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Abstract: The military operations and activities are affected by weather conditions. Relevant information from area of 
interest is necessary. Because of irregularly distributed information the interpolation must be used. Two methods of 
interpolation were developed and they are introduced in this article. The methods have considered not only horizontal 
dependence but also vertical dependence of values. Their fruitfulness for interpolation of SYNOP observations in 
Central Europe was tested by cross-validation and backward interpolation. The usage of the methods for interpolation 
of climate data is also discussed. 
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1   Introduction 
The weather affects people and human activities. The 
aim of the research was an impact of weather on military 
activities, such as traffic, health, usage and functionality 
of electronic equipment etc. ([4]-[7]). It is important to 
be able to obtain relevant information for area of interest 
from available weather data. Two different types of data 
are considered. The first type are real observed data, that 
are mostly very important in cases of military activity, 
e.g. temperature, precipitation etc. The second type are 
climate data that are important for planning and 
preparation phase of the activity. The main difference 
between these types is spatial variability (larger for 
current values in comparison with mean values). 
The difference between interpolated quantities could be 
very significant because of their distribution and above 
mentioned spatial variability. We tried to find a 
relatively simple, fast and universal method for 
interpolation of surface meteorological quantities. The 
vertical dependence is obvious for most of quantities. 
Two interpolation methods were developed considering 
not only horizontal dependence but also possible vertical 
dependence. The vertical profile can be obtained by 
employing of theoretically derived relations, radiosonde 
measurements, climate profiles etc. These approaches 
cannot be used universally for different quantities. 
Vertical relationship was derived directly from analyzed 
data in the considered methods. 
The final product was an interpolation to regular grid 
with horizontal resolution of approximately 5 km. The 
cross validation was used for verification of interpolation 
methods. The value for each station was interpolated 
from all other stations and this value was compared to 
the real value. The considered quantities were 
temperature, wind, relative humidity, visibility and 

amount of precipitations from synoptical station 
(SYNOP report)  
The backward interpolation was tested as well. The 
values were interpolated into regular grid with horizontal 
resolution about 30 km. Values for station positions were 
back interpolated from grid values. The effect of grid 
distance was tested for selected quantities on both the 
10 km and 15 km grids.   
 
 

2   Interpolation methods 
The geographic projection was defined by the following 
equations: 

( )0latlatrx −⋅=  

( )0)cos( lonlonlatry −⋅⋅=  
where lat is latitude, lon longitude, r radius of the Earth 
(6371.1 km), lat0 and lon0 reference latitude (49.5 N) 
and longitude (15.0 E).  
The area of interest covering the Czech Republic and 
adjacent territory was selected with respect to data 
availability and aspiration to analyze the accuracy for 
different types of relief. In Fig. 1 white represents the 
lowlands and black represents highest places (High 
Tatras, Alps). The altitudes of stations varied from 
116 m to 2635 m  above MSL and average distance 
between stations were approx. 50 km. 
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Fig. 1: Area of interest - orography 
 
The first method (M1) was inspired by approach 
described in [3]. The method consists of the following 
steps: 
1) The vertical gradient was calculated by means of 

three-dimensional first-order polynomial 
approximation using the least-square method. The 
gradient was calculated for stations with minimum 
of 5 other stations in the vicinity of 300 km. The 
elimination of gradient that differed more then 4-σ 
from mean value was found useful. 

2) The vertical gradient was interpolated by inverse 
distance weighting (IDW) for those stations where it 
could not be derived. The weight decreases with 
square of distance. 

3) The vertical recalculation of analyzed values to the 
selected referential level was performed by using 
these vertical gradients. The median of considered 
station altitudes (mostly about 360 m above MSL) 
was used as a reference value. 

4) Vertical gradient was interpolated into points of 
interest (using IDW). It was also possible to reduce 
the interpolated gradient values to defined range. 

5) Values in reference level were interpolated into 
points of interest (using IDW).  

6) Afterwards the values corresponding to the real 
(model) orography were calculated. The analyzed 
values can be reduced to prescribed interval (e.g. 
0 % ÷ 100 % for relative humidity). 

The second method (M2) is described in following 
paragraphs. Position of each point in space of dimension 
D is given by vector 

( )iD

iii xxx K21T =x  for ni ,,1K=  

(meteorological stations), 

( )jD

jjj xxx K21T =x  for mj ,,1K=  (general 

points, grid points). 
The measured values iz  are known for each station. The 

values iz  are considered to be a function of position x. 

The measured (functional) values are organized into the 

vector [ ]nzz K1
T =z . The goal is to determine the 

vector of estimate values [ ]mzz ˆˆˆ
1

T K=z  for 

general points. 
Linear regression in form following form is used at the 
first step  

zrxaxaxaaz ++++= 3
3

2
2

1
10 . 

The equation could be expressed in matrix convention 
for n known points (meteorological stations). 
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Vector of parameters a of linear regression is derived by 
use of least square method solving the equation  

( ) zXXXa T1T −= , 

which fulfils condition .minT
def

zz =rr  

Using the linear regression function in the second step 

the values 0z , [ ]( )nzz 001
T
0 K=z  are computed for 

known meteorological stations and for general points of 

interpolation [ ]( )mzz 001
T
00, K=zz . 

The purpose of linear regression is to reduce dependence 
of the functional values z on the coordinates. Difference 
of function values and values derived by linear 
regression on known points is denoted  iii zzz 0−=∆ . 

 
 
 

 
 
Fig. 2: The principle of selection of distances and 
differences of functional values 
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Estimation of functional values on the general point is 
then calculated by  

jjj zzz 00 ˆˆˆ ∆+= , 

where  

jz0ˆ∆ is the correction of values, 

jz0ˆ  is the first approximation computed by use of linear 

regression.  
Correction is computed using ordinary kriging 
algorithm. Kriging is generally based on the assumption 
that the functional value of a phenomenon is a function 
of the same type of phenomena in the vicinity and can be 
calculated using the weighted average. In our case 

( ) ( )∑
=

∆=∆
n

i

ijijj zpz
1

ˆ xx  for mj ,,1K= , 

where 
Kjx  location of general point; 

Kijij d=x  distance between the meteorological 

station and general point, Kijp weight of difference 

z∆  and 
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Let us suppose that the weight of difference is inversely 
proportional to the variance of function (measured) 
values, ie.  

)var(
.

ik

ik
z

const
p

∆
=  with requirement that ∑ = 1ikp  

The first step is to calculate the values ikz∆  for each 

combination of meteorological stations. 
For the same combinations of stations the distances 

ikd are calculated. The difference ikz∆  can thus be 

assigned to any distance. Lengths and associated 
differences are sorted into non-descending sequence and 
divided to the appropriate number (q) of groups. For 

each group we calculate the average length d  and 
average variance iks ;  

∑= ikd
c

d
1

;   

( ) ( )∑ ∑∆−∆=∆= 211
var ikikik zz

c
zs c , 

where  
c is the number of lengths (differences) in a total of q 
groups. 
 
A total of q average lengths and variances is received.  

Assuming that the variance is a function Φ of distance, it 
is possible to write for each group of sorted lengths 

( ) ( )cc ikik ds )(Φ=  for qc ,,1K= ,  

but also )( ijij dv Φ=  for mjnki ,,1;,,1, KK == ,  

where  

ijv  is variance computed as a function of the distance 

between the general and known points.  
A linear dependence was considered for our solution. 
Parameters of linear regression for variance in the shape  

dbbs ⋅+= 10  were calculated using least-squares 

while assuming the following conditions:  
1) variance must be non-negative,  
2) variance is constant or increasing with distance. 
The next step is calculation of variance estimates (from 
derived equation of linear function) for each 
combination of lengths, i.e.: 

)( ijij ds Φ= , respectively )( ikik dv Φ= . 

After this step all the values for calculations are known. 
Ordinary kriging interpolation requires complying with 
the following matrix equation 
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For m interpolated values on the general points the 
previous equation can be written as 
 



















=





































111011

1

1

21

11211

21

21

11211

1

111

L

L

MOMM

L

L

L

MOMM

L

L

L

MMOM

L

nmnn

m

m

nmnn

m

nnn

n

vvv

vvv

mmm

ppp

ppp

ss

ss

 
 
or 

{
),1(

T

),1(

T

)1,1(

T 0

mn

m

mnnn

n

n

++++









=

















G

e

V

Q

m

P

Γ

e

eΣ

32143421

 
where 
s … variances calculated from the known (measured) 
values at meteorological stations, 
v … variances in the general points calculated from the 
linear regression function, 
m … Lagrange multipliers. 
 
Weight matrix is calculated by formula 
 

GΓQ 1−= . 
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We obtain a total of m weight vectors p, that consist 
from n elements. Matrix P  can be written also in the 
form 

[ ]mj pppP KK1=
, 

where 

 [ ]jnjj pp K1
T =p . 

 
Corrections of functional values are then calculated from 
the formula 
 

zp ∆=∆ Tˆ
jjz . 

 
Interpolated value of the function in the general point 
equals to 

jjj zzz ˆˆ
0 ∆+= . 

 
Estimated standard deviation of correction ẑ∆σ is 

computed according to 
 

QGΣ =∆ẑ . 

 
The main diagonal of matrix ẑ∆Σ contains the estimates 

of variances 2
ˆ jz∆σ  of interpolated differences jz∆  in 

general points Bj. 
Described interpolation method is suitable for 
interpolating variables whose change is continuous, 
without anomalous values. 
The normalization of parameters (coordinates) improves 
using of the method in a number of factors: 
� improves numerical stability of interpolation 

algorithm (regardless of the selected type of 
interpolation); 

� parameters (coordinates), from which the euclidean 
distance d is calculated, have not the physical 
dimension and their number may be changed (space 
dimension D is not limited); 

� normalized parameters partly respect importance of 
particular parameter for the interpolated value. 

Along with ordinary kriging method the same functional 
values were calculated using algorithm based on radial 
basis functions (RBF interpolation). Both methods 
provide almost identical results. The method of Kriging 
was selected for possibility to calculate the accuracy 
estimates of interpolated values.  
Both described methods were compared with IDW 
method which did not consider vertical relation 
(M1_0g). Some modifications of described methods 
were also used in tests. The list and explanation of tested 
methods is described below: 
 

M1 described method No. 1 
M1_L M1 results are modified to be in interval 

<D;H>. All values smaller than D are 
set to D and values greater than H to H. 
Rest of values are unchanged.  

M1_0g application of IDW in 2D (without 
consideration of vertical dependence) 
with the same weight function as for M1 

M1_Q M1, where vertical gradients are derived 
only from the vicinity of 100 km  

M1_Q_L M1_Q results are modified to be in 
interval <D;H>. 

M2 described method No. 2 
M2_L M2 results are modified to be in interval 

<D;H>. 
 
 

3   Verification of methods 
The methods were tested for directly observed data from 
main synoptic terms (0, 6, 12 and 18 UTC) from August 
2008 till May 2009 Data from several stations were for 
some cases missing. The interpolation was performed for 
cases with minimum of 50 available values (from 150 
possible). The considered quantities were: 

• Temperature 
• Precipitation 
• Wind 
• Relative humidity 
• Visibility 
• Cloud base. 

 
The following characteristics were used in verification: 
- the root mean square error (RMSE) 

∑
=
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N

i

ii OA
N

RMSE
1

2)(
1

 

-  systematic error (AVG), 

∑
=

−=
N

i

ii OA
N

AVG
1

)(
1

 

-  maximum overestimate (MAE), 
)max( ii OAMAE −= , for all i, 

-  maximum underestimate (MIE), 
)min( ii OAMIE −= , for all i, 

-  2.5% quantile of difference (Q1), 
- 97.5% quantile of difference (Q2). 
  
The contingency table for threshold value and derived 
statistical characteristics were considered as criteria of 
dangerous phenomena detection. The contingency table 
contains number of real observed/unobserved 
phenomena (first index in matrix element notation, i.e. 
1/0) in case of analyzed/unanalyzed phenomena (second 
index in matrix element notation, i.e. 1/0). Following 
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derived characteristics are considered: 
- equitable score (EQS), 

EQS = a00 / (a00+a01) + a11 / (a11+a10) – 1; 
- false alarm (FAR),  

FAR =a01 / (a01 + a11);  
- probability of detection (POD)  
      POD= a11 / (a11 + a10); 
- bias (BIAS)  

BIAS= (a01 + a11) / (a11 + a10); 
 

The characteristics were always derived from all 
available measurement. Therefore stations with smaller 
data amount affected results less then stations having 
larger data set. 
In order to study vertical dependence of interpolation 
accuracy the stations were divided into 6 groups. The 
groups with their notation are in Table 1. The seasonal 
difference of accuracy was also the object of study. 
 

Table 1.: Group of stations 

Elevation [m] Notation Number 

< 200 D200 20 

201-350 D350 41 

351-500 D500 27 

500-700 D700 29 

701-1000 D1000 17 

> 1000 N1000 15 
 
 

4   Results 
The statistical characteristics for temperature analysis are 
stated in Table 2. The most accurate method is M2 
followed by M1. The resulting error is less then 3 °C for 
95% cases. The RMSE values are about 1.3 °C and it is 
an evident improvement in comparison with M1_0g. 
Vertical gradients from method M1_Q vary in space 
more than M1 and it can lead to bad forecast (maximum 
error greater than 56 °C) and worse RMSE values.  
The accuracy decreases with elevation. The big error is 
evident in event of temperature inversions. The 
significant error can be found for M1 in lowland (for 
example in Hungary) where the elevation of station does 
not differ too much and when we use determined 
gradient for station whose elevation differs significantly. 
The analyses are better at 18 and 12 UTC in comparison 
with night or morning (0 and 6 UTC). However, the 
accuracy also varies in different months. The most 
accurate results come from March, the worst results from 
April (RMSE for M2 about 2.0 °C). This could be 
connected to higher variability or inversion presence in 
this month, but the further study is needed. 
 

Table 2. : Temperature  interpolation accuracy [K] 
RMSE MAE MIE AVG Q1 Q2 

M1_Q 1.7 56.4 -29.5 0.0 -3.0 3.2 
M1_0g 2.7 16.5 -15.8 -0.2 -5.4 6.8 
M1 1.4 13.8 -13.3 0.0 -3.0 3.0 
M2 1.3 11.5 -12.9 0.0 -2.7 2.9 
 
As regards to relative humidity the interpolation was 
made using the same methods. The interpolated values 
should be inside of interval 0% - 100%. Therefore the 
results of methods were also limited (0% for all negative 
values, 100% for all values greater than 100%).  
The RMSE values are presented in Table 3 for selected 
methods and considered group of stations. The best 
results were provided again by M2 followed by M1. The 
interpolation is better for stations with lower elevation 
again. 
The analyzed values from method M1_Q often lay 
outside a physically possible range mainly for the 
highest stations (compare M1_Q and M1_Q_L). The 
analyzed values differ more then about 100% from 
possible values. From this point of view the method M1 
is better, however in some cases producing the value 
140% or negative values. The M2 never produced 
negative value and very rarely values significantly 
greater than 100%. The method M2 does not interpolate 
outside of observed values very often, which is the main 
difference in comparison with M1. When we want to 
develop universal method this is convenient property. 
 
Table 3. : Relative humidity interpolation 

RMSE [%] 
 M1 M2 M1_0g M1_Q M1_Q_L 
D200 6.4 6.5 6.6 6.3 6.3 
D350 7.2 7.1 8.2 7.2 7.1 
D500 7.3 7.0 8.5 6.9 6.9 
D700 8.1 8.5 9.3 7.9 7.9 
D1000 9.8 9.8 11.7 9.4 9.4 
N1000 14.4 12.4 18.6 21.8 17.9 
ALL 8.6 8.3 10.3 10.0 9.1 

 
The wind velocity was interpolated by two techniques. 
The first technique was direct velocity interpolation. The 
second technique was a separate interpolation of 
meridional and zonal part of velocity and the final 
velocity was computed from these results. Not only 
velocity but also direction is obtained using the second 
technique. However, the disadvantage is exclusion of 
measurements without defined direction (for example 
variable wind). For enabling of comparison of these two 
techniques these data were discarded. The results for 
considered group of stations are presented in Table 4 and 
Table 5. 
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Table 4. : Wind velocity RMSE [m/s] – direct 
velocity interpolation 

 M1 M2 M1_0g M1_Q 
D200 1.7 1.8 1.9 1.7 
D350 1.8 1.7 2.1 1.7 
D500 1.5 1.4 1.7 1.4 
D700 1.8 1.8 2.3 1.7 
D1000 3.1 2.9 3.8 2.9 
N1000 4.4 4.4 5.8 5.8 
ALL 2.3 2.3 2.9 2.6 

 
Table 5. : Wind velocity RMSE [m/s] – 

composition of meridional and zonal wind 
 M1 M2 M1_0g M1_Q 
D200 1.8 1.8 1.9 1.8 
D350 1.8 1.7 2.0 1.7 
D500 1.5 1.5 1.6 1.4 
D700 1.9 1.7 2.2 1.7 
D1000 3.1 2.9 3.7 3.0 
N1000 4.7 4.2 6.1 5.8 
ALL 2.4 2.3 2.9 2.6 

 
No significant difference between used techniques was 
found. The methods M1 and M2 are comparable and it is 
evident improvement in comparison with M1_0g. The 
improvement of method M1_Q is not evident. 
The RMSE value is significantly larger for stations with 
higher elevation. This is caused by frequent values 
underestimation. The RMSE values are larger in winter 
than in summer months. 
The zonal and meridional part of wind vector 
interpolation accuracy is stated in Table 6. There is not 
significant difference between zonal and meridional part 
of velocity. The best results came from M1 and M2 
again. 
 
Table 6. : RMSE for velocity 

 

Zonal velocity 

[m/s] 

Meridional velocity 

[m/s] 

M1_Q 2.7 2.5 

M1_0g 2.6 2.7 

M1 2.3 2.3 

M2 2.2 2.3 
 
The accuracy of visibility interpolation was assessed by 
use of statistical characteristics EQS, FAR, BIAS and 
POD that were determined for four limits of visibility – 
0.5, 1, 3 and 5 km.  
Interpolated values were often overestimated. The EQS 
(Table 7.) increases with threshold value. The best 
results are provided by method M2, whilst the worst 
method is M1_0g which is mainly caused by small 

values of POD of this method. Nevertheless the results 
of all methods are worse than desired, FAR (0.3; 0.5), 
POD (0.2; 0.5).  Large space and time variability of 
visibility appeared to be a major problem. The variability 
can not be affected by available measurement density. 
The additional information is probably needed for 
significant improvement.  
  
Table 7. : Statistical characteristics for 

visibility 
Char. Thre. val. M1 M2 M1_Q M1_0g 

0.5 km  0.19 0.24 0.24 0.02 
1 km  0.21 0.28 0.25 0.05 
3 km  0.31 0.41 0.34 0.21 

EQS 

5 km  0.42 0.50 0.45 0.34 
0.5 km  0.55 0.38 0.51 0.55 
1 km  0.51 0.35 0.46 0.53 
3 km  0.39 0.33 0.37 0.41 

FAR 

5 km  0.29 0.28 0.29 0.34 
0.5 km  0.21 0.25 0.26 0.02 
1 km  0.23 0.30 0.27 0.05 
3 km  0.35 0.45 0.38 0.23 

POD 

5 km  0.47 0.56 0.50 0.39 
0.5 km  0.47 0.41 0.52 0.05 
1 km  0.47 0.46 0.51 0.11 
3 km  0.57 0.66 0.61 0.40 

BIAS 

5 km  0.67 0.79 0.71 0.59 
 
 
The 24 hour precipitation interpolation was verified. The 
method M1 according to RMSE gives the best results 
(Table 8).  But the difference between all considered 
methods is not significant. Methods fail mainly for 
highest stations.  
The ability to analyze limit values of precipitation was 
studied. As the limit values were 1, 10 and 20 mm. The 
computed characteristics are again very similar for all 
considered methods. The EQS values decrease from 0.8 
for 1 mm threshold to 0.4 for 20 mm threshold, the FAR 
values from 0.2 to 0.4 and POD from 0.9 to 0.4. The 
precipitation analyses are better than visibility analyses 
but the additional information from other sources (radar 
measurement, etc.) could improve analyses significantly.  
 
Table 8. : Daily precipitation RMSE [mm] 
 M1 M2 M1_Q M1_0g 
D200 2.0 2.1 2.0 2.1 
D350 2.2 2.1 2.2 2.4 
D500 2.2 2.3 2.2 2.3 
D700 2.3 2.4 2.2 2.5 
D1000 2.8 3.1 2.8 2.8 
N1000 5.4 6.2 7.4 5.6 
ALL 2.8 3.0 3.3 2.9 
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To simplify the problem the cloud base was processed 
without considering the amount of clouds. Computed 
characteristics for two threshold values, 300 m and 
600 m above surface, are in Table 9. Comparing to 
visibility, these results are better. The best results are 
provided by method M2 but other methods are 
comparable and a little better than method M1_0vg. The 
method M1_0vg fail for groups of station N1000 and 
D1000 and threshold value 300 m. In this case the EQS 
is lower than 0.15. Generally for all methods, results for 
stations with lower elevations are better. 
 
Table 9 : Statistical characteristics for cloud base 
analysis 

   M1 M2 M1_Q M1_0g 

EQS 300 m 
600 m 

0.40 
0.56 

0.46 
0.56 

0.42 
0.56 

0.34 
0.51 

FAR 300 m 
600 m 

0.39 
0.31 

0.44 
0.33 

0.41 
0.32 

0.42 
0.34 

POD 300 m 
600 m 

0.46 
0.71 

0.54 
0.73 

0.49 
0.71 

0.40 
0.67 

BIAS 300 m 
600 m 

0.75 
1.02 

0.97 
1.09 

0.83 
1.04 

0.69 
1.02 

 
But the errors could be very large. The overestimation of 
cloud base, which is common for all methods, evidently 
grows with station elevation. Great error for highest 
stations in winter period could be caused by presence of 
low inversion cloudiness. The value interpolated from 
surrounding of stations with lower elevation (below 
inversion) is low but in reality there are only higher 
clouds or there is no cloudiness at all. The cloud base 
analysis can be affected by observation accuracy (similar 
as for visibility). Most observations are provided by 
equipment with possibility of human correction but for 
some stations and time the raw data from equipment are 
reported. The problem is also with accuracy and 
representativity of measurement. The amount of 
cloudiness could be included into analysis to receive 
more usable results. 
 
 

5 Backward interpolation  
Interpolation error is dependent on the density of 
stations. The distance to which must be interpolated is 
larger in cross-validation with comparison to real density 
station because of omitting station. The resulting errors 
are therefore larger than would correspond to an 
interpolation error using all stations. The following 
approach was chosen for estimate of this effect: 
1) Values of all stations were interpolated to a regular 

network. 
2) The interpolated values were interpolated back to 

point of observation.  
The grid resolution 30 km was considered (corresponds 
to the order of the average distance between stations). 
Further tests were carried out with finer grid resolution 
10 km and 15 km. The analyses were computed only for 
two months. The first was January 2009, which 
represents cold period and the second August 2008, 
which represent warm part of year. 
The influence of grid distance is discussed firstly. This 
experiment is carried out only for the M2 for the 
temperature range in the months of August and January. 
Test results for temperature are in the Table 10 and for 
the visibility in Table 11. For two months we get a 
similar increase in the RMSE values with grid distance 
increase. Considering all the stations irrespective of 
altitude, the values increase with the square root of grid 
distance (for temperatures slightly faster than for 
visibility). The accuracy obtained in cross-validation is 
comparable with grid resolution approximately 80 km if 
this dependence was considered. This roughly 
corresponds to twice the distance of the considered 
stations. 
For other methods and variables was performed 
backward interpolation only for the grid distance 30 km. 
But the backward interpolation for this net resolution 
was computed for all methods as cross validation. The 
results of interpolation are, as expected, better than of 
cross-validation. Improvement for each station is 
strongly influenced by distance from the grid point. For 
all methods except for M2 (and its variants) is the same 
observed and analyzed value (for all points with 
observation), therefore accurate. 
For the best cross-validation methods M2 and M1 
backward interpolation is usually worse than the other 
methods. This fact may be due to the fact that the 
resulting fields are strongly influenced by nearest 
stations. The resulting field is then smoother and absents 
in him great extremes and therefore the better results are 
obtained for cross-validation. The nearest station is 
crucial for other methods. Therefore, in cross validation 
tests are better, but again failed to interpolation to points 
farther from observation points. 
 
 
 
 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT Karel Dejmal, Vlastimil Kratochvil

ISSN: 1790-5079 150 Issue 2, Volume 6, February 2010



Table 10: RMSE for backward interpolation and cross 
validation for temperature  and method M2 [ºC] 

    
January 

2009     

Group\grid 10 km 15 km 30 km Cross-
val. 

D200 0.4 0.5 0.7 1.4 
D350 0.4 0.5 0.9 1.5 
D500 0.3 0.5 0.8 1.3 
D700 0.6 0.7 1 1.6 
D1000 0.7 0.9 1.4 1.8 
N1000 1.2 1.7 2.2 1.8 
All 0.6 0.8 1.1 1.6 

  
August 
2008   

Group\grid 10 km 15 km 30 km Cross-
val. 

D200 0.3 0.4 0.6 1.2 
D350 0.3 0.4 0.7 1.1 
D500 0.2 0.4 0.6 1,0 
D700 0.4 0.5 0.8 1.4 
D1000 0.6 0.7 1.1 1.5 
N1000 0.9 1.2 1.6 1.7 
All 0.5 0.6 0.9 1.3 

 
Table 11: RMSE for backward interpolation and cross 
validation for visibility and method M2 [km] 

    
January 

2009     

Group\grid 10 km 15 km 30 km Cross-
val. 

D200 1.7 2.3 3.4 7.0 
D350 1.7 2.2 3.5 7.1 
D500 2.1 2.9 4.5 8.6 
D700 2.3 3.3 5.1 10.2 
D1000 5.3 6.3 9.7 13.1 
N1000 14.1 16.8 22.5 22.3 
All 5.2 6.3 8.7 11.1 

  
August 

2008   

Group\grid 10 km 15 km 30 km Cross-
val. 

D200 3.9 5.0 7.6 1.7 
D350 4.5 5.8 8.8 1.7 
D500 3.4 5.1 8.1 2.1 
D700 3.8 5.4 8.3 2.3 
D1000 6.8 8.1 11.6 5.3 
N1000 13.8 15.1 19.0 14.1 
All 6.1 7.3 10.3 5.2 

 
 
 

6   Other usage and examples 
Some examples of final output of described methods will 
be introduced in this section. The methods have not been 
used only for quantities described in test but they have 
been used also for interpolation of climate data. These 
fields are usually slighter in comparison with term 
measurements and therefore the methods are relatively 
successful. The results of quantities were visually 
compared with results in climate atlas [8]. There was 
used bigger amount of stations and longer period (mostly 
all 30-year period). Structure of our results mostly is 
comparable with structure of “real” fields.  
The example of temperature analysis is shown. The 
results of methods M1 and M2 are depicted in Fig. 2 and 
Fig. 3. The analysis produced by numerical weather 
prediction (NWP) model ALADIN is in Fig. 4. All tree 
fields are similar. Larger differences are in north east 
part of the area, where are no observations. The 
distribution of uncertainty as a product of method M2 is 
in Fig. 5. The dependence on stations distribution is 
obvious.  

 
 
Fig. 2: Temperature analysis by method M1 (30th August 
2008, 12 UTC) in °C. 
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 Fig. 3: Temperature analysis by method M2 (30th 
August 2008, 12 UTC) in [C]. 
 

 
Fig. 4: Temperature analysis by NWP model ALADIN 
(30th August 2008, 12 UTC) in °C. 

 
Fig. 5: Distribution of temperature analysis uncertainty 
by method M2 (30th August 2008, 12 UTC) in °C. 
 
 
 
 

7   Conclusion 
The tested methods M1 (based on inverse distance 
weight) and M2 (based on ordinary kriging) were used 
for interpolation of selected measured quantities. Not 
only horizontal dependence but also vertical dependence 
was considered in these methods. Both of them offer 
significant interpolation improvement for most of 
selected quantities in comparison with inverse distance 
method without consideration of vertical dependence. 
The method M2 does not extrapolate values too much 
outside of measured interval. That is not obvious for M1 
and it can lead to big errors and physically nonsensical 
values. 
The results of immediate temperature, wind, 
precipitation and relative humidity seem to be 
comparable with local NWP outputs. Unfortunately, the 
visibility interpolation is not sufficient. The methods 
seem to be usable for interpolation of climate data, 
which are smoother. 
The correction of analyses could be made only manually 
by user. This possibility will be offered in software 
which use methods described in this article and which is 
currently being developed. The methods based on 
assimilation of the additional information are promising 
way for improvement. The NWP model outputs, radar 
data and model data could be included in future. 
The significant motivation for interpolation was short 
range visibility forecast. Visibility is crucial quantity 
which affects military operations and which is not 
routinely forecasted by NWP models. Actual visibility is 
a good predictor. It seems to be better way to derive 
relation between visibility change and changes of others 
weather quantities rather than to forecast directly 
visibility from them. The persistent forecast could be 
often better then such forecast. The interpolation of time 
values of visibility has been shown to be unusable. The 
interpolation could be sometimes improved with satellite 
data enabling detection of areas with fogs.  But there is 
limitation because these areas could be detected only in 
case without cloudiness. The other possibility, more 
promising, is combination with climate data. The field of 
selected monthly characteristic is smoother in 
comparison with measured data. The question is if 
average or median of values could be considered because 
of visibility distribution. The analyzed values would be 
climate fields corrected using measured values. The 
advantage is that the evident nonsense, e.g. for highest 
stations with high elevations, could be eliminated on 
climate data more easily than using time data. 
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