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Abstract: This study evaluates local dynamics in extreme precipitation frequency from 1940 to 1999 in the 
South of Portugal. The analysis is based on a climate index defined by the annual count of days with 
precipitation above the 30 mm threshold (R30mm). The space-time scenarios of this index, and their 
uncertainty evaluation, were produced through direct sequential cosimulation (coDSS) with elevation. The 
methodology incorporates space-time models that follow the premises that elevation and precipitation 
extremes may interact differently both in time and space. The results indicate that the relationship between 
elevation and the R30mm index has decreased through time over the study region, especially in the southeast 
area. Furthermore, the spatial patterns of the extreme precipitation index have become more homogenous 
during the last decades of the twentieth century. The more frequent heavy rainfall events occur in the 
mountainous areas of the South, which are desertification prone areas at risk of water erosion and floods. As 
expected, the space-time scenarios have greater spatial variability at regions less densely sampled. However, 
the uncertainty in mountainous regions is noticeably small given that elevation was used as secondary 
exhaustive information. The coDSS proved to be a valuable tool to deepen the knowledge on the local 
dynamics of the extreme precipitation frequency. 
 
Key-Words: Climate dynamics; direct sequential cosimulation; geostatistics; precipitation indices; space-time 
patterns; stochastic simulation; uncertainty; local trends. 
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1   Introduction 
The precipitation regime in southern Portugal is 
Mediterranean, thus highly variable in both the 
spatial and temporal dimensions. It is characterized 
by scarce rainfall, little runoff and water availability 
[1], frequent drought periods, and intense flood 
peaks. The most southern region (Algarve) is the 
one where episodes of heavy precipitation are most 
frequent and exhibit the strongest torrential 
character [2], [3]. Moreover, the South of the 
country has extensive areas highly vulnerable to 
desertification [4]. 
     Climate has an important role on desertification 
processes through its impacts on dryland soils and 
vegetation. During wetter periods, high intensity 
rainfall is the most important contributor to erosion 
in drylands [5]. Therefore, research on the space-
time patterns of heavy rainfall events is an important 
contribution to evaluate desertification dynamics 
and to identify areas potentially at risk from land 
degradation. However, studies focusing on the role 
of regional climate changing on erosive factors are 
lacking for Portugal, especially at the local scale [4], 
[6]. 
     In mountainous regions, physiographic features 
are responsible for considerable spatial 
heterogeneity of the precipitation distribution at the 
local scale. [7] and [8] verified that, in general, no 
more than four morpho-topographic parameters are 
necessary to reach a good explanation of the spatial 
variability of rainfall fields in complex mountainous 
terrain. According to [9], the main physiographic 
features affecting spatial patterns of climate are 
terrain (i.e., orography) and water bodies. [10] 
investigated the contribution of many physiographic 
features to the prediction of precipitation fields in 
continental Portugal, including: elevation, slope, 
dominant orientation of the hillsides, counting of 
blockages to the advance of the air masses, shortest 
distance to the coastline, and distance to the 
coastline measured according to the W, NW and SW 
directions. [10] concluded that elevation was the 
most important variable to explain the variability of 
precipitation fields when analyzed on restricted 
neighbourhoods, whereas the remaining attributes 
had low correlations with the precipitation variables. 
     The relationship between elevation and 
precipitation is complex and highly variable in 
space. Nevertheless, in general, precipitation 
increases with elevation, mainly because of the 
orographic effect of mountainous terrain [7], [11], 
[12]. On the windward side, forced lifting of 
approaching air masses causes the release of rainfall 
and an increase in precipitation with elevation. 

Depending on the mountain size and the efficiency 
of the release processes, precipitation will decrease 
on the leeward side, hence the leeward slopes are 
drier and warmer (Föhn effect) than windward 
slopes. Moreover, it has also been noticed that the 
correlation between elevation and precipitation is 
stronger for averaged elevation over a larger area 
(usually a window with square shape) surrounding 
the observation point, than the effective elevation 
[7], [13], [14]. On the other hand, the correlation 
between elevation and precipitation decreases with 
increasing time resolution, thus it is less useful for 
estimation purposes [15], [16], [17]. 
     Interpolation of climate data making use of 
physiographic information has been a subject of 
much research in hydrologic and climatic studies. In 
mountainous areas, interpolation techniques that 
make use of explanatory physiographic variables 
(e.g., elevation or distance to the coastline) have the 
potential to better represent the actual climate spatial 
patterns [7], [9]. Areas of great topographic 
complexity and regions with contrasting 
atmospheric or oceanic influences present more 
problems than flatter areas or regions with constant 
atmospheric patterns [18]. Interpolation methods 
performance depends strongly on the region, the 
variable under study, the data's spatial configuration 
and density, etc. Consequently, the superiority of a 
particular interpolation method is difficult to 
establish, since an interpolation method may be the 
'best' for some specific situation and not for others 
[19], [20]. For example, [16] mapped monthly 
precipitation for 1999, in Great Britain, using five 
interpolation schemes and concluded that kriging 
using elevation as external drift provided the most 
accurate estimates from March to December, 
whereas for January and February ordinary kriging 
performed better. Therefore, when elevation was 
used as a secondary variable, the accuracy of 
precipitation estimates increased for most months, 
but the increase of complexity introduced in the 
estimation method did not payoff in all situations. 
     There are numerous successful applications of 
kriging interpolation described in the literature (e.g., 
[21], [22], [23]). [11] and [24] compared the 
application of different geostatistical (i.e. kriging) 
interpolators to precipitation fields in Portugal. [2] 
and [25] analysed the patterns of precipitation 
indices in southern regions of Portugal using direct 
sequential simulation (DSS). 
     The main objectives of this study are to evaluate 
the spatial and temporal local dynamics of extreme 
precipitation frequency from 1940 to 1999, in the 
South of Portugal, and to provide an uncertainty 
evaluation of the produced maps. 
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     A common approach to understand and assess the 
rainfall patterns over a region is based on the 
analysis of changes in climate indices, which are 
estimated from the empirical distribution of the daily 
observations [26], [27], [28]. The R30mm index was 
chosen to characterize the frequency of heavy 
precipitation events in the South of Portugal for the 
1940–1999 period. 
     Geostatistical simulation methods generate a set 
of alternative realizations of the spatial distribution 
of an attribute that allow characterizing the space–
time uncertainty of physical phenomena [2], [25]. 
Annual scenarios of the R30mm index were 
produced for the 1940–1999 period using direct 
sequential cosimulation (coDSS) with elevation. 
Those scenarios were then used to produce an 
additional set of maps of indicators summarizing the 
scenarios’ underlying local dynamics and 
uncertainty. 
     The methodology is described in Sect. 2, and the 
study region and data are detailed in Sect. 3. The 
main results are presented and discussed in Sect. 4, 
including the relationship between elevation and the 
R30mm index, the space-time dynamics of the index 
in 1940–1999, and the uncertainty evaluation of the 
produced maps. Finally, Sect. 5 states the major 
conclusions. 
 
 
2   Methods 
Consider the two dimensional problem of estimating 
a primary variable z at an unsampled location u0. Let 
{z(uα), α=1, …, n} be the set of primary data 
measured at n locations uα. Most of geostatistics is 
based on the assumption that each measurement 
z(uα) is a particular realization of the random 
variable Z(uα). Kriging uses a linear combination of 
neighbouring observations to estimate the unknown 
value at the unsampled location u0. This problem 
can be expressed in terms of random variables as: 
 

     ( ) ( )∑
=α

ααλ=
n

1
0 uZuẐ  (1) 

 
     The optimal kriging weights λα are determined 
by solving the kriging equations that result from 
minimizing the estimation variance while ensuring 
unbiased estimation of Z(u0) by ( )0uẐ . When 
developing the kriging equations the model of 
spatial covariances, or the semivariogram (inverse 
function of the spatial covariances), is assumed 
known. Typically, a mathematical semivariogram 
model is selected from a small set of authorised ones 

(e.g. exponential) and is fitted to experimental 
semivariogram which is computed as half the 
average squared difference between data pairs 
belonging to a certain angular and distance class: 
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where h is a vector defining the distance and 
direction. 
     In transition models (e.g., spherical and 
exponential), semivariogram functions increase with 
distance until they reach a maximum, named sill, at 
an approximate distance known as the range. The 
range is the distance h at which the spatial (or 
temporal) correlation vanishes, i.e. observations 
separated by a distance larger than the range are 
spatially (or temporally) independent observations. 
     Let {z(uα, ti): α=1,…,n; i=1,…,T} be the set of 
climate data measured at n locations uα and in ti time 
instants (years). The n monitoring stations do not 
have to be all informed at the same T time instants 
(i.e., a number of z-values can be missing). The set 
of climate observations correspond to outcome 
values (realizations) of a spatiotemporal random 
variable Z(u, t) that can take a series of values at any 
location in space u and instant in time t according to 
a probability distribution. For each instant in time ti,, 
the sequence of the direct sequential cosimulation 
(coDSS) algorithm for the joint simulation of 
different variables is described by [29]. This 
algorithm uses collocated simple cokriging to 
estimate local means and variances, incorporating 
the secondary information and the relationship 
between secondary and primary variables. 
     In this study, the coDSS algorithm is applied in 
order to obtain a set of m equally probable 
realizations of Z(u, t) at all grid nodes and all 
instants in time: {zs(uα, ti): s=1,…,m; α=1,…,N; 
i=1,…,T}, where N is the total number of grid nodes 
to be simulated for each instant in time. For a given 
instant in time t0, the set of m simulated values 
{zs(u0, t0): s=1,…,m} defines the local histogram at 
the location (grid node) u0 for that instant. The 
collocated cokriging was applied with a Markov-
type approximation [30] for cross-continuity model. 
     To reproduce the spatial distribution and 
uncertainty of a climate index characterizing 
extreme precipitation frequency, m=100 
equiprobable simulated realizations were generated 
through the coDSS algorithm on 800m×800m grids 
(N=74683), one for each year (T=60). 
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2.1 Space-time models 
For each decade, the coDSS algorithm used a 
different space-time semivariogram model of the 
primary variable (R30mm index) and a different 
correlation model between primary and exhaustive 
secondary data (elevation), as proposed by [2]. The 
inferred semivariograms and correlation models are 
detailed in Sect. 4. 
 
2.1.1 Correlation models 
The local correlation models were computed as 
follows. First, for each decade, local correlations 
were calculated using a search neighbourhood 
centred at each station's location. To reproduce the 
spatial distribution of the relationship between 
elevation and the R30mm index, the second stage 
used the direct sequential simulation (DSS) 
algorithm [29] to interpolate the local correlations. 
In this stage, 50 equiprobable simulated realizations 
of the local correlations were generated through the 
DSS algorithm for each decade on 800m×800m grid 
cells. Finally, the correlation models were 
determined by computing the mean of the 
distribution of the 50 simulated values at each grid 
node, by decade. 
 
2.1.2 Semivariogram models 
In this study, we selected exponential models that 
capture the major spatial features of the climate 
index within each decade [25]. The spatial 
variability is assumed identical in all directions (i.e. 
isotropic) within each decade. 
     The exponential model approaches the sill (C) 
asymptotically, with a representing the practical 
range (distance at which the semivariance reaches 
95% of the sill value): 
 
     ( ) 0h,e-1 C=)h( )a/h(-3 ≠γ  (3) 
 
 
2.2 Space-time dynamics 
The space-time scenario for a given year t0 
corresponds to the average of the local histograms 
that were computed for all grid cells uα: 
 

     N,...,1,)t,u(z
m
1)t,u(z

m

1s
0

s
0

M =α= ∑
=

αα  (4) 

 
     Similarly, the uncertainty of the space-time 
scenario for a given year t0 was evaluated by both 
the standard deviation and the coefficient of 
variation of the local histograms. 

     Let {zM(uα, ti): α=1,…,N; i=1,…,T} be the set of 
T=60 annual gridded datasets of the climate index 
(denoted by IZ). At each grid node uα, the probability 
of exceeding a given value zk was evaluated as the 
proportion of the T estimated values zM(uα, ti) that 
exceed that threshold: 
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where w(uα, ti) are indicator data defined as 
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     The nonparametric yearly trend map is based on 
the nonparametric estimates of the trend slope 
magnitude [31], computed at each grid cell uα: 
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3   Study region and data 
The study region is located in the South of 
continental Portugal (Fig. 1) and includes the 
Algarve region, in the far South, and most of the 
Alentejo region (limited in the North by the Tejo 
River). 
     The climate of southern Portugal is characterised 
by a dry and very hot season, and a very irregular 
distribution of precipitation over the wet season, as 
well as over the years, with very intense flood peaks 
and with frequent drought periods. Whenever the 
precipitation variability is associated with extreme 
phenomena, such as intensive rainfall events or 
drought situations, it may cause soil degradation and 
vegetation loss that contribute to the desertification 
of the most vulnerable regions (e.g., [32], [33]). The 
heaviest and most frequent extreme precipitation 
events occur in the Algarve region [2], [3]. The 
Alentejo area, north of Algarve, is mainly an agro-
silvo-pastoral region and the most affected by 
desertification and drought [34]. 
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Fig. 1 – Elevation of the study region in the South of 

Portugal and stations’ locations 
 
     For this study, 105 monitoring stations with daily 
precipitation data were selected (Fig. 1) and each 
station series data was previously quality controlled 
and studied for homogeneity [28], [35]. 
     To gain a uniform perspective on observed 
changes in climate extremes, a core set of 
standardized indices was defined by the joint 
CCI/CLIVAR/JCOMM Expert Team on Climate 
Change-Detection and Indices (ETCCDI, 
http://www.clivar.org/organization/etccdi/etccdi.php
; [36], [26]). Among those indices, we selected the 
R30mm index to evaluate the local dynamics of 
extreme precipitation frequency in southern 
Portugal. The R30mm index is defined as the annual 
count of days with rainfall above the 30 mm 
threshold. 
     Elevation data were taken from a digital 
elevation model with a grid resolution of 20m×20m 
and resampled to an 800m×800m grid mesh. The 
topographic variable derived is defined as the 
elevation of the nearest grid point to the 
meteorological station location. 
 
 
4   Results and discussion 
 
4.1 Space-time continuity 
The parameters for each exponential semivariogram 
of the R30mm index, used in the coDSS algorithm, 
are summarized in Table 1. 
     In what concerns the temporal component, there 
are no relevant tendencies. However, the range of 
the models' spatial component shows a strong 
increase in the spatial continuity of the frequency of 
heavy precipitation events on the last two decades. 
These findings are consistent with the results of [2] 
for a precipitation index that characterizes the 
magnitude of extreme precipitation events (named 
R5D), and the results of [37] for the Simple Daily 
Intensity Index. 
 

Table 1 – Parameters of the space-time exponential 
semivariograms for the R30 index, by decade 

Decade 
Spatial 
range 

(m) 

Temporal 
range 
(years) 

Sill 

1940–49 40000 2.5 13.314 

1950–59 50000 1.3 8.561 

1960–69 65000 1.5 9.981 

1970–79 100000 2.5 9.510 

1980–89 145000 5.0 13.089 

1990–99 160000 4.5 8.984 

 
 
4.2 Relationship with elevation 
The yearly relationships between the extreme 
precipitation index and elevation were evaluated 
through Pearson's correlation coefficients (Fig. 2). 
Elevation was measured by the station's grid point 
elevation. 
 

0

0.2

0.4

0.6

0.8

1

1940 1950 1960 1970 1980 1990 2000

Corr. of R30mm with elevation
Regression line (ordinary least squares)  

Fig. 2 – Regional correlations between the R30mm 
index and elevation, by year 

 
     The correlations are not constant through time, 
but rather show a negative trend during the study 
period, although not statistically significant. Because 
of the sparse coverage of meteorological stations in 
some areas, especially until the 1970s, the local 
relationships between elevation and extreme 
precipitation were assessed by decade. Hence, the 
coDSS algorithm used a different correlation model 
between the R30mm index and elevation within 
each decade. 
     The estimated correlations between elevation and 
the R30mm index range from moderately weak 
(−0.45) to strong (0.86) across the region and along 
decades. For illustration purposes, only the 
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correlation models of the 50s, 70s and 90s decades 
are presented in Fig. 3. The decreasing relationship 
between R30mm and elevation is evident over the 
southeast region (Caldeirão mountains). 
 

 
Fig. 3 – Local correlation models between elevation 
and R30mm values for the a) 1950s, b) 1970s, and c) 

1990s decade 
 
 
4.3 Local dynamics 
For illustration purposes, two scenarios for the 
frequency of extreme precipitation events are shown 
in Fig. 4, as well as their uncertainty evaluation 
measured by the standard deviation. As expected 
from the space-time continuity analysis, the spatial 
patterns of extreme precipitation became more 
homogenous in the last decades of the twentieth 
century, while the levels of local variability 
decreased. Only a few stations are located at 
medium (>400m) and high elevations, thus greater 
uncertainty would be expected at those regions. 
However, the uncertainty in the mountainous 
regions of the South is often small (Fig. 5), because 
of the use of elevation as secondary exhaustive 
information in the spatial interpolation procedure. 
     Using the annual gridded datasets, probability 
maps of extreme precipitation were computed as 
described in Sect. 2.2. In order to determine 
appropriate threshold values, the regional histogram 
and its basic statistics were calculated using the 

values from the maps corresponding to the climate 
normal 1961/90 (Table 2). 
 

Table 2 – Basic statistics of the R30mm index 
computed from the maps of 1961–1990 

Basic statistics Regional 
values 

Mean  4.3 

Standard-deviation  2.3 

Skewness  1.45 

Kurtosis  4.22 

Quantiles  

 100% Max  23.0 

 99%  11.4 

 95%  8.3 

 90%  7.2 

 75% Q3  5.4 

 50% Median  3.8 

 25% Q1  2.6 

 10%  1.9 

 5%  1.5 

 1%  0.9 
 

 
Fig. 4 – Scenarios for the R30mm index (top) and their 
corresponding uncertainty measured by the standard-

deviation (bottom) for 1945 (left), and 1985 (right) 
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Fig. 5 – Probability of the uncertainty of the R30mm 

index scenarios, measured by the coefficient of 
variation, to be greater than 50% 

 
     The probability map corresponding to the 
threshold value equal to the median of R30mm (Fig. 
6a) shows that the mountainous regions of the South 
(in Algarve), the northeast area, as well as the west 
coast have high probability of frequent extreme 
precipitation. On the other hand, the probability map 
for the third quartile (Fig. 6b) shows that the more 
frequent heavy rainfall events occur in the 
mountainous areas of Algarve. 
     The trend analysis of the R30mm index, 
performed by [28], revealed that the linear trend 
signals of this index were not statistically significant 
at the majority of stations in this region. In fact, our 
results for the local linear trends show that there is a 
pattern of weak trend signals in the extreme 
precipitation frequency over the study region (Fig. 
7). Most of the region exhibits negative trends, while 
a small area in the northeast has the highest positive 
linear trends. 
     [28] also showed that the R30mm index has a 
cyclic pattern in many stations during the period 
1955/1999. Hence, the local linear trends in Fig. 7 
should be considered with caution, because the 
estimates of the linear trend slope might not capture 
accurately the local trend signal. 
 

 
Fig. 6 – Probability of the R30 index values to be equal 

or greater than fixed thresholds 

 

 
Fig. 7 – Local trends in the R30mm index 

 
     The results from [28] on the regional correlation 
analysis between precipitation indices, based on 15 
stations data from 1955 to 1999, showed that the 
R5D and the R30mm indices were moderately 
positively correlated with each other. Using the 
1940/99 scenarios of the R5D produced by [2] and 
the R30mm scenarios, a map of local correlations 
between them was obtained by computing the 
Pearson's correlation coefficient at each grid cell 
(Fig. 8). An interesting conclusion from this map is 
that increasing values of the R5D through time 
entail increasing values of R30mm in many areas 
that have low probabilities of extreme precipitation, 
and vice-versa. For example, many areas in the 
mountainous regions of Algarve have high 
probability of extreme precipitation events, but show 
weak correlations between the frequency of heavy 
precipitation (R30mm) and the intensity of medium-
term rainfall events (R5D). 
 

 
Fig. 8 – Local correlations between the R5D and 

R30mm indices 
 
 
5   Conclusion 
The main objective of this paper is to assess spatial-
temporal dynamics in the frequency of heavy 
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precipitation events, in southern Portugal, through 
the analysis of the local patterns of the R30mm 
index from 1940 to 1999. 
     The results indicate that the spatial patterns of the 
extreme precipitation frequency have become more 
homogenous during the last decades of the twentieth 
century. This conclusion is also supported by the 
evidence that the relationship between elevation and 
the R30mm index has decreased through time over 
the study region. This is relevant information for the 
short- and medium-term management of Portuguese 
river basins. 
     The more frequent rainfall events occur in 
Algarve’s mountainous regions, in the South. 
Accordingly, many areas of Algarve are at risk of 
water erosion and floods caused by extreme 
precipitation events. 
     The probability maps derived from the space-
time scenarios can be useful to identify regions at 
risk of water erosion caused by extreme 
precipitation events. A probability map could be 
combined with a vegetation cover map. This would 
allow the identification of regions at risk of water 
erosion corresponding to areas with little vegetation 
cover and high probability of extreme precipitation 
events. This could be a valuable improvement of the 
'Erosion protection' map used to build the 
'Vegetation quality index' used by the National 
Action Programme to Combat Desertification [38]. 
     Regions where the distribution of precipitation 
extremes shows greater spatial variability, thus more 
uncertainty, correspond to regions less densely 
sampled. However, the uncertainty in mountainous 
regions is noticeably small given that elevation was 
used as secondary exhaustive information. 
     The existence of links between large-scale 
atmospheric mechanisms and the observed increase 
in the spatial homogeneity of the extreme 
precipitation index will be the subject of a future 
work, in order to obtain a complete understanding of 
its space-time variability. 
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