorr-2-bands and Image 3-
AtmCorr-288-bands, respectively (using these 
images gave the best results in the case of each band 
set). Investigating Table 7 and Figures 12, 13 and 
14, shows that the RMSE can be considered as a 
good error measure in this study (the majority of the 
results are below the RMSE value). 
     Figures 15, 16 and 17, show the resulting 
concentration maps of Chl-a, SPM, SPOM and 
SPIM in Image 1, Image 2 and Image 3, 
respectively. High correlations are observed 
between the concentrations of Chl-a, SPM, SPOM 
and SPIM in these images. The concentration map 
of Chl-a is similar to the corresponding map 
presented by Östlund et al. (2001) [34], using the 
band-10 approach. 
     Figure 18 shows the sums and products of the 
descriptive spectral signatures presented in Figs. 9 
and 10, in the case of utilising the 14-bands and the 
288-bands field reflectance spectra. 
     Tables 8, 9 and 10 present the estimation results 
of correlating the sums of the descriptive spectral 
signatures with all available images, while Tables 
11, 12 and 13 present the estimation results when 
correlating the products of the descriptive spectral 
signatures with the images. In both cases, the results 
are slightly better than when using the linear 
statistical method. It can also be noticed that the 
estimation accuracy is not sensitive to the number of 
bands when using the various variants of Image 3 
(the Raw and the AtmCorr cases). 
     Figure 19 presents 10 spectral signatures 
obtained by applying linear ICA to Image 1. Figure 
20 shows a spectral reflectance signature for 
chlorophyll-a, obtained as a linear combination of 
the 10 spectral signatures of Fig. 19, to produce a 
spectral signature that is as close as possible to the 
absorption spectra of chlorophyll-a presented in Fig. 
3. Table 14 presents the results of performing 
FVBA on the 14-bands images: Image 1, Image 2, 
Image 3-AtmCorr-14-bands and Image 3-Raw-14-
bands. The results were also similar to those of the 
previous approaches. 
     A final observation that can be noted here is that 
raw CASI data produced results of approximately 
the same quality as the corresponding 
atmospherically corrected data (which gave slightly 
better results). This indicates that a sort of 
atmospheric correction was implicitly performed by 
the computations of the linear model. 
     Figure 21 shows comparison between three 
selected raw (upwelling radiance) spectra and the 
corresponding atmospherically corrected reflectance 
spectra when using the 6S-code, and a linear 

transformation results, where the transformation 
coefficients were estimated using a linear system of 
equations 
 

Sfld = Simg T  (5) 
 
where  Sfld and Simg are matrices consisting of field 
reflectance spectra and the corresponding image 
(upwelling radiance) spectra. The transformation 
matrix T was estimated, then used to correct 
additional image spectra. It can easily be noticed 
that the resulted spectra are as smooth as the field 
reflectance spectra. 
 
 
7 Summary and Conclusions 
In this work, three statistical methods were 
developed for the prediction of the concentrations of 
Chl-a, SPM, SPOM and SPIM from remotely 
sensed multi- and hyperspectral images. A linear 
statistical model was employed to estimate 
transformation coefficients that were used to convert 
image data into concentration values of Chl-a, SPM, 
SPOM and SPIM. Two normalisation approaches 
were employed to produce descriptive spectral 
signatures pairs for each water quality parameter. 
     These signature pairs were useful for revealing 
the impact of the corresponding parameters on the 
spectral characteristics of the water. Furthermore, 
these signature pairs were used to estimate the 
concentrations of Chl-a, SPM, SPOM and SPIM 
from image data. FVBA was also used to estimate a 
Chl-a spectral signature that could be used to 
estimate the concentrations of Chl-a in the lake. The 
estimation accuracy was approximately the same for 
the three approaches. Concentration maps of Chl-a, 
SPM, SPOM and SPIM in Image 1, Image 2 and 
Image 3, were produced. 
     High correlations were observed between the 
concentrations of Chl-a, SPM, SPOM and SPIM in 
these images. Backward elimination was employed 
to find out the most useful spectral bands for these 
water quality parameters. This method showed that 
using a green band (centred at 556 nm) and a near 
infrared band (starting at 813.5 nm) produced the 
best estimation results for Chl-a, SPM, SPOM and 
SPIM. Finally, the linear statistical model was 
employed to convert raw CASI data (upwelling 
radiance) into ground reflectance data. 
     Analysis of the erroneous correspondence 
observed between estimated and measured values, 
leads to the conclusion that going forth and back 
between the different CASI-scan lines which form a 
mosaic-image, gives raise to considerable errors that 
affects the evaluation of the investigated methods. 
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Hence, imperfect geometric correction and scan-
lines alignment are the main error sources to 
suspect. 
     In addition to that, artefacts between merged 
CASI-scan lines are clearly visible in the resulting 
concentration maps in Figures 15, 16 and 17; 
probably due to bad edge correction, resulting in 
darker scan-line edges. This can also be a side effect 
of imperfect radiometric calibration and/or 
incomplete atmospheric correction. 
     In order to further investigate the 1722 
continuous field measurements, a special type of 
2D-interpolation (by using Pseudo-Dirichlet 
tessellations) was performed. Visual inspection of 
the interpolation-like results presented in Fig. 22, 
reveals unexpected artefacts which can be explained 
by the impact of direct sunlight on these 
measurements (whether the measuring instrument 
was turned towards or away from direct sunlight). 
     However, the results are very promising and 
show good correlation between measured and 
estimated surface water quality parameters, despite 
the artefacts and shortcomings of the used data, 
which certainly decrease the observed performance 
of the employed methods when processing these 
data; cf. Hamid Muhammed et al. 2003 [14] and 
Hamid Muhammed 2005 [15], where much better 
results were obtained by applying methods, similar 
to those of the current work, to artefact-free 
hyperspectral data. 
     The linear statistical method and the approach 
using descriptive spectral signatures are more 
computationally efficient than FVBA. These 
approaches can be applied to other remote sensing 
applications utilising multi- and hyperspectral data 
acquired by satellite- and airborne systems. Site- 
and sensor independent statistical method can be 
achieved if a one-to-one relation can be achieved 
between field reflectance spectra and the 
corresponding corrected image spectra. This 
requires more efficient atmospheric correction and 
radiometric calibration methods. It is also possible 
to build a number of statistical models for various 
waters and use descriptive spectral signatures to be 
able to identify the most suitable model to be used 
in each case. 
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Appendix B. Figures 5-22 

 

 

 

 
Fig. 5. Field reflectance spectra (FRS) (left column), and simulated 14-bands FRS (right 

column), corresponding to various concentrations of Chl-a, SPM, SPOM and SPIM, on rows 
1, 2, 3 and 4, respectively. 
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Fig. 6. Graphs with four image reflectance spectra (IRS) corresponding to various 

concentrations of Chl-a, SPM, SPOM and SPIM, on rows 1, 2, 3 and 4, respectively. IRS 
extracted from Image 1 and Image 2 are presented in the left and right columns, respectively. 
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Fig. 7. Graphs with four image spectra (IS) corresponding to various concentrations of Chl-a, 
SPM, SPOM and SPIM, on rows 1, 2, 3 and 4, respectively. IS extracted from Image 3-Raw 

and Image 3-Raw-14-bands are presented in the left and right columns, respectively. 
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Fig. 8. Graphs with four image reflectance spectra (IRS) corresponding to various 

concentrations of Chl-a, SPM, SPOM and SPIM, on rows 1, 2, 3 and 4, respectively. IRS 
extracted from Image 3-AtmCorr and Image 3-AtmCorr-14-bands are presented in the left and 

right columns, respectively. 
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Fig. 9. Descriptive spectral signatures pairs for the concentrations of Chl-a, SPM, SPOM and 
SPIM (presented on rows 1, 2, 3 and 4, respectively), obtained when considering field 

concentrations and using simulated 14-bands field reflectance spectra. 
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Fig. 10. Descriptive spectral signatures pairs for the concentrations of Chl-a, SPM, SPOM and 
SPIM (presented on rows 1, 2, 3 and 4, respectively), obtained when considering field 

concentrations and using simulated 288-bands field reflectance spectra. 
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Fig. 11. Comparison between estimated (the green curve) and measured (the blue curve) 
surface water quality parameters, (left column) before matching, and (right column) after 

matching. The parameters of interest are Chl-a, SPM, SPOM and SPIM, for which results are 
presented on rows 1, 2, 3 and 4, respectively.
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Fig. 12. Histograms of the estimation errors when applying the linear statistical method to 

Image 1. 
 

 
Fig. 13. Histograms of the estimation errors when applying the linear statistical method to 

Image 3-AtmCorr-2-bands. 
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Fig. 14. Histograms of the estimation errors when applying the linear statistical method to 

Image 3-AtmCorr-288-bands. 
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Fig. 18. The products (row 1) and the sums (row 2) of the descriptive spectral signatures in 
the case of utilising the 288-bands (left column) and the 14-bands (right column) field 

reflectance spectra. 
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Fig. 19. Spectral signatures of applying linear ICA to Image 1. 
 
 
 
 

 

 
 

Fig. 20. Spectral signature for chlorophyll-a, obtained as a linear combination of the spectral 
signatures in fig. 19. 

 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT Hamed Hamid Muhammed

ISSN: 1790-5079 313 Issue 10, Volume 7, October 2011



 
Fig. 21. Comparison between (row 1) three selected raw (upwelling radiance) spectra, and the 
corresponding atmospherically corrected reflectance spectra (row 2) when using the 6S-code, 

and (row 3) linear transformation. 
 
 

 
Fig. 22. Concentration maps for Chl-a, SPM, SPOM and SPIM in Lake Erken, generated by 

2D-interpolation of the 1722 continuous field measurements. 
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