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Abstract: - This paper presents a demonstration of solving combined economic and emission dispatch problems by 
using one of swarm intelligences, called particle swarm optimization. The objective of the combined problem can be 
expressed by taking both the total production cost and total emission into account with required constraints. Among 
potential intelligent search methods, particle swarm optimization is well-known and widely-used in solving economic 
load dispatch. In this paper, the particle swarm optimization is exploited to demonstrate its use. A three-unit thermal 
power plant is situated for test. Sets of suitable dispatch with respect to economic or emission objectives can be 
efficiently found.   
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1   Introduction 
Economic load dispatch is one of the main 
functions in electrical power system operation, 
management and planning [1,2]. Security, 
reliability, economy and stability are characterized 
and included to form the dispatching objective or 
constraints in various forms. Typically, the main 
objective of economic load dispatch is to minimize 
the total production cost of the generating system 
while the required equality and inequality 
constraints must be satisfied. Nowadays, energy 
sources to produce mechanical power applied to the 
rotor shaft of generating units are of fossil fuels. 
This can cause a vast amount of carbon dioxide 
(CO2), sulfur dioxide (SO2) and nitrogen oxides 
(NOx) emissions in which atmospheric pollution is 
created [3]. Emission control over environmental 
pollution caused by fossil-fired generating units and 
the enforcement of environmental regulations [4] 
has received careful attention. May research work 
in generation allocation of thermal power plants 
have emphasized the essence of pollution control in 
electrical power systems [4-14].  
     However, taking only the operation of minimum 
environmental impact is impractical due to causing 
the higher production cost of the system. On the 
other hand, to operate the generating system with 
the minimum of total production cost is not met the 
emission requirement. Therefore, economic 

dispatch, emission dispatch or combined economic 
and emission dispatch is somehow chosen 
individually or merged all together. To find the 
appropriate solution to this question, a good power 
management strategy is set. Several optimization 
techniques such as lambda iteration, linear 
programming, non-linear programming, quadratic 
programming, interior point method or even 
intelligent search methods (e.g. genetic algorithm, 
evolutionary programming, particle swarm 
optimization, etc [1,3,6,13]) are employed for 
solving the various economic dispatch problems 
and also the unit commitment problems [15].  
     The solution of economic dispatch problems 
using genetic algorithm required a large number of 
generations when the power generating system has 
the large number of units. Combined economic and 
emission dispatch has been proposed in the field of 
power generation dispatch, which simultaneously 
minimizes both fuel cost and total emissions. When 
the emission is minimized the fuel cost may be 
unacceptably high or when the fuel cost is 
minimized the emission may be high. In literature 
as environmental economic dispatch or emission 
dispatch, many algorithms are used to solve such a 
problem. A cooling mutation technique in EP 
algorithm to solve CEED problem for nine units 
system was proposed [18]. However, [19] showed 
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that particle swarm optimization is superior to those 
intelligent search techniques mentioned previously. 
     Proposed methods in [20, 21] convert a 
multiobjective problem into a single objective 
problem by assigning different weights to each 
objective. This allows a simpler minimization 
process but does require the knowledge of the 
relative importance of each objective and the 
explicit relationship between the objectives usually 
does not exist.  
     In this paper two objectives are simultaneously 
minimize through the provision of the weighting 
factors. Section 2 illustrates economic and emission 
dispatch problems with corresponding 
mathematical expressions. Section 3 gives the brief 
of particle swarm optimization and its calculation 
procedure step-by-step. Section 4 is the simulation 
results and discussion. Conclusion remark is in 
Section 5.   
 
 
2   Problem Formulation 
Real power generation can be allocated to available 
generating units in many different ways. In this paper, 
only economic and emission objectives are considered 
as follows. As the name implies, the combined economic 
and emission dispatch problems consist of two main 
problems. Each of which can be solved separately, 
however this leads to carelessness of environmental 
impact of gas emission from electricity production if 
only the economic objective is taken into account and 
vice versa. Before describing the combined problem, the 
two objectives must be explained separately and then the 
combined function as follows.         
 
2.1 Economic dispatch 
Almost all coal, nuclear, geothermal, solar thermal 
electric, and waste incineration plants, as well as many 
natural gas power plants are thermal. Natural gas is 
frequently combusted in gas turbines as well as boilers. 
The waste heat from a gas turbine can be used to raise 
steam, in a combined cycle plant that improves overall 
efficiency. Power plants burning coal, oil, or natural gas 
are often referred to collectively as fossil-fuel power 
plants. Some biomass-fueled thermal power plants have 
appeared also. Non-nuclear thermal power plants, 
particularly fossil-fueled plants, which do not use 
cogeneration are sometimes referred to as conventional 
power plants. Commercial electric utility power stations 
are most usually constructed on a very large scale and 
designed for continuous operation. Electric power plants 
typically use three-phase or individual-phase electrical 
generators to produce alternating current (AC) electric 

power at a frequency of 50 Hz or 60 Hz (hertz, which is 
an AC sine wave per second) depending on its location 
in the world. Other large companies or institutions may 
have their own usually smaller power plants to supply 
heating or electricity to their facilities, especially if heat 
or steam is created anyway for other purposes. 
Shipboard steam-driven power plants have been used in 
various large ships in the past, but these days are used 
most often in large naval ships. Such shipboard power 
plants are general lower power capacity than full-size 
electric company plants, but otherwise have many 
similarities except that typically the main steam turbines 
mechanically turn the propulsion propellers, either 
through reduction gears or directly by the same shaft. 
The steam power plants in such ships also provide steam 
to separate smaller turbines driving electric generators to 
supply electricity in the ship. Shipboard steam power 
plants can be either conventional or nuclear; the 
shipboard nuclear plants are mostly in the navy. There 
have been perhaps about a dozen turbo-electric ships in 
which a steam-driven turbine drives an electric generator 
which powers an electric motor for propulsion. In some 
industrial, large institutional facilities, or other populated 
areas, there are combined heat and power (CHP) plants, 
often called cogeneration plants, which produce both 
power and heat for facility or district heating or 
industrial applications. AC electrical power can be 
stepped up to very high voltages for long distance 
transmission with minimal loss of power. Steam and hot 
water lose energy when piped over substantial distance, 
so carrying heat energy by steam or hot water is often 
only worthwhile within a local area or facility, such as 
steam distribution for a ship or industrial facility or hot 
water distribution in a local municipality. 
     Power is energy per unit time. The power output or 
capacity of an electric plant can be expressed in units of 
megawatts electric (MWe). The electric efficiency of a 
conventional thermal power station, considered as 
saleable energy (in MWe) produced at the plant busbars 
as a percent of the heating value of the fuel consumed, is 
typically 33% to 48% efficient. This efficiency is limited 
as all heat engines are governed by the laws of 
thermodynamics (See: Carnot cycle). The rest of the 
energy must leave the plant in the form of heat. This 
waste heat can go through a condenser and be disposed 
of with cooling water or in cooling towers. If the waste 
heat is instead utilized for district heating, it is called 
cogeneration. An important class of thermal power 
station is associated with desalination facilities; these are 
typically found in desert countries with large supplies of 
natural gas and in these plants, freshwater production 
and electricity are equally important co-products. Since 
the efficiency of the plant is fundamentally limited by 
the ratio of the absolute temperatures of the steam at 
turbine input and output, efficiency improvements 
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require use of higher temperature, and therefore higher 
pressure, steam. Historically, other working fluids such 
as mercury have been experimentally used in a mercury 
vapour turbine power plant, since these can attain higher 
temperatures than water at lower working pressures. 
However, the obvious hazards of toxicity, and poor heat 
transfer properties, have ruled out mercury as a working 
fluid. 
     The economic dispatch problem [2, 22] is to find the 
optimal combination of power generation in such a way 
that the total production cost of the entire system is 
minimized while satisfying the total power demand and 
some key power system constraints. Most of the 
problem given in the economic dispatch concerns with 
fossil fuel-fired thermal power plants. A thermal power 
plant is a power plant in which its prime-mover is driven 
by steam. Water is the working fluid. It is heated at the 
boiler and circulated with energy to be expanded at the 
steam turbine to give work to the rotor shaft of the 
generator. After it passes through the turbine, it is 
condensed in a condenser and then pumped to feed the 
boiler where it is heated up. This is known as a Rankine 
cycle as described in Fig. 1 and Fig. 2.       
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Fig. 1. Structure of a thermal power plant 
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Fig. 2. T-s diagram of a thermal power plant 

 
Fig. 3. Energy conversion diagram of the thermal power plant 
 
For simplification, thermal power plants can be modeled 
as a transfer function of energy conversion from fossil 
fuel to electricity as described in Fig. 3. An amount of 
fuel used to produce required electric power is 
considered in form of fuel price. Therefore, the fuel cost 
for each power generation unit is defined. Hence, the 
total production cost function of economic dispatch 
problem is defined as the total sum of the fuel costs of 
all generating plant units as described follows.  
 

( ){ }2 min

1
sin
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T i i i i i i i i i
i

F a P b P c d e P P
=

= + + + −∑  (1) 

 
Where 
      NG is the total number of generating units 
      FT is the total production cost 
     Pi is the power output of generating unit i 
     min

iP  is the minimum output of generating unit i 
     ai, bi, ci, di, ei are fuel cost coefficients of unit i 
 
It should note that (1) describes the fuel-cost function in 
which non-linear valve-point loading effect [19] is 
included. Fig. 4 explains characteristic of a smooth fuel-
cost curve while non-linear valve-point loading effect is 
presented in Fig. 5. To simplify the fuel-cost function, 
any smooth fuel-cost curve can be expressed in form of 
quadratic functions while a sinusoidal term represents 
valve-point effect.  
 

 
Fig. 4. Example of a smooth fuel-cost curve 
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Fig. 5. Representation of a nonlinear valve-point effect 
 
2.2 Emission dispatch 
A fossil-fuel power station is a power station that burns 
fossil fuels such as coal, natural gas or petroleum (oil) to 
produce electricity. Fossil-fuel power station are 
designed on a large scale for continuous operation. In 
many countries, such plants provide most of the 
electrical energy used. Fossil fuel power stations have 
some kind of rotating machinery to convert the heat 
energy of combustion into mechanical energy, which 
then operate an electrical generator. The prime mover 
may be a steam turbine, a gas turbine or, in small 
isolated plants, a reciprocating internal combustion 
engine. Some thermal plants have the intermediate step 
of using the heat from combustion to produce steam, 
reducing overall efficiency of electricity production. All 
plants use the drop between the high pressure and 
temperature of the steam or com busting fuel and the 

lower pressure of the atmosphere or condensing vapour 
in the steam turbine.  
     Byproducts of power thermal plant operation need to 
be considered in both the design and operation. 
Sometimes waste heat due to the finite efficiency of the 
power cycle, when not recovered and sold as steam or 
hot water, must be released to the atmosphere, often 
using a cooling tower, or river or lake water as a cooling 
medium, especially for condensing steam. The flue gas 
from combustion of the fossil fuels is discharged to the 
air; this contains carbon dioxide and water vapour, as 
well as other substances such as nitrogen, nitrogen 
oxides, sulfur oxides, and (in the case of coal-fired 
plants) fly ash and mercury. Solid waste ash from coal-
fired boilers must also be removed, although some coal 
ash can be recycled for building materials.  
     Fossil fueled power stations are major emitters of 
greenhouse gases (GHG) which according to the 
consensus of scientific organisations are a major 
contributor to the global warming observed over the last 
100 years. Brown coal emits 3 times as much GHG as 
natural gas, black coal emits twice as much. Efforts exist 
to use carbon capture and storage of emissions but these 
are not expected to be available on a commercial scale 
and economically viable basis by 2025.  
     The complete combustion of fossil fuel using air as 
the oxygen source is summarized in the following 
chemical reaction, assuming the nitrogen remains inert. 
Depending on temperature and flame parameters during 
combustion, however some of the nitrogen can be 
oxidized, producing various nitrogen oxides. Other, 
unintended, products of combustion are sulfur dioxide 
coming from sulfur impurities (predominantly in coal). 
 

 
 

2 2 2 2 23.76 3.76
4 4 2 4x y
y y y yC H x O x N Heat xCO H O x N⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + → + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
Fuel Oxygen Heat Carbondioxide Water+ → + +  

 
 

As the combustion flue gas exits the boiler it is routed 
through a rotating flat basket of metal mesh which picks 
up heat and returns it to incoming fresh air as the basket 
rotates, This is called the air pre-heater. The gas exiting 
the boiler is laden with fly ash, which are tiny spherical 
ash particles. The flue gas contains nitrogen along with 
combustion products carbon dioxide, sulfur dioxide, and 
nitrogen oxides. The fly ash is removed by fabric bag 
filters or electrostatic precipitators. Once removed, the 
fly ash byproduct can sometimes be used in the 
manufacturing of concrete. This cleaning up of flue 
gases, however, only occurs in plants that are fitted with 

the appropriate technology. Still, the majority of coal 
fired power plants in the world do not have these 
facilities. Legislation in Europe has been efficient to 
reduce flue gas pollution. Japan has been using flue gas 
cleaning technology for over 30 years and the US has 
been doing the same for over 25 years. China is now 
beginning to grapple with the pollution caused by coal 
fired power plants. Where required by law, the sulfur 
and nitrogen oxide pollutants are removed by stack gas 
scrubbers which use a pulverized limestone or other 
alkaline wet slurry to remove those pollutants from the 
exit stack gas. Other devices use catalysts to remove 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT P. Pao-La-Or, A. Oonsivilai, T. Kulworawanichpong

ISSN: 1790-5079 299 Issue 4, Volume 6, April 2010



Nitrous Oxide compounds from the flue gas stream. The 
gas travelling up the flue gas stack may by this time 
have dropped to about 50 °C (120 °F). A typical flue gas 
stack may be 150–180 metres (490–590 ft) tall to 
disperse the remaining flue gas components in the 
atmosphere. The tallest flue gas stack in the world is 
419.7 metres (1,377 ft) tall at the GRES-2 power plant in 
Ekibastuz, Kazakhstan. In the United States and a 
number of other countries, atmospheric dispersion 
modeling studies are required to determine the flue gas 
stack height needed to comply with the local air 
pollution regulations. The United States also requires the 
height of a flue gas stack to comply with what is known 
as the "Good Engineering Practice (GEP)" stack height. 
In the case of existing flue gas stacks that exceed the 
GEP stack height, any air pollution dispersion modeling 
studies for such stacks must use the GEP stack height 
rather than the actual stack height. 
     The world's power demands are expected to rise 60% 
by 2030. With the worldwide total of active coal plants 
over 50,000 and rising, the International Energy Agency 
(IEA) estimates that fossil fuels will account for 85% of 
the energy market by 2030. World organizations, and 
international agencies like the IEA are concerned about 
the environmental impact of burning fossil fuels, and 
coal in particular. The combustion of coal contributes 
the most to acid rain and air pollution, and has been 
connected with global warming. Due to the chemical 
composition of coal there are difficulties in removing 
impurities from the solid fuel prior to its combustion. 
Modern day coal power plants pollute very little due to 
new technologies in "scrubber" designs that filter the 
exhaust air in smoke stacks. Nowadays, the only 
pollution caused from coal-fired power plants comes 
from the emission of gases—carbon dioxide,nitrogen 
oxides, and sulfur dioxide into the air. Acid rain is 
caused by the emission of nitrogen oxides and sulfur 
dioxide into the air. These themselves may be only 
mildly acidic, yet when they react with the atmosphere, 
they create acidic compounds (such as sulfurous acid, 
nitric acid, and sulfuric acid) that fall as rain, hence the 
term acid rain. In Europe and the U.S.A., stricter 
emission laws and decline in heavy industries have 
reduced the environmental hazards associated with this 
problem, leading to lower emissions after their peak in 
1960s. Electricity generation using carbon based fuels is 
responsible for a large fraction of carbon dioxide (CO2) 
emissions worldwide; and for 41% of U.S. man-made 
carbon dioxide emissions. Of fossil fuels, coal 
combustion in thermal power stations result in greater 
amounts of carbon dioxide emissions per unit of 
electricity generated (2249 lbs/MWh) while oil produces 
less (1672 lb/(MW·h) or 211 kg/GJ) and natural gas 
produces the least 1135 lb/(MW·h) (143 kg/GJ). The 
Intergovernmental Panel on Climate Change (see IPCC) 

states that carbon dioxide is a greenhouse gas and that 
increased quantities within that atmosphere will lead to 
higher average temperatures in a global sense (global 
warming); concerns regarding the potential for such 
warming to change the global climate prompted IPCC 
recommendations calling for large cuts to CO2 emissions 
worldwide. Emissions may be reduced through more 
efficient and higher combustion temperature and through 
more efficient production of electricity within the cycle. 
Carbon capture and storage (CCS) of emissions from 
coal fired power stations is another alternative but the 
technology is still being developed and will increase the 
cost of fossil fuel-based production of electricity. CCS 
may not be economically viable, unless the price of 
emitting CO2 to the atmosphere rises. 
     The solution of economic dispatch problem [1,3,12] 
will give the amount of active power to be generated by 
different units at the minimum production cost for a 
particular demand. However, the total amount of 
pollutant emission is not included in classical economic 
dispatch problem. The total amount of pollutant 
emission from a fossil-fired thermal generating unit 
depends upon the amount of power generated by each 
unit [23]. For simplification, the total emission 
generated can be approximately modeled as a direct sum 
of a quadratic function and an exponential term of the 
active power output of the generating units. The 
pollutant emission dispatch problem can be described as 
the optimization of total amount of pollutant emission 
defined by the following equation. 
 

{ }2

1

G
i i

N
P

T i i i i i i
i

E P P e
=

= + + +∑ τα β γ ξ   (2) 

 
Where 
      NG is the total number of generating units 
      ET is the total pollutant emission 
     Pi is the power output of generating unit i 
     αi, βi, γi, ξi, τi are emission coefficients of unit i 
 
2.3 Combined economic and emission dispatch 
The economic dispatch and emission dispatch are two 
different problems. Emission dispatch can be included in 
conventional economic load dispatch problems by 
adding an emission constraint into the problem. In this 
paper, the two objectives can be converted into a single 
objective function [12,17] by introducing a price penalty 
factor as defined follows.  
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/
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Where  
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     h is the price penalty factor 
     i is the highest fuel-cost unit  
     j is the highest pollutant-emission unit   
 
The combined objective function of the economic and 
emission dispatch is assigned by the following 
expression. 
 

T eco T emi Tw F w hEΦ = +     (4) 
Where 
     ΦT is the combined objective function 
     weco, wemi are weighting factors.  
 
The two weighting factors can be given in many forms. 
The case of weco = 1.0 and wemi = 0.0 is to yield the 
classical economic dispatch problem while the pure 
emission dispatch is the case of weco = 0.0 and wemi = 1.0. 
To establish the combined economic and emission 
dispatch problem, both weighting factors must be equal, 
for example weco = 0.5 and wemi = 0.5.        
 
2.4 Problem constraints 
There are equality and inequality constraints [2]. In this 
kind of problems, a power balance equation (5) is set as 
an equality constraint whereas the limits of power 
generation output (6) are inequality constraints.   
 

1
0

GN

D Loss i
i

P P P
=

+ − =∑     (5) 

 
min max , 1, 2, ,i i i GP P P i N≤ ≤ =    (6) 

 
Where 
     PD is the total power demand of the plant 
     PLoss is the total power losses of the plant 
     min

iP  is the minimum output of generating unit i 
     max

iP  is the maximum output of generating unit i 
 
 
3   Particle Swarm Optimization based 
Optimal Solution of Combined Economic 
and Emission Dispatch Problems  
Kennedy and Eberhart developed a particle swarm 
optimization (PSO) algorithm based on the behavior of 
individuals (i.e., particles or agents) of a swarm [6,19, 
24]. Its roots are in zoologist’s modeling of the 
movement of individuals (i.e., fish, birds, and insects) 
within a group. It has been noticed that members of the 
group seem to share information among them to lead to 
increased efficiency of the group. The particle swarm 
optimization algorithm searches in parallel using a group 
of individuals similar to other AI-based heuristic 

optimization techniques. Each individual corresponds to 
a candidate solution to the problem. Individuals in a 
swarm approach to the optimum through its present 
velocity, previous experience, and the experience of its 
neighbors.  
     The PSO belongs to the class of direct search 
methods used to find an optimal solution to an objective 
function (aka fitness function) in a search space. Direct 
search methods are usually derivative-free, meaning that 
they depend only on the evaluation of the objective 
function. The particle swarm optimization algorithm is 
simple, in the sense that even the basic form of the 
algorithm yields results, it can be implemented by a 
programmer in short duration, and it can be used by 
anyone with an understanding of objective functions and 
the problem at hand without needing an extensive 
background in mathematical optimization theory. The 
PSO is a stochastic, population-based computer 
algorithm modeled on swarm intelligence. Swarm 
intelligence is based on social-psychological principles 
and provides insights into social behavior, as well as 
contributing to engineering applications. Social 
influence and social learning enable a person to maintain 
cognitive consistency. People solve problems by talking 
with other people about them, and as they interact their 
beliefs, attitudes, and behaviors change; the changes 
could typically be depicted as the individuals moving 
toward one another in a socio-cognitive space. Particle 
swarm optimization is inspired by this kind of social 
optimization. A problem is given, and some way to 
evaluate a proposed solution to it exists in the form of a 
fitness function. A communication structure or social 
network is also defined, assigning neighbors for each 
individual to interact with. Then a population of 
individuals defined as random guesses at the problem 
solutions is initialized. These individuals are candidate 
solutions. They are also known as the particles, hence 
the name particle swarm. An iterative process to 
improve these candidate solutions is set in motion. The 
particles iteratively evaluate the fitness of the candidate 
solutions and remember the location where they had 
their best success. The individual's best solution is called 
the particle best or the local best. Each particle makes 
this information available to their neighbors. They are 
also able to see where their neighbors have had success. 
Movements through the search space are guided by these 
successes, with the population usually converging, by 
the end of a trial, on a problem solution better than that 
of non-swarm approach using the same methods. 
     The PSO shares many similarities with evolutionary 
computation techniques such as Genetic Algorithms 
(GA) [25]. The system is initialized with a population of 
random solutions and searches for optima by updating 
generations. However, unlike GA, PSO has no evolution 
operators such as crossover and mutation. In PSO, the 
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potential solutions, called particles, fly through the 
problem space by following the current optimum 
particles. Each particle keeps track of its coordinates in 
the problem space which are associated with the best 
solution (fitness) it has achieved so far. (The fitness 
value is also stored.) This value is called pbest. Another 
"best" value that is tracked by the particle swarm 
optimizer is the best value, obtained so far by any 
particle in the neighbors of the particle. This location is 
called lbest. when a particle takes all the population as 
its topological neighbors, the best value is a global best 
and is called gbest. The particle swarm optimization 
concept consists of, at each time step, changing the 
velocity of (accelerating) each particle toward its pbest 
and lbest locations (local version of PSO). Acceleration 
is weighted by a random term, with separate random 
numbers being generated for acceleration toward pbest 
and lbest locations. In past several years, PSO has been 
successfully applied in many research and application 
areas. It is demonstrated that PSO gets better results in a 
faster, cheaper way compared with other 
methods. Another reason that PSO is attractive is that 
there are few parameters to adjust. One version, with 
slight variations, works well in a wide variety of 
applications. Particle swarm optimization has been used 
for approaches that can be used across a wide range of 
applications, as well as for specific applications focused 
on a specific requirement. 
     In a physical n-dimensional search space, the position 
and velocity of individual i are represented as the 
velocity vectors. Using these information individual i 
and its updated velocity can be modified under the 
following equations in the particle swarm optimization 
algorithm. 
 

( ) ( ) ( )1 1k k k
i i i

+ += +x x v     (7) 
( ) ( ) ( )( )

( )( )
1k k klbest

i ii i i

kgbest
i i

+ = + α − +

β −

v v x x

x x
  (8) 

Where   
     ( )k

ix  is the individual i at iteration k 

     ( )k
iv  is the updated velocity of individual i at 

iteration k 

     αi, βi are uniformly random numbers in a range of 
[0,1]  
     lbest

ix  is the individual best of individual i 

     gbestx   is the global best of the swarm 
 
The procedure of the particle swarm optimization can 
be summarized in the flow diagram of Fig. 1.   
 
 

START

Create an initial swarm

Evaluate the fitness for each particle

Check and update
personal best and global best

Update each individual velocity

Check stopping criteria

Update individuals

k = k + 1

END

Success

Satisfied

Unsatisfied

 
Fig. 1. Flow diagram of particle swarm optimization 

 
Moreover, the pseudo code of the procedure can be 
written as follows.  
 

 
  I) For each particle: 
        Initialize particle 
 
  II) Do: 
      a) For each particle: 
         1) Calculate fitness value 
         2) If the fitness is better than the best fitness in history 
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         3) Set current value as the new population best 
         End 
      b) For each particle: 
         1) Find the particle neighborhood and the best fitness particle 
         2) Calculate particle velocity according to the velocity equation  
         3) Apply the velocity constriction 
         4) Update particle position according to the position equation (2) 
         5) Apply the position constriction 
         End 
      While maximum iterations or minimum error criteria is not attained 

 
5   Simulation Results 
To verify the effectiveness of the proposed particle 
swarm optimization method, a three-unit thermal power 
generating plant was tested. Fuel cost coefficients and 
generation limits for each generating unit of the test 
system were given in Table 1. Table 2 presented 
pollutant emission coefficients of each generating unit.  
 
 
Table 1: Fuel cost coefficients  

i a b c d e min max 
1 100 200 10 15 6.283 0.05 0.5 
2 120 150 10 10 8.976 0.05 0.6 
3 40 180 20 10 14.784 0.05 1.0 

 
Table 2: Emission coefficients  

i α β γ ξ τ 
1 6.490 -5.554 4.091 2×10-4 2.857 
2 5.638 -6.047 2.543 5×10-4 3.333 
3 4.586 -5.094 4.258 1×10-6 8.000 

 
Some parameters must be assigned for the use of particle 
swarm optimization to solve combined economic and 
emission dispatch problems as follows: 

• Number of particles = 50 
• Maximum generation = 1000 
• Maximum generation stalled = 50 
• Maximum velocity = 15 

 
The simulations were performed using MATLAB 
software. The results obtained from particle swarm 
optimization of solving combined economic and 
emission dispatch problems described in this paper can 
be divided into three test cases as follows. 
 
5.1 Case 1: Pure Economic Objective  
In this case, the weighting factors were given by, 
  weco = 1.0  

wemi = 0.0 
 
The obtained results for the three-unit system using the 
particle swarm optimization were given in Table 3. It 
showed that the particle swarm optimization has 

succeeded in finding a global optimal solution for this 
case. 
 
Table 3: Optimal solution for test case 1 

P1 P2 P3 FT ET ΦT 
0.3595 0.1918 0.6482 790.98 38.02 790.98

 
Fig. 2 showed the convergence of the solution obtained 
by the particle swarm optimization. The total of 84 
iterations was spent during this process. The searching 
process was terminated by the maximum number of 
stalled generation.    
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Fig. 2 Solution convergence of test case 1 

 
5.2 Case 2: Pure Emission Objective  
In this case, the weighting factors were given by, 
  weco = 0.0  

wemi = 1.0 
 
The obtained results for the three-unit system using the 
particle swarm optimization were given in Table 4. It 
showed that the particle swarm optimization has 
succeeded in finding a global optimal solution for this 
case. 
 
Table 4: Optimal solution for test case 2 

P1 P2 P3 FT ET ΦT 
0.2804 0.1443 0.7751 813.02 37.35 399.98

 
Fig. 3 showed the convergence of the solution obtained 
by the particle swarm optimization. The total of 126 
iterations was spent during this process. The searching 
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process was terminated by the maximum number of 
stalled generation.    
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Fig. 3 Solution convergence of test case 2 

 
5.3 Case 3: Combined Economic and Emission 
Objective  
In this case, the weighting factors were given by, 
  weco = 1.0  

wemi = 1.0 
 
The obtained results for the three-unit system using the 
particle swarm optimization were given in Table 5. It 
showed that the particle swarm optimization has 
succeeded in finding a global optimal solution for this 
case. 
 
Table 5: Optimal solution for test case 2 

P1 P2 P3 FT ET ΦT 
0.0527 0.2007 0.9468 794.07 38.27 1203.9

 
Fig. 4 showed the convergence of the solution obtained 
by the particle swarm optimization. The total of 84 
iterations was spent during this process. The searching 
process was terminated by the maximum number of 
stalled generation.    
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Fig. 4 Solution convergence of test case 3 

 

6   Conclusion 
Economic and emission dispatch problems are combined 
and converted into a single objective function. The 
converted objective function is minimized based on 
efficient particle swarm optimization. The results 
showed that sets of suitable dispatch with respect to 
economic or emission objectives can be efficiently 
found.  
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