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Abstract: - A fuzzy logic based system for wastewater quality monitoring with the purpose of attenuating the 
environmental impact of the heavy metals loaded wastewaters is presented in this work. The design and 
implementation of a supervisory system in LabVIEW for data acquisition, system operation and distributed equipment 
control is briefly described. Fuzzy logic techniques were used to integrate nine water quality variables into a single 
quality index of the industrial effluent (EQI) by applying specific rules. The fuzzy rules for diagnosis were 
developed in MATLAB and were translated and integrated in a virtual instrument, which acted as a fuzzy rule based 
system, using quantitative and qualitative information, to support the decisional process in case of disturbances of the 
water quality status due to the effluent discharge impact. Generated EQI was used to train the artificial neural network 
using Quickprop algorithm, which has efficiently dealt with complex patterns, and had a great ability to build up a 
neural system for prediction.  
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1   Introduction 
Artificial Intelligence (AI) provides a variety of methods 
and techniques that can be applied with success in the 
environmental protection domain. Several systems based 
on AI have been reported in the literature, for air, water 
and soil quality monitoring, analysis, diagnosis, 
forecasting, planning and control (see e.g. references [1], 
[2], [3], [4]). Computational intelligence provides 
alternative methods to the traditional ones (i.e. non-AI 
based) and to the classical AI methods (i.e. those based 
on the symbolic paradigm). Fuzzy logic, neural networks 
(NN), and evolutionary computing can be applied in the 
area of environmental sciences and environmental 
management (see e.g. [5], [6], [7], [8], [9]). 
     The purpose of our research work was to develop a 
fuzzy logic based system for wastewater quality 
monitoring in order to attenuate the environmental 
impact of heavy metals loaded wastewaters. In this paper 
it is presented the current version of the Fuzzy-APA 
system, as well as some experimental results. The 
proposed fuzzy system provides information about the 
wastewater status through a unique effluent pollution 
indicator, named EQI. The water quality is characterized 

by fuzzy techniques applied to time series of parameters 
measured on-line by a complex wastewater monitoring 
system. A prediction module that uses an artificial neural 
network was included in the Fuzzy-APA system. 
 
2   Computational Intelligence Applied to 
Environmental Problems 
Environmental problems are characterized by a great 
degree of complexity, mainly due to the use of 
ecological data that can have different data structures 
and data formats (e.g. time series, spatial data), 
significant uncertainty due to incomplete data, inaccurate 
data, approximate estimations, incomparability of data 
(resulting from varying conditions of the observations 
and measurements). The solution to such problems is to 
use proper approaches, such as those provided by 
computational intelligence. In particular, fuzzy logic, 
neural networks, and evolutionary computing can tackle 
some types of environmental problems: environmental 
monitoring, analysis, prediction and control. 
     We present briefly some references to research work 
already done in the environmental domain, which uses 
computational intelligence. 
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     Ecological modelling with fuzzy logic is tackled in 
[10], while in [11] it is discussed fuzzy data analysis in 
ecological research. In [5] it is presented an application 
of fuzzy mathematical methods to soil survey and land 
evaluation. An example of fuzzy classification used in 
wastewater treatment plants is shown in [7]. 
     Some environmental applications that use neural 
networks are: ecosystem metabolism estimation [12], 
environmental quality forecasting [13] and analysis [14]. 
Feed-forward NN were applied to environmental air 
pollution forecasting in urban regions (see e.g. [6], [15], 
[16]). Moreover, various comparisons between different 
approaches were also presented in the literature (see e.g. 
[15] – a comparison between statistical and NN 
approaches applied to urban air quality forecasting, [8] – 
a comparison of NN model and qualitative models 
applied to environmental engineering, [9] – a 
comparison between fuzzy reasoning and NN methods 
applied to runoff discharge forecast, and [17] – a 
comparative study of the multi-period predictive ability 
of linear ARIMA models to nonlinear time delay NN 
models in water quality management applications). 
Combinations of the neuro-fuzzy and NN approaches are 
also reported in the literature (see e.g [18]). 
     Few of the systems presented in the literature are 
applying computational intelligence to water quality 
forecasting and analysis. In [19] it is presented a 
prototype fuzzy system, FuzzyApa, that we have 
developed for surface water pollution analysis. We have 
extended the functionality of the system to survey and 
control heavy metal loaded wastewater. A preliminary 
version of the resulted system was described in [20]. 
     Next section presents the environmental problem of 
industrial wastewater treatment. 
 
2.1 Industrial wastewaters treatment station 
Stainless steel production processes generate significant 
quantities of wastewaters loaded with heavy metals. In 
the process, chromium is used for surface coating and its 
discharge into surface water poses serious environmental 
treats. Before leaving the plant, wastewaters need to be 
treated in the environmental protection installations.  

One of the most important installations is the 
industrial water neutralization system (fig. 1), in which 
the pickling wastewaters discharged from the chemical 
and electrochemical etching lines of a stainless steel 
factory are treated by neutralization, cobbering 
sedimentation and filtration. The neutralization station is 
structured into three components as follows: acid 
wastewater neutralization system, dewatering system 
and chemical dosing system.  

Hexavalent chromium is known for its negative 
impact on health and environment, and its extreme 
toxicity. It is used for the production of stainless steel, 
textile dyes, wood preservation, leather tanning, and as 

anti-corrosion and conversion coatings as well as a 
variety of niche uses. It causes allergic and asthmatic 
reactions, is carcinogenic and is 1000 times as toxic as 
trivalent chromium.  

Chromium (VI) compounds are divided up in water 
hazard class 3, and are considered very toxic [21].  

 

 
 
Figure 1 General structure of the wastewater neutralization 
system used to treat the effluent from a stainless steel factory 
considered in the present study. 
 

Hexavalent chromium is transported into cells via the 
sulfate transport mechanisms, taking advantage of the  
sulfate and chromate similarity with respect to their 
structure and charge.  

Trivalent chromium, which is the more common 
variety of chromium compounds, is not transported into 
cells. 

Water containing hexavalent chromium is treated 
with a chemical reduction process. Ferrous sulfate 
(FeSO4) is added to the wastewater and the pH is 
lowered to 3.0 or less using acid (typically sulfuric acid). 
A retention time is usually maintained, ensuring 
adequate mixing and reaction with the ferrous sulfate. 
This process converts chromium from the hexavalent 
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form to the trivalent form. The trivalent form can be 
treated similar to other metals and the effluent from this 
process is treated with the other metals wastewater.  

As metals enter the treatment process, they are in a 
stable, dissolved aqueous form and are unable to form 
solids.  

The objective of metals treatment by hydroxide 
precipitation is then to adjust the pH (hydroxide ion 
concentration) of the water so that the metals will form 
insoluble precipitates.  

Once the metals precipitate and form solids, they can 
then easily be removed, and the water, now with low 
metal concentrations, can be discharged in the sewerage. 
Metal precipitation is primarily dependent upon two 
factors: the concentration of the metals, and the water 
pH.  

Heavy metals are usually present in wastewaters in 
diluted quantities and at neutral or acidic pH values 
(<4.0). Both of these factors are disadvantageous for 
metals removal.  

However, when one adds calcium hydroxide to water, 
which contains dissolved metals, the metals react with 
hydroxide ions forming metal hydroxide solids.  

In this way, calcium fluoride, iron hydroxide, nickel 
hydroxide and chromium hydroxide are insoluble in 
water and are separated as solid sludge.  

The solids resulted in the sedimentation stage are 
denoted as sludge and periodically removed. This sludge 
is sent to the dewatering stage to remove excess water 
and leave only solids.  

In the next sections we present our fuzzy logic based 
system, named Fuzzy-APA, the artificial neural network 
forecasting tool and the supervisory system designed to 
control and survey the treated water discharging process 
into sewerage, which afterwards discharges the effluent 
in WWTP, and finally into the natural surface water.  
 
3   Fuzzy Logic System Structure 
Industrial sewage, treated to leave the industrial plant 
was monitored through 9 parameters according to the 
Water Management Authorization: pH, suspended 
solids, fixed residue, Chemical Oxygen Demand (COD- 
potassium dichromate), total chromium, hexavalent 
chromium (Cr6+), calcium (Ca2+), nitrates (NO3-), and 
fluoride (F-).  

The objective of developing the fuzzy logic 
supervisory system was to obtain an integrated indicator 
of the effluent status after wastewater treatment. 
Defining an input space into output space and the 
primary mechanism by using If-Then (facts – state 
/action) rules has solved such requirement. All defined 
rules were evaluated in parallel in a random order. These 
rules were useful because they have made references to 
variables and the adjectives that described those 
variables.  

Fuzzy inference permitted the reading of the input 
vector values and based on the set of rules, allocated the 
values of vector output.  

Membership functions, as specific curves, defined 
how each entry point in space belonged to a degree of 
membership in the range 0 and 1. 

The forms of the membership function used in the 
Fuzzy-APA system were selected to meet the computa-
tional efficiency and memory savings requirements. 
From this point of view, the triangular and trapezoidal 
membership functions fitted to the intended purpose.  

The structure of the production rules was developed 
using Fuzzy Logic Toolbox module of MATLAB (fig.2). 
The rules were structured by level of effluent pollutants 
concentration (low, normal, high) taking into account the 
maximum limit values from the European and national 
standards (e.g. Directive 98/83/EC on quality of water 
for human consumption, Directive 91/271/EC on urban 
wastewater treatment, [22] etc).  

 

 
 

Figure 2 MATLAB Rule editor showing the production rules 
structure used in FuzzyAPA  

 
Because it is a more compact and computationally 

efficient representation than a Mamdani system, the 
Sugeno system lends itself to the use of adaptive 
techniques for constructing fuzzy models [23]. These 
adaptive techniques were used to customize the 
membership functions so that the fuzzy system best 
modeled the effluent collected data for different intervals 
of time. 

Each time series recorded during one year of 
monitoring is presented in figure 3. These parameters 
were used as inputs in the fuzzy logic system without 
pre-processing techniques.  

The main objective of the control system was to 
ensure the absence of hexavalent chromium (due to its 
high toxicity), and low concentrations of nitrates, total 
suspended solids and COD in the plant effluent, 
actuating in the output variables of the fuzzy control 
system. 
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Figure 3 Monitored pollutant time series during one year: pH, 
hexavalent chromium, total chromium, Total Suspended Solids, 
fluoride compounds, nitrates, calcium, chemical oxygen demand 
and fixed residues, used as inputs in the fuzzy logic system.   
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The fuzzy rules algorithm has performed the 
following steps:  
• scalar representation of the system input – 9 variables 

(pH, hexavalent chromium, TSS, etc.) were 
transformed into membership functions through the 
fuzzyfying functions;  

• transferration of this information to the inference 
engine;  

• transformation of the membership functions values 
into output by defuzzyfication of the scalar value, 
representing the output indicator that evaluated the 
effluent quality status (0 – low quality; 1 – good 
quality). 
The fuzzy inference system (FIS) has provided 

reliable information on the quality parameters of the 
effluent by integrating multiple variables into a single 
synthetic indicator – Effluent Quality Index (EQI) – 958 
values, which allowed the user to accurately assess the 
pollution status (1 as "ideal" – 0 as “polluted”). 

Table 1 depicts the descriptive statistics of the 
effluent quality index generated by the FIS structure 
using statistical parameters - average, standard deviation, 
standard error, minimum, maximum and coefficient of 
variation (C.V.).  

EQI varied between 0.18 (lowest value) and 0.5 
(maximum value), suggesting the existence of relatively 
significant levels of contaminants. The annual average of 
the EQI was 0.342. 
 
Table 1 Descriptive statistics of the effluent quality index (EQI) – 
average, standard deviation, standard error, minimum, 
maximum and coefficient of variation (C.V.) 
 

Month Avera
ge 

Std. 
dev. 

Std. 
err. Min. Max. C.V.

% 

January 0.323 0.042 0.004 0.26 0.48 12.87 

February 0.319 0.048 0.005 0.25 0.50 15.20 

March 0.317 0.032 0.003 0.26 0.50 10.10 

April 0.348 0.038 0.004 0.28 0.48 11.06 

May 0.337 0.036 0.004 0.27 0.50 10.74 

June 0.337 0.041 0.004 0.18 0.50 12.14 

July 0.347 0.032 0.003 0.27 0.45 9.16 

August 0.346 0.024 0.004 0.29 0.41 7.02 

September 0.380 0.061 0.007 0.29 0.50 15.98 

October 0.367 0.049 0.005 0.28 0.50 13.28 

November 0.377 0.044 0.006 0.28 0.50 11.72 

December 0.334 0.045 0.006 0.27 0.48 13.50 

Annual 0.342 0.046  0.001  0.18 0.50 13.52 

The coefficient of variation for the generated EQI 
during one year of monitoring was relatively constant 
(13.52%). The advantage of the C.V. is that it is without 
unit. This makes possible the comparison of C.V.s to 
each other in ways that other measures, like standard 
deviations or root mean squared residuals, cannot be. 

The monthly variable with the smaller C.V. 
(February) was less dispersed than the variable with the 
larger C.V. (October). EQI time series showed characters 
of homogeneity, which means stability across time as 
opposed to a trend and stability of local fluctuations over 
time.  

ANOVA presented an F-ratio of 19.50, p-value of the 
F-test was less than 0.05, and there was a statistically 
significant difference between the means of the 12 
variables at the 95.0% confidence level. Multiple sample 
comparison of the monthly means using Tukey HSD test 
showed statistically significant differences at the 99.9% 
confidence level amongst 25 pairs of means (p<0.001).  

It can be summarized that EQI results shown that the 
effluent pollutants load was relatively high even if the 
standard limit value exceedances for individual pollutant 
concentrations did not have a higher frequency over the 
sampling interval. This cumulative effect of the nine 
variables had the same pattern when considering the 
yearly interval. 

Figure 4 presents EQI fluctuations during one year of 
surveying, which as compared to the unit (representing 
the ideal) showed a general low quality of the effluent 
that left the neutralization station. 
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Figure 4 Annual evolution of the Effluent Quality Index – 
cumulated output of the fuzzy logic system (958 fuzzyfied 
synthetic values)  
 

Figure 5 shows the resulted output after introducing 
the acquisitioned data for each month between January 
and December as inputs in FIS. Even in the absence of 
chromium in the effluent, the negative effects of other 
parameters (e.g. TSS, COD) showed their influence. 
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Figure 5 Effluent Quality Index for each month between January 
and December – outputs generated by the fuzzy logic system 
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The construction and testing of the fuzzy logic 
system was performed in MATLAB Fuzzy Logic 
Toolbox due to its versatility in developing FIS 
structures. 
 
4 Effluent quality modeling using 
artificial neural network 

The environmental pollution forecasting is one of the 
critical problems to be addressed improving real time 
accurate predicted values.  

Based on the recorded time series with pollutants’ 
concentrations in a certain interval of time, a forecasting 
system must provide reliable information on the near 
future evolution of those pollutants concentrations. In 
this context, one of the computational instruments that 
provide efficient forecasting is the artificial neural 
network with different algorithms and structures.  

Some of our previous works have shown that batch 
training Quickprop algorithm performed well in short 
term environmental forecasting as compared to other 
classical ANN algorithms, based on a detailed analysis 
of the effects that different parameters of the feed-
forward neural network have on the accuracy of the 
forecasted environmental data [14], [15].  

QuickProp is a batch training algorithm introduced 
by Fahlman [24], which considers the information about 
the second order derivative of the performance error 
function. 

Exactly the same data generated by the FIS structure 
were used as input to train the ANN. No pre-processing 
was applied, having no influence on the predictive 
ability of the model. 

Best fitting results were obtained using QuickProp 
algorithm with 6 units in the input layer, 4 neurons in the 
hidden layer and one output neuron. The output 
represented one EQI ahead forecasted value.  

Mean square error (MSE) evaluated the residual 
between observed and forecasted EQI. This indicator 
assumes that larger forecast errors are of greater 
importance than smaller ones. MSE on train data was 
0.01213 and on test data was 0.01468. MSE equal to 
zero denotes perfect fit. 

The plots of the observed and simulated pollutants in 
figure are difficult to distinguish since the measured and 
simulated data are close (fig. 6). Consequently, the 
model performances were assessed using several criteria 
as follows: Correlation coefficient (CC) that indicated 
the strength of relationships between observed and 
estimated EQI, Mean absolute error (MAE), a weighted 
average of the absolute errors, and R-squared value. 

Figure 7 shows the observed EQI versus Quickprop 
predicted series. The correlation coefficient was 0.637, 
indicating a moderately strong relationship between the 

variables. R-squared (40.61%) explained the variability 
in ANN model. 
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 Figure 6 Effluent Quality Index modeling using the batch 
training Quickprop algorithm – 958 fuzzyfied synthetic values 
were used to train the artificial neural network 
 

The standard error of the estimate showed that the 
standard deviation of the residuals was 0.018. Mean 
absolute error was 0.013, representing the average value 
of the residuals. 

OBSERVED

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

P
R

E
D

IC
TE

D

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

 Figure 7 Observed EQI versus predicted Quickprop series – 
 CC =0.637, R2 = 40.61%  
 
We have observed that the structure of ANN model 
using Quickprop algorithm has efficiently dealt with 
complex input–output patterns, and had a great ability to 
learn and build up a neural system for prediction of the 
synthetic indicator of the effluent quality. 
 
5 Effluent quality supervisory system 

In order to obtain a supervisory system, the 
optimized and tested FIS structure from MATLAB was 
translated into National Instruments LabView Vi (virtual 
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instrument) [25] using the dedicated functions of the PID 
module that contains fuzzy logic capabilities.   

    

 
 
Figure 8 Graphical User Interface (Vi) – visualizing and 
controlling the discharge of treated effluent into industrial 
sewerage based on the synthetic effluent quality index (0-1; 0 – 
low quality; 1 – maximum quality). 
 

The graphical user interface (fig. 8) of the LabView 
virtual instrument (Vi) was associated to the 
technological installation providing control of the 
discharge of industrial treated water into the sewerage 
based on the synthetic effluent quality index (0-1; 0 – 
bad; 1 – very good). The main advantages of the Vi 
supervisory system are as follows: 

 
• display of the synoptic schemes associated to the 

neutralization station; 
• display of the events and alarms when 

exceedance of limit values occurs; 
• processing the information for the optimum 

functioning of components and of the overall 
system, according to the implemented fuzzy 
algorithms; 

• display of variables measured or modeled by the 
fuzzy algorithm; 

• periodical recording of the measurements and 
their vizualization in various forms (graphs, 
tables, file); 

• reports on current status and historical events. 
 
Figure 8 highlights a screen capture of the Virtual 

Instrument showing the real-time installation control 
(flow rates, basin levels, various setpoints etc.), but most 
important, the evolution of each of the nine parameters 
that characterize the effluent pollutant load.  

Furthermore, depending on the EQI provided by the 
integrated fuzzy inference system, the effluent can be 
redirected to the neutralization basin. This is the case 
when the effluent pollutant load does not meet the 
established EQI, for discharging in the sewerage.   
 
6 Conclusion 

The proposed method should provide an 
improvement over the traditionally modelling techniques 
used in water quality analysis [26], and in industrial 
wastewater analysis.  

Fuzzy logic can bring potential benefits even in areas 
where traditional control engineering already offers 
versatile solutions.  

The concepts underlying fuzzy technology are 
successfully used in water quality modeling, allowing an 
alternative approach in solving specific environmental 
problems when the objectives or constraints are not 
precisely defined, and necessary information is missing, 
sporadic or discontinuous. 

The presented method facilitates the characterization 
of the effluent pollutant load resulted from a stainless 
steel factory using fuzzy techniques for parameters time 
series processing. 

The EQI synthetic indicator allows the user to make a 
quick interpretation of the analyzed water status. 

The inclusion of a prediction module based on neural 
networks has improved the efficiency of the whole 
Fuzzy-APA system due to the flexibility and ability of 
neural networks to model nonlinear relationships. The 
combination of fuzzy logic with artificial neural 
networks provides a better model for industrial 
wastewater quality analysis.   

For policy makers, the proposed system of effluent 
quality monitoring facilitates the following goals: water 
quality planning, water quality monitoring, level of 
compliance verification of the collected data with the 
environmental standards, and application of prevention, 
remediation and control measures to meet the planned 
objectives of water quality. 

 
FUTURE WORK  

We have identified some directions of future 
research.  
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The first direction of research will extend the 
investigation to the long term forecasting, taking into 
account some other factors that influence the variation 
of the pollutants concentration level (e.g. industrial 
influent characteristics, manufacturing process). 

The second research direction will be oriented 
towards the implementation of some evolutionary 
algorithms to automate the design of the artificial neural 
network topology. Also, we shall study the applicability 
of genetic algorithms to the industrial wastewater quality 
assessment. 

Finally, we will focus our attention to test the 
adequacy of a time delay neural network implementation 
selecting the structure according to the best forecasting 
properties.  
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