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Abstract: - A genetic algorithm and a simulated annealing approach is presented for the guidance of a 

cellular automaton toward optimal configurations. The algorithm is applied to a problem of groundwater 
allocation in a rectangular area consisting of adjacent land blocks and modeled as a cellular automaton. The 
new algorithm is compared to a more conventional genetic algorithm and its efficiency is clearly demonstrated. 
Also, comparison is made to a simulated annealing scheme. Finally, the proposed genetic algorithm is 
combined with simulated annealing to yield a new hybrid. The presented cell – based algorithm is different 
from related algorithms of the literature, as it relies on local interactions among land blocks. Moreover, it offers 
a framework for application to more general and detailed problems. 
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1 Introduction 

Land management presents an interesting class 
of problems, in which the prevailing characteristic 
is the spatial distribution of various land uses and 
the allocation of resources throughout an extensive 
terrain with a multitude of features and needs. 

Areas that need to be managed or reformed may 
be modeled through two-dimensional cellular 
automata.   These are constructs consisting of 
adjacent cells and endowed with rules of local 
interaction. They have been combined with genetic 
algorithms and simulated annealing for the solution 
of various simulation and optimization problems. 

Genetic algorithms are well-known biologically-
inspired meta-heuristics, whose significance and 
principles are described in textbooks such as [1] and 
[2]. A plethora of applications can be found in the 
literature, particularly in relation to special 
combinatorial optimization problems, such as in [3]. 

Simulated annealing is based on an analogy to 
the slow cooling process of a solid. Its theory and 
applications are given in the text of van Laarhoven 
and Aarts [4]. A great variety of combinatorial 
problems has been treated by simulated annealing. 
A most notable application is the traveling salesman 
problem [5]. Simulated annealing has also been 
applied in conjunction with a genetic algorithm, 
such as in [6] and in [7]. In the latter paper a mixed 
problem involving both discrete and continuous 
variables has been presented. 

Cellular automata date back to von Neumann. 
They were developed by Wolfram [8], as a 
fundamental modeling tool. Many natural, as well 
as social and economic systems have been 
simulated by the use of cellular automata [9]. In 
particular, cellular automata have been used for 
modeling forest fire propagation [10, 11] and urban 
development, along with producing possible land-
use scenaria [12].  Genetic algorithms and simulated 
annealing have been employed in combination with 
cellular automata in order to devise transition rules, 
such that the automata could perform certain 
computational tasks [2, 13, 14].  

A genetic algorithm was embedded into a 
cellular automaton as an optimization tool [7]. In 
the latter reference, as well as in the present work 
the objective is not to find transition rules, but to 
guide the system to optimal configurations. This 
point will be further documented in the discussion 
section. 

The notion of neighborhood plays a significant 
role in cellular automata for the study of the local 
interactions and of the mechanisms that underlie the 
transitions from local to global conditions. The 
present work utilizes this role in the proposed 
special genetic algorithm and simulated annealing. 

The present paper deals with the optimal 
allocation of groundwater to the land blocks (or 
cells) of a rectangular area, which may be viewed as 
a cellular automaton. The particular characteristics 
of the problem are examined in relation to the 
classical allocation problems. 
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The genetic algorithm presented for this 
problem guides the evolution of the cellular field 
toward an optimal configuration or “mosaic” of 
cells. The algorithm relies heavily on local 
interaction by forcing each cell to mimic one of its 
neighboring cells. This device promotes deep 
exploration but it also favors a gradual exploitation 
through the implicit diffusion of information due to 
the overlapping of the neighborhoods. A more 
conventional genetic algorithm is also employed in 
order to show the efficiency of the proposed 
scheme. 

A simulated annealing approach is presented for 
the solution of the same problem. The variations in 
configuration involved in the annealing algorithm 
are also based on the use of neighborhood. The 
annealing approach is compared to the genetic 
algorithm and, finally, a mixed genetic-annealing 
algorithm is proposed.  

The present work differs from treatments of 
optimization problems in related subjects in two 
respects. First, the use of groundwater as the 
resource to be allocated gives rise to a problem 
different from the classical allocation problems, due 
to the spatial nature of the objective function, 
involving distances from wells and a physical 
groundwater model. Second, the methodology 
presented emphasizes a genetic algorithm based on 
neighborhood concepts, in contrast to related 
literature, as it will be documented in subsequent 
sections. 

 
 

2 Formulation and characterization of 
the problem. 
 
2.1 Description of the problem 

An artificial problem is considered for the 
purpose of presenting a methodological 
framework for dealing with land management 
combined with groundwater allocation. 
Specifically, a two-dimensional grid is formed, 
consisting of hypothetical land blocks. The 
same type of cultivation or, more generally, 
land use is assumed to apply to all the blocks of 
the rectangular area.  

The resource needed in order to exploit the 
area is water that has to be transported from 
sources lying outside the rectangular area. Each 
one of the land blocks is given the choice of 
receiving water from only one of the available 
sources. The latter are extraction wells drawing 

from an aquifer of infinite extent but of 
spatially varying hydraulic conductivity.  

The cost involved in acquiring water is 
divided between pumping and transport from 
the wells to the individual blocks. The transport 
cost for each block is taken as proportional to 
the distance of the block from the respective 
well. The pumping cost is estimated via a 
steady-state groundwater phreatic aquifer 
model. The total cost results from summing 
over all land blocks and it forms the objective 
function that needs to be minimized.  

The decision variables are the wells assigned 
to the various blocks. The situation can be 
depicted with the help of a colored two 
dimensional rectangle, in which the color of 
each block signifies the respective well. Fig.1 
shows such a rectangle with three wells as 
water sources. Thus, figuratively, the problem 
consists in finding the optimum “mosaic” for 
the two-dimensional grid.  

Fig. 1. Two-dimensional mosaic with three wells 
 

2.2 Formulation  
Let be the coordinates of the center of the 
typical block with i= 1,2,…a and j=1,2,..,b, 
where a and b are the lengths of the two sides 
of the orthogonal grid. The blocks can be 
numbered consecutively, so that if   

(i, j)

k 1,2,..., a b= , then 

 k ki k a , j 1
a a
⎡ ⎤ ⎡ ⎤= − = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

 (1) 

where the brackets denote the integer part of 
the enclosed number. 
Let m be the number of the wells and let the 
wells be numbered from 1 to m. Also, let 
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kw {1,2,..,m}∈
k 1,2,..., a b=

be the number of the well 
assigned to block k (Fig.2) with , 
according to the above numbering. Then the 
transport cost is 

( ) ( )k k

1/2a b 2

T k w k w
k 1

F x x x x
=

⎡= − + −⎢⎣∑
2 ⎤
⎥⎦

(x , y )

s , w {1,...,m}∈

wq s= α

 (2) 

Fig. 2 Connection of block to well 
 
where (xk, yk) are the coordinates of block k and 

the coordinates of the respective well. 
k kw w

The pumping cost is expressed as follows: 
Let be the number of blocks 

irrigated from well w. Then the discharge from well 
w is equal to 

w

 
w ,     (3) 

 
where α is a quantity representing the water needs 
of the block. This quantity is assumed to be uniform 
over the whole area. 

The drawdown at each well is given by  
 

2 2m
w w w ww

w
w 1 w
w w

(x x ) (y y )q1h ln
2 b k R

′ ′′

′= ′
′≠

− + −
Δ = +

π ∑

 
w

w

ln
2 bk R

+
π

wq r

w

     (4) 

where b is the thickness of the aquifer, assumed 
constant, R is the influence radius, rw is the radius 
of well w and kw with w=1,2,..,m are the hydraulic 
conductivities of the areas around each one of the 
wells. 

Finally, from Equations (3) and (4), the total 
pumping cost is proportional to the quantity 

m

P w
w 1

F q h
=

= Δ∑    (5) 

 
where qw and Δhw are given by Equations (4) and 
(5). 

Thus, from Equations (2) and (5), the total cost 
can be taken to be equal to the sum 

F=FT+FP.     (6) 
 

2.3 Characterization of the problem 
From the above formulation it can be seen that the 
present problem differs from the classical resource 
allocation problems, because the cost associated to 
each cell does not depend only on the quantity of 
the water to be supplied to the particular block.  

It also depends on the position of the block 
itself. In fact this is true both for the transport cost, 
which depends on distances, and for the pumping 
cost, which is determined through the aquifer model 
with its predominantly spatial character. Moreover, 
the pumping cost is influenced not only by the well 
connected to the particular block, but also by the 
action of the other wells. 

The solution methods to be described in the 
following sections are based on this spatial – 
cellular character of the problem domain. The 
present approach is further compared to the 
treatment of resource allocation problems of the 
recent literature in the similar context of forest 
planning. 
 

3 Solution method 

 
3.1 A natural genetic approach 
The objective function, Equation (6), to be 
minimized is a function of the wells assigned to the 
various blocks. The problem is one of combinatorial 
optimization with a nonlinear objective function. It 
concerns a managerial interior arrangement in a 
field with a cellular character. 

Evolutionary algorithms are particularly suited 
for this kind of resource allocation problem. Indeed, 
such methods have been applied to resource 
allocation problems [16, 3], as well as problems 
involving both water allocation and crop planning 
[16, 17, 18].  

A natural way of encoding the problem in a 
genetic algorithm framework is to set up the typical 
chromosome as follows:  

Well 

 

Block k 
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i k kC {w | w {1,...,m} and k 1,2,.., a b}= ∈ =  

i 1, 2,.., N=     (7) 

 
where N is the population size. 

As above, each one of the numbers wk represents 
the well assigned to block k, as shown in Fig. 

As it is well known (e.g. [1]), the genetic 
operators of selection, crossover and mutation will 
be applied to the N chromosomes, resulting in the 
population of the next generation.  

The selection operator will follow the model of 
the roulette wheel. Crossover will be executed in a 
two-dimensional fashion, as this fits better the 
geometry of the problem. Namely, the rectangular 
area is divided into four parts by means of two 
random separators, one for each side of the 
rectangle. 
 

 
 

Fig. 3 Parents (above) and offspring (below)  

The offspring produced are shown schematically 
in Fig. 3. Crossover of similar type has been 
implemented in various problems involving two-
dimensional arrangements, such as in [19]. Finally, 
mutation is executed in the standard fashion.  

3.2 An alternative genetic approach 
An alternative scheme is presented here, that takes 
into account the cellular nature of the field to be 
reformed. The scheme considers the neighborhood 
of each block. The neighborhood is defined in the 
sense of von Neumann [9], as the set of “east – 
west” and “north – south” cells (Fig. 4). Obviously, 
for the boundary cells the respective neighborhoods 
contain less than four elements. 
Let Nk be the neighborhood of block k and nk be a 
selected neighbor of the same block ( k k

i k k kC {n |n N and k 1,2,..,a b}= ∈ =   (8) 

i 1,2,.., N=  
where N is the population size. 

 
 
Fig.4 Neighborhood definition 
 
Also, according to this notation, let 

knw {1,2,..,m}∈ be the number of the well 
assigned to the neighbor nk. 
   The chromosome Ci of Equation (8) can be 
considered as a replacement rule that dictates to the 
block k to replace the well wk assigned to it by the 
the well wnk of the selected neighboring block nk 
(Fig.5).        
The appropriate choice of the suitable neighbor nk 
will be put forward by the genetic algorithm.  
The procedure runs as follows: 
(a) An initial reference configuration or mosaic is 

formed by randomly assigning a well to each one 
of the blocks. 

(b) An initial population of chromosomes of the 
type prescribed by Equation (8) is formed by 
randomly assigning to each block one of its 
neighbors. 

(c) The chromosomes of step (b) are evaluated by 
replacing in the reference mosaic the well wk of 
each block with the well vk of the neighbor nk, as 
indicated in the position k of the chromosome, 
and applying the objective function (6).  Thus 
the chromosomes may be considered as 
operators transforming the original mosaic. 

(d) The chromosome with the best value of the 
objective function transforms the original mosaic 
and a new reference configuration is obtained. 

(e) The evaluations of step (c) are followed by 
selection, crossover and mutation for all 
chromosomes. Selection is performed according 
to the roulette wheel model, crossover is 
executed by means of one random separator and 
mutation follows the conventional pattern. 

n N∈ ). 
The typical chromosome will be defined as  
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(f) The resulting renewed population is evaluated 
according to step (c) with the reference mosaic 
of step (d). 

The algorithm is shown schematically in Fig. 6. 
 

3.3 A simulated annealing approach. 
For the simulated annealing procedure, let C be the 
current configuration of the problem, which has 
already been represented by the chromosome of 
Equation (7) and let C1 be a small variation of 
C. If f(C) and f(C1) are the corresponding objective 

function values, then the quantity  

δ = f(C1) - f(C)   is formed.  

If δ < 0, then C1 is accepted as the new current 
configuration.  

Otherwise, a random real number r is generated, 
that lies between 0 and 1. 

 
If  r < e-δ/Τ, then C1 is accepted.  
Otherwise it is rejected and another variation of 

C is generated, which is also subjected to the above 
δ – test.  

T is the so called temperature that decreases 
slowly according to a prescribed “annealing 
schedule”, which is a basic parameter of the 
annealing algorithm. 

Another parameter is the mode of transition from 
configuration C to configuration C1. One of the 
ways to effect this transition would be to pick out 
two cells at random and mutually exchange the 

respective wells connected to these cells. This 
approach is followed in the spatial allocation 
problem of Aerts et al. [20]. 

For the present problem this type of transition 
did not yield good results. Instead, the following 
scheme was set up in accordance with the cell-based 
idea of the previous section:  

Fig.5. Replacement of well connected to block k with the well connected to block nk 

Fig. 6 The cell-based genetic algorithm 
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Let ps be a prescribed probability of change. For 
each one of the cells, a random number r is 
generated such that 0 ≤ r ≤ 1. If r < ps, the cell will 
replace the well to which it is connected with the 
well of a cell  selected at random from its 

neighborhood, as it was defined in section 3.2 
and Fig.4. The replacement is illustrated in Fig. 5. If 
r ≥  ps, then the cell remains unchanged. 

The formation of the new configuration is 
completed, when all cells have been subjected to the 
above procedure. It must be noted here that the cells 
are taken in a random order. 

By imposing a probability of change, only a 
fraction of the total number of cells is affected, thus 
resulting in a small differentiation of the whole 
configuration. 

The same type of interaction was tried with cells 
taken from the rest of the whole configuration and 
not just from the current cell’s neighborhood.  

In both cases the update of the cells was done in 
an asynchronous manner. This means that, if a cell 

is differentiated during the formation of the 
configuration, it uses its most recently acquired 
state for all subsequent interactions until the 
formation is completed. 

Fig.7 Schematic representation of the genetic – annealing hybrid 

 

3.4 A hybrid genetic – annealing approach. 
The above described cell-based genetic algorithm 
can be endowed with a simulated annealing 
ramification if the current configuration that arises 
after every generation of genetic search, is subjected 
to annealing processing. Indeed, the configuration, 
that results after each generation lends itself 
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naturally to a possible further improvement through 
annealing. 

In the literature genetic – annealing hybrids 
appear in numerous applications and it may be 
considered that they fall under two main categories. 
One broad category concerns using simulated 
annealing as a genetic operator in the framework of 
a genetic algorithm. In particular, simulated 
annealing complements the mutation operator. This 
basic idea has been applied to discrete optimization 
problems, such as in [21] and [22], as well as in 
continuous optimization, such as in [23], [24], [25]. 
Simulated annealing in combination to both 
mutation and crossover operators can be found in 
[26], following the parallel recombinative simulated 
annealing model of Mahfound and Goldberg [27]. 
Another category is characterized by a sequential 
application of genetic algorithm and simulated 
annealing [28,29,30]. In these cases the best 
individual or a number of top individuals obtained 
by the genetic algorithm are directed to an 
annealing processing and subsequently inserted 
back into the population. As already alluded, the 
present approach 
is closer to this latter category, although the current 
configuration, which is subjected to annealing, is 
not a population member, but a product of the 
genetic cycle. The present hybrid genetic – 
annealing scheme is depicted in Fig. 7. 
 

4 Results 
A 10x10 grid was set up with three wells placed in 
the following positions: 

  
1 1

2 2

3 3

w w

w w

w w

x 20, y

x 18, y

x 15, y

= =

= =

= =

0

0

0

imulated annealing with neighbor 
interaction 

   

The hydraulic conductivities around the respective 
wells were  
k1=0.05x10-3m/s, k2=0.5x10-3m/s, k3=1.2x10-3m/s. 

The thickness of the aquifer was taken as 
b=50m, the radius of influence R=15m and the radii 
of the wells all equal to rw=0.10m. 

  Both the conventional and the cellular-based 
genetic algorithm were tried with crossover 
probability pc=0.5, mutation probability pm=0.01 
and a population size equal to 70. The cell-based 
algorithm clearly outperformed the conventional 
one, yielding an optimal configuration within less 
than 100 generations. The conventional algorithm 

was unable to reach the same result even after 1000 
generations. 

As shown in Fig. 8, well no 3 is not represented 
in the configuration. The same is true of the best 
configuration produced by the conventional 
algorithm, shown in Fig. 9 and of the configurations 
produced by the annealing methods, as shown in 
Figs. 10 and 11 below. 

Fig. 8 Proposed cell-based genetic algorithm 
 

Fig. 9 Conventional land use map type genetic 
algorithm 

 
Fig. 10 shows the configuration that resulted 

from the simulated annealing process, in which 
mimicking a neighbor cell took place, as described 
in section 3.3. 

 
Fig. 10 S
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Fig. 11 shows the best configuration produced 
by simulated annealing for the case where the 
neighborhood is taken equal to the whole 
rectangular field. 

 

 
Fig.11 Simulated annealing with the cells 
mimicking any other randomly chosen cell. 

 
It is noted here that the optimal configuration 

produced by the cell-based genetic algorithm was 
not rendered by the conventional approach or by the 
simulated annealing alone. The same result was 
only obtained by the hybrid cell-based genetic – 
annealing algorithm. The result of the hybrid 
algorithm was again obtained in less than 100 
generations, while it took the annealing approaches 
900 iterations to yield the configurations shown in 
Figs. 10 and 11. 

A final remark could be made in relation to 
the better result of Fig. 10 compared to Fig. 11. In 
the first case the interactions take place within the 
neighborhood, contrary to what happens in the last 
figure.  
 
 
5 Discussion - Conclusions   

The optimization procedures presented in the 
previous sections have the concept of cellular 
automaton at their base. As it has already become 
evident from the previous description, cellular 
automata are characterized by 
(i) A two-dimensional cell lattice structure 
(ii) A set of possible states that the cells may 

realize 
(iii) A set of rules governing the transition from one 

state to the next. 
In the present approach the cellular modeling has 

been suggested by the two-dimensional geometry of 
the land blocks arrangement. The state of each 
block – cell is identified with the well to which the 
cell is connected. Thus, in the particular example 
problem of the previous section the set of possible 
states contains three members. 

The transition rules are not fixed under the 
methods presented here. In the case of simulated 
annealing the transition of the cells is done each 
time by mimicking another cell at random and in 
the case of the proposed genetic algorithm the 
changes of state follow varying directions rather 
than constant rules. 

There is an extensive literature related to the 
evolution of cellular automata through genetic 
algorithms, with [13] representing a characteristic 
early example. In this category of problems a 
genetic algorithm is employed in order to determine 
the best rules or rule tables that enable a cellular 
automaton to perform certain given numerical tasks. 
The chromosomes of such a genetic algorithm 
represent possible rules that are evaluated in terms 
of performance and then subjected to genetic 
operators in order to be improved from generation 
to generation. The result of this process is an 
optimal rule that can be used henceforth, so that the 
cellular automaton can fulfill the desired function. 

Clearly, in the present approach no constant rule 
is sought. The objective is to evolve the cellular 
automaton toward an optimal configuration and not 
to find an optimal rule. This point of view is 
adopted in a number of papers related to land use 
and forest planning, such as in [31], [32], [33], [34] 
and [35].  

However, in all of these references the problems 
treated are classical allocation problems and do not 
carry the particular characteristics of groundwater 
allocation, as explained in section 2. Also, the 
objectives of the problems treated therein are 
different and, therefore, no direct numerical 
comparison can be made.  

Nevertheless, the conceptual similarity allows 
useful methodological comparisons. Indeed, 
regarding the specific methodologies, Stewart et al. 
[34], representing the above group of papers, 
presented a genetic algorithm whose typical 
chromosome is a land use map, i.e. it consists of the 
collection of all cells accompanied by the respective 
provisional land uses. In contrast, in the present 
exposition, the typical chromosome does not reflect 
the current configuration of the cellular automaton, 
but it points to a possible way toward the upcoming 
new configuration. 

The kind of genetic algorithm of the above 
references was used here as an example of a natural 
encoding of the water allocation problem, in order 
to obtain a standard of comparison for the 
alternative version. Thus, there is a clear 
methodological difference in the present work. 

Another interesting feature of the above cited 
references is the consideration of local versus global 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT E. Sidiropoulos, D. Fotakis

ISSN: 1790-5079 358 Issue 4, Volume 5, April 2009



objectives that have to be satisfied through the 
optimization process. For that reason and because of 
possible arising conflicts, special objective 
functions were defined in those references. This 
treatment does not consider objectives of a local 
nature. However, because the nature of the present 
typical chromosome is local, any such additional 
local features could potentially be incorporated into 
the formulation. 

The simulated annealing and genetic algorithm 
approaches have been compared in the literature to  
self-organizing algorithms applied to cellular 
automata in the context of land use planning ([31], 
[35]). The results obtained favored the use of the 
self-organizing algorithms. However, the genetic 
algorithms used in those references were equivalent 
to land use maps. The alternative algorithm 
presented here might offer a more efficient version 
of a genetic algorithm and put the comparison on a 
different basis. However, this issue and the 
consideration of local objectives and conditions are 
possible future directions of research. 
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