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1 Introduction 
The initial state of the system will be a steady one. 

For this, we must give the value of state variables 

of system and also the interface variables between 

different blocks of the model. The value of some of 

these variables can be chosen arbitrarily (within the 

limits of validity of models), the value of others 

may be inferred from the first through the use of 

relationships between variables in steady state. The 

definition of an initial state is to choose a set of 

variables of the system so we can assign a value 

independently and that the set of all other variables 

in the system can be inferred. We will describe later 

in this section the overall system initialization, that 

is to say the choice of independent variables and 

calculating the interface variable models of areas 

and lines. Initialization within each component 

models will be presented at the same time as the 

description thereof. In steady state, the frequency is 

the same everywhere in the system. We assume 

here that the initial state, this frequency is the 

nominal frequency. We take as a basic option that 

the active production and voltage generators are 

given, and also the active and reactive power of the 

charges for voltage and nominal frequency. In this 

context, in general, the active power balance is not 

checked. Therefore, the active production of one of 

the generators will not be fixed (node beam). In this 

node, a reference phase is chosen. Compared to the 

conventional approach to charge flow, it is 

necessary to make the following remarks [1],[3],[7] 

     1) The voltage generator is set to stator terminals 

of the alternator. We assume here that the voltage is 

fixed to the bus bar high voltage area. If the step-up 

transformer of the production group is an ideal one, 

there is a relationship of proportionality between 

the two. If the model of transformer includes 

internal impedance, the voltage across the alternator 

stator is calculated from other variables, including 

voltage busbar HT, as will be described later in the 

paragraph on the initialization of variables of the 

step-up transformer (Fig. 1).  
 

 
Fig. 1: Power three-phase oil transformers. 

 

     2) For the initial situation, the voltage across the 

charge is not necessarily the nominal voltage. If the 

models are including a sensitivity of active and 

reactive power charges in tension, it must be taken 

into considerations in order to determine the powers 

and the initial tensions. If the step-down 

transformer is an ideal transformer, the voltage 

across the charge is proportional to the voltage 

node HT, supposedly given in the initial conditions. 

Therefore the active and reactive power consumed 

can be calculated. The initialization of variables 

relating to charges and step-down transformers will 

be developed in Section 2. 

     3) What has been said about the tension can also 

be about the active power of group generator. We 

assume that the net active power produced is 

known, it is said the power delivered to the busbar 

HT.  
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2 Basic Model of a Transformer 

without Losses 
As part of the study presented here, we can 

reasonably suppose that the magnetizing current of 

the transformers and the losses by Joule effect in 

the windings have a negligible influence [11], [16]. 

Therefore, the model of the transformer is reduced 

to a series reactance X and an ideal transformer of 

ratio 1:r. The scheme and the notations used are 

given in Fig. 2. The amplitude of the input voltage 

is Uin and its phase is θin, whose time derivative is 

proportional to frequency fin.  
 

 
Fig. 2: Schematic of the transformer. 

 

The active and reactive powers to the entry are Pin 

and Qin, the input current being Iin. The quantities 

corresponding to the output are designated by the 

“out” suffix. As the transformer is without active 

losses active, we have: Pin=Pout and IP,in=IP,out. Note 

also that the ideal transformer preserve active and 

reactive powers and phases, and therefore the 

frequencies. The dephasing of voltages between 

input and output is given by [12]: 
 

θ = θin - θout                (1) 
 

Therefore, the relationship between frequencies is: 
 

( ) θ=−π
dt

d
ff outin2                     (2) 

 

2.1 The Basic Equations of the Current 

Model of the Transformers 
From the diagram in Fig. 3, we can establish the 

following relations: 
 

                       outoutin IrII ⋅== '
                       (3)  

 

               outoutQoutQoutPoutPout IrIII ⋅=⋅+⋅= ,,
'

,
'

,
' 11'     (4) 

 

 where outP,
'

1  denotes the vector of unit length 

oriented along U’out, and outQ,
'1  denotes the vector 

of unit length quadrature backwards relatively to 

U’out. Similarly, we have:  
 

             inQinQinPinPin III ,,,, 11 ⋅+⋅=       (5) 

 

where inP,1  and inQ,1  are vectors of unit length 

oriented respectively in phase and quadrature 

backwards relatively to Uin. 

    The relationship between the two axis systems 

is:  
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Relations (3), (4), (5) and (6) provide 
 

    
θ⋅+θ⋅=

θ⋅−θ⋅=

cos'sin'

sin'cos'

,,,

,,,

outQoutPinQ

outQoutPinP

III

III
       (7) 

 

From the diagram in Fig. 3, the angle 0 is given by 
 

                      
in

outP

U

IX ,'
sin

⋅
=θ                  (8) 

 

The internal voltage of the transformer U’out also 

follows the Fig, 3 by the relationship 
 

                outQ, inout I'X-cosUU' ⋅θ=         (9) 

 

 
Fig. 3:  The phase diagram of the currents and voltages. 

 

The relationship between the internal voltage and 

the voltage at the output of the transformer is:  
 

                      outout U'rU' =                      (10) 
 

Under (2), the frequency deviations are related by: 
 

               
dt

d
ff inout

θ
π

−∆=∆
2

1
             (11) 

 

Table 1 below gives the input and output variables 

of the current models of the step-up and step-down 

transformers. 
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Tab. 1: Variable input and output of current models of 

the transformer. 

Current 

models 

Input 

variables  

Output 

variables 

Access   

Step-up 

transformer 

Ualt, falt 

IPnet, IQnet 

UHT 

IPalt, IQalt 

in: alt 

out: HT 

Step-down 

transformer 

UHT, fHT 

IPch, IQch 

Uch, fch 

IPchHT, IQchHT 

in: HT 

out: ch 

 

2.2 The Basic Equations of the Power Model 

of the Transformers  
A certain analogy exists between the model of the 

transformer and the one with line without losses. 

The relations developed above can be repeated 

here, but taking into considerations the sign 

conventions that are different. 
 

                       θ== sin
'

X

UU
PP outin

inout                  (12) 

                    
X

U

X

UU
Q outoutin

out

2
'

cos
'

−θ=            (13) 

             
X

U

X

UU
Q inoutin

in

2

cos
'

+θ−=             (14) 

                            outout rUU '=                    (15) 
 

The input and output variable of power models of 

the transformers are listed in Tab. 2. 

 
Tab. 2: Variable input and output of models in power 

transformer. 

Models Input 

variables 

Output 

variables 

Access   

Step-up 

transformer 

Ualt , falt 

Pnet, Qnet 

UHT , fHT 

Palt , Qalt 

in: alt 

Out: HT 

Step-down 

transformer 

UHT , fHT 

Pch , Qch 

Uch , fch 

PchHT, QchHT 

in: HT 

out: ch 

      

Figures 2 and 3 show that there is a similarity 

between the two models (step-up and step-down 

transformers) regarding to input and output 

variables. The input variables are the voltage Uin 

and the frequency fin to an access, the active current 

IP,out, and the reactive one IQ,out, out to the other 

access or active power Pout and reactive power Qout 

out to another access. The output variables are: the 

voltage Uout and the frequency fout at the second 

access, the active current IP,in and the reactive one 

IQ,in at the first access, or active power Pin and 

reactive power Qin at the first access [13]. The 

following developments aim to make expressions 

of output variables based on input variables for the 

power model. From (12), we get (16) 
 

outin PP =                            (16) 

From (12) and (13), we have respectively: 
 

( )2
2

22
2 sin

'
θ=

X

UU
P outin

out                (17) 

  ( )2
2

22
2

2

cos
''

θ=




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X

UU
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the sum of (17) an (18) provides:  
 

( ) 02
'' 22

22

2

4

=++
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
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−+ outout
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out

outout QP
X
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Q
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U
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Solving this quadratic equation in U`out
2
  gives 

 






 −−+−= 222222

44
2

1
' outoutininoutinout PXQXUUXQUU (20) 

 

Having determined U`out by (20), we obtain Uout by 

(15). The phase shift θ  is obtained by relations (12) 

and (13), which can be rewritten: 
 

  
outin

out

UU

XP

'
sin =θ                             (21) 

                  
outin

outout

UU

UXQ

'

'
cos

2+
=θ                       (22) 

 

Hence, we get: 
 

                    

X

U
Q

P
tg

out
out

out

2
'

+

=θ                          (23) 

 

Under (2), the frequency fout is given by: 
 

                    θ
π

−=
dt

d
ff inout

2

1
                         (24) 

 

Finally, using (13) and (14), Qin is given by 
 

                  
X

UU
QQ outin

outin

22 '−
+=                    (25) 

 

 

3 Block Diagrams of Models of the 

Step-Up and Step-Down Transformers  
The block diagram of the current model of the 

transformer is shown in Fig. 4 where the numbers 

of the equations used are indicated in parentheses. 

The block diagram of the power model is in Fig. 5. 

 

3.1 The Current Models of the 

Transformers 
The calculation of the derivative of θ uses a 
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differentiator filtered to reduce the high frequency 

of the output signal and thus prevent numerical 

oscillations. The time constant δT  is about 0.005s. 

The filtered differentiator can also introduce the 

initial value of phase shift depending on other 

initialization values of the model. The input 

quantities of step-up transformer (IPnet, IQnet) and the 

output voltage UHT will be expressed in physical 

quantities. The internal quantities of the model of 

step-up transformer (U
’
HT, I

’
Pnet, I

’
Qnet), the output 

quantities (IPalt, IQalt) and the input (Ualt) are 

expressed in per unit. For the model of step-up 

transformer, the transformation ratio of tensions rU 

is therefore the nominal secondary voltage UTe,nom 

of the transformer (in kV), the nominal primary 

voltage worth 1 pu. This ratio rU provides the UHT  

voltage in kV according to the internal voltage U
’
HT 

in per unit. In practice, UTe,nom is slightly higher 

than the rated voltage UHT,nom of the busbars. For 

the step-up transformer the unity change factor of 

the currents rI is introduced to pass input quantities, 

expressed in physical units, to internal quantities 

expressed in per unit. This ratio rI is UTe,nom/Snom. 

We assume that the nominal power of the generator 

is equal to the one of the step-up transformer: 

Salt,nom=STe,nom=Snom. The input quantities of the 

step-down transformer (IPch, IQhc, UHT, etc.) are 

expressed in physical quantities. The quantities of 

the internal model of the step-down down 

transformer (IPch, IQhc, UHT, etc.) and the quantities 

of output (IPchHT, IQchHT, Uch) are also expressed in 

physical quantities. For the model of step-down 

transformer, the transformation ratio rU is therefore 

ra in physical quantities; this produces the voltage 

U
’
ch in kV according to the internal voltage U

’
ch in 

kV. The ratio rI is also ra in this case. 
 

 
Fig. 4: Current model of the transformer. 

 

3.2 Power Models of the Transformers 
The remark on the derivative of θ expressed in 

paragraph 3.1 also applies to power model of the 

transformers. For the model of step-up transformer, 

by analogy with what has previously been 

expressed for the input quantities, the output and 

the internal quantities of the current model, the 

transformation ratio of tensions is UTe,nom. The 

factor of units change between the input powers, 

expressed in physical quantities and the internal  

and output variables expressed in per unit, is rP=1/ 

Snom. For the step-down transformer, the 

transformation ratio of tensions is simply a report 

of physical quantities (nominal ratio of 

transformer), the ratio of power transforming rP is 1 

[1], [14]. 
 

 
Fig. 5: Power model of the transformer. 

 

Table 3 gives the sizes (rU, rI and rP) used for the 

models of step-up and step down transformers. 
 

Tab. 3: Size used for models transformers. 

 Step-up transformer Step-down transformer 

RU UTe,nom ra 

RI UTe,nom / Snom ra 

RP 1 / Snom 1 

 

3.3 Initialization of Variables of the Step-Up 

Transformers 
The step-up transformer parameters are: reactance 

XTe, the transformation ratio transformation 

rU=UTe,nom, the apparent nominal power SnTe=Snom. 

The input and output variables are shown in Tables 

1 and 2 depending on the model used. Assume a 

priori that the voltage UHT of the high voltage node 

is fixed. The overall initialization of the system that 

was developed in paragraph 1 allows determining 

the production and expenses reported to the high 

voltage node, that is to say Pnet and Qnet for the 

power models and the active and reactive currents 

IPnet and IQnet for the current models. By referring to 

the notation of Section 2 and part of Tab. 1 

relatively to the step-up transformer, we find that at 

this stage of initialization for the current models, 

we know the quantities Uout ≡UHT, IP,out≡IPnet and 

IQ,out≡IQnet, and we must determine Uin ≡Ualt, 
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IP,in ≡ IP,alt, IQ,in=IQ,alt and the angle θ , noted eθ in the 

case of step-up transformer [5]. 

From (10), Fig. 4 and Tables 1 and 3, we get  

U

HT
HT

r

U
U =' , netPInetP IrI ,,' =  and netQInetQ IrI ,,' = . From 

(8) and (9) we can then determine Uin≡Ualt and the 

internal angle eθ of the transformer by: 
 

( ) ( )2,

2

, ''' netPTenetQTeHTalt IXIXUU ++=  









=θ

alt

netPTe

U

IX ,'
arcsin  

 

The currents IP,in≡IPalt and IQ,in≡IQalt are obtained by 

relations (7). Similarly, referring to the portion of 

Tab. 2 relatively to the step-up transformer, it 

appears that, for power models, we know the 

quantities Uout≡UHT, Pout≡Pnet and Qout≡Qnet, and we 

must determine Uin≡Ualt, Pin≡Palt, Qin≡Palt and the 

angle 0e. Relation (16) determines Palt (Pin≡Pout), 

and we get U
’
HT ≡Uout from (15) and the angle eθ  is 

obtained from equation (23). Knowing Palt, U
’
HT and 

θe we determine Ualt≡Uin from equation (13). Hence 

the expression (14) calculates Qin, that is to say the 

reactive production Qalt of the alternator [3], [11]. 
 

 

3.4 Initialization of Variables of Charges 

and Step-Down Transformers 
Regarding the initialization of variable charges and 

step-down transformers, different approaches are 

possible depending on the perspective adopted and 

the quantities that are initially binded. For each 

approach considered here, the nominal voltage 

charge Uch,nom is assumed known. Tables 4 (current 

models) and 5 (power models) below summarize 

the four approaches we have considered (for current 

and power models) based on data and quantities to 

be determined. The fact that there are several 

approaches shows that in the model structures, 

there are several degrees of freedom. For the 

approaches 1 and 4, the values of currents or power 

charges are given, while for approaches 2 and 3 

they are the nominal quantities (at nominal voltage) 

that are given. The approaches 1 and 4 are therefore 

used in calculating charge flow. For approach 1, the 

quantities are given to busbar HT, while for the 

approach 4, they are the terminals of the charge. In 

this study, for calculations, we have used the 

approach 4, which is closest to the methods used in 

practice for charge flow calculations [4]. 
 

Tab. 4: Approximations of the models. 

 Given Quantities to 

determine 

Approximation 

1 

UHT , IPchHT  IQchHT U ch, IPch, IQch, 
IPch,nom  IQch,nom  θa 

Approximation 

2 

U c h , IPch,nom , IQch, nom U HT, IPch, IQch ,IPchHT  

IQchHT ,  θa 

Approximation 

3 

UHT, IPch,nom , IQch, nom U ch IPch, IQch  IPchHT  

IQchHT   θa 

Approximation 

4 

UHT , IPch, IQch U ch, IPch,nom, IQch,nom  
IPchHT , IQchHT, θa 

 

The step-down transformer parameters are: the 

reactance XTa, the transformation ratio ra, the 

apparant power SnTa=Snom.  
 

Tab. 5: Approximations of the models. 

 Given Quantities to determine 

Approximation 

1 
UH T , PchHT, IQchHT Uch  Pch, Qch Pch,nom 

Qch,nom , θa 

Approximation 

2 
Pch , Pch,nom ,  

Qch,nom 

UH T , Pch , Qch 

PchHT , QchHT  

θa 

Approximation 

3 
UH T , Pch,nom, 

Qch,nom 

Uch , Pch , Qch 

PchHT  QchHT, θa 

Approximation 

4 

UH T ,  Pch , Qch Uch  Pch,nom, Qch,nom,  

PchHT ,QchHT , θa 

 

3.4.1 Current models  
     1

st 
approache: Starting from the high voltage 

node (HV), we give a priori the voltage UH T  and 

the active current IP c h H T  and reactive current 

IQ c h H T . Using the notation of Table 1, we therefore 

know UHT, IPchHT and IQ c h H T . The problem is to 

determine Uch, IQch and the angle θ, noted θa in the 

case of step-down transformer. The sum of the 

equations squares from the (7) allows to write: 
 

           
2222

'' QchPchQchHTPchHT IIII +=+           (26) 

 

Similarly, the sum of the equations squares from 

the relations (8) and (9) gives:  
 

      ( ) ( )222
''' PchTaQchTachHT IXIXUU ++=        (27) 

 

From these last two relations, (26) and (27), we get 

I
’
Pch and I

’
Qch and we calculate the currents IPch and 

IQCh dividing these values by ra. The angle θa is 

given by (8) and the voltage Uch is derived from (9) 

and (10). We have also obtained the active and 

reactive current, IPch and IQch, of the charge and its 

operating voltage Uch. With the characteristic 

equations of the charges written here, given that the 

initial frequency is the nominal frequency f0: 
 

              

α











=

nomch

ch
nomPchPch

U

U
II

,

,                  (28) 
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β











=

nomch

ch
nomQchQch

U

U
II

,

,                (29) 

 

we calculate the values  IPch,nom and IQch,nom of the 

charge at the nominal voltage 

    2
nd

 approache: starting from the charge, we are 

given a priori the quantities IPch,nom, IQch,nom and Uch 

of the charge. In this case, the active and reactive 

currents IPch and IQch of the load are calculated using 

relations (28) and (29). We know then Uout≡Uch, 

IP,out≡IPch and IQ,out≡IQch, and we determine Uin≡UHT, 

θa, IP,in≡IPchH T  and IQ,in≡IQchH T  in the same manner 

as the description of the current models. This gives 

UHT, IPchHT and IQchHT. 

3
rd

 approache: we are given a priori the 

nominal values IPch,nom, IQch,nom of the load, and we  

assume the tension UHT of the node HT as known 

(achieved in practice by setting production groups). 

This approach requires the simultaneous 

initialization of the step-down transformer and the 

charge. It remains to be determined Uch, θa, IPchHT, 

IQchHT, IpCh and IQch. Using the notation of Tab. 1, 

relations (10), (28) and (29) are written [4]: 
 

           U i n ≡U H T  

α











=

nomch

ch
nomPchPch

U

U
II

,

,                   (30) 

β











=

nomch

ch
nomQchQch

U

U
II

,

,                  (31) 

β











=

nomch

ch
nomQchQch

U

U
II

,

,                  (32) 

                   U c h =raU
’
c h    

 

Substituting the previous expressions of I P,out≡IPch 

and IQ,out≡IQch in equation (27) yields: 
 

0'
''

'
2''

2

2

,

,
2

2

,

,
2

,

,
2

=−



























+















⋅⋅+













⋅⋅⋅⋅+

βα

β

HT

nomch

ch
nomPch

nomch

ch
nomPch

aTa

nomch

ch
nomQchaTachch

U
U

raU
I

U

raU
I

rX
U

raU
IrXUU

(32) 

 

We obtain an equation with one unknown 

(U’ch≡U’out) whose exponents for various terms in 

the equation are: 2, 1+β, 2α , 2β and 0. The 

equation (32) has no general analytical solution. 

Carrying out an iterative calculation, it is possible 

to solve it. However, this equation is readily soluble 

in many practical cases: 

     For α=0 (charge at active power constant). If 

β=0, equation (32) becomes a quadratic equation in 

U`out, which is easily soluble. If β=1, equation (32) 

is also a quadratic equation in U`out, so readily 

soluble. If β=2, there is a fourth degree equation 

whose analytical solution is expressed not so 

simple. If β = 3, the equation is of degree six. 

     For α =1 or α =2 (charge at constant active 

current (=1) or constant impedance (α =2)). If β=0, 

the equation (32) is a quadratic equation in U`ch for 

a charge at constant active current (=1). By cons, 

for a charge at constant impedance (=2), the 

equation (32) is an equation of fourth degree in U`ch 

whose analytical solution is expressed not so 

simple. If β=1, it remains either a quadratic 

equation in U`ch (α =1), or a quadratic equation in 

U`
2
ch (α =2) which are both readily soluble. If β=2, 

we get an equation of fourth degree in U`ch whose 

analytical solution is expressed not so simple. If 

β=3, we can be reducing to a cubic equation in 

U`
2
ch. Table 6 summarizes the situations where the 

resolution of equation (32) is easy (sign *). 
 

Tab. 6: The situations where the resolution of equation 

(32) is easy. 

              β     

α  

         0             1            2 

0             *            *  

1          *            *            * 

2    

 

Having determined U'ch≡U'out, we obtain the output 

voltage Uout≡Uch by (15). The characteristic 

equations of charges (28) and (29) allow to 

calculate IP,out≡IPch and lQ,out≡IQch. Hence, we 

determine successively the internal angle θa of the 

step-down transformer by (8), and the current IP,in ≡ 

IPchHT and IQ,in≡IQchHT by (7). 

     4
th
 approache:   we start from the charge, for 

which we fix the active and reactive currents IPc h  

and IQ c h  and the nominal voltage Uch,nom and we 

assume as known the tension UHT of the node HT. 

As the third approach, it also requires the 

initialization of both the step-down transformer and 

charge. We know here Uin≡UHT and it remains to 

determine Uch, θa, IPchHT, I QchHT, IPch,nom and IQ c h ,nom. 

From relation (27), taking into consideration the 

relation (10) and the fact that the currents I 'P c h  and 

I 'Q c h  respectively represent the products of IPc h  

and IQ c h  and with the transformation ratio ra, we 

get: 
 

 ( )2
2

2

PchaTaQchaTa

a

ch
HT IrXIrX

r

U
U +








+=    (33) 
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This quadratic equation in U 
2
ch provides the tension 

of the charges Uch≡Uout. The currents I'Pch and I'Qch 

are obtained from IPc h ,  IQ c h  and ra. The angle θa is 

given by (8), the currents IPchHT≡IP,in and IQchHT≡IQ,in 

are given by relations (7). We finally calculate the 

currents IPch,nom and IQch,nom by relations (28) and 

(29). 

 

3.4.2 Power Models  
     1

st
 approache: starting from the high voltage 

node (HT), we are given a priori tension UHT and 

the active and reactive powers PchHT and QchHT. 

Using the notation of Tab. 2, we therefore know 

Uin≡UHT, Pin≡PPchHT and Qin≡QchHT. We have to 

determine Uout≡Uch, Pout≡Pch and Qout≡Qch and the 

internal angle θa. Relation (12) allows us to 

calculate the power Pch≡Pout≡Pin≡PPchHT. By making 

the sum of the squares of relations (12) and (14) we 

obtain: 
 

          2

22
2

2
2 '

Ta

chHT

Ta

HT
chHTchHT

X

UU

X

U
QP

⋅
=










−+  

 

This allows us to calculate U'ch=U'out. The relation 

(15) provides then Uch=Uout. Relation (12) gives the 

internal angle θa and the reactive power Qch=Qout is 

determined from the relation (13). This resulted in 

the active and reactive powers Pch and Qch of the 

charge and also it’s operating voltage Uch. With the 

charges characteristics equations (20) and (21) that 

are written here, given that the initial frequency is 

the nominal frequency f0 : 
 

            

α











=

nomch

ch
nomchch

U

U
PP

,

,                    (34) 

                   

β











=

nomch

ch
nomchch

U

U
QQ

,

,                   (35) 

 

We calculate the values Pch,nom and Qch,nom of the 

charge at the nominal voltage. 

     2
nd

 approache: we start from the charge and we 

are given a priori the quantities Pch,nom, Qch,nom 

and Uch of the charge. In this case, the active and 

reactive powers of the charge Pch and Qch are 

calculated using relations (34) and (35). We have to 

determine Uout≡Uch, Pout≡Pch and Qout≡Qch we get 

Uin≡UHT, Pin≡PPchHT in the same is calculated the 

same way as the description on the power models 

(section 3.2). 

   3
rd

 approache: we are given a priori the nominal 

values Pch,nom and Qch,nom of the charge and we 

assume the tension UHT of the node HT as known 

(achieved in practice by setting production groups). 

This approach requires the simultaneous 

initialization of the step-down transformer and the 

charge. It remains to be determined Uch, θa, PchHT, 

QchHT, Pch and Qch. Using the notation of Tab. 1, 

relations (15), (34) and (35) are written: 
 

             

α











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U
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U
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,
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                        chach UrU '=  
 

Given Uin≡UHT, and replacing the previous 

expressions of Pout≡Pch and Qout≡Qch in equation 

(19) we have: 
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 (38) 

 

We obtain an equation with one unknown (U
’
out≡ 

U
’

c h ) whose exponents for various terms in the 

equation are: 4, 2+β, 2, 2 and 2β. Equation (38) has 

no general analytical solution. In carrying out an 

iterative calculation, it is possible to solve it. 

However, this equation is readily soluble in many 

practical cases [5]: 

      For α =0 (charge at constant active power). If 

β =0, equation (38) becomes a quadratic equation 

in U’ch
2
 which is easily soluble. If β =1, we have a 

fourth degree equation whose analytical solution is 

expressed not so simple. If β =2, equation (38) is 

also a quadratic equation in U’ch
2 

therefore easily 

soluble.  If β =3, we are dealing with an equation 

of six degree. 

      For α =1 or α =2 (charge at constant active 

current (α =1) or constant impedance (α =2)). If 

β =0, the equation (38) is a quadratic equation in 

U’ch
2
.  If β =1, we divide equation (38) by U’ch

2 
and 

we get a quadratic equation in U’ch. If β =2, we 

divide equation (38) by U’ch
2
 and obtain an 

equation of first degree in U’ch
2 
that solves easily. If 

β =3, it can be reduced to a fourth degree equation 

whose analytical solution is expressed not so 

simple. Table 7 below summarizes the situations 

where the resolution of equation (38) is easy (sign 

*). 
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Tab.7: The situations where the resolution of equation 

(38) is easy. 

               β    

α  

         0             1            2 

0             *            * * 

1                      *            * 

2          *            *            * 

 

Having determined U`out we obtain the output voltage 

Uout≡Uch by (15). The characteristic equations of charges 

(36) and (37) allow the calculation of Pout≡Pch and 

Qout≡Qch. Hence, we successively determine the angle θa 

by (23), Qch≡QchH T  by (14) Pin and Pin≡Pc h H T≡Pout by 

(12).  

    4
th
 approache: we start from the charge, for 

which we fixe the active and reactive powers Pch 

and Qch (assuming the voltage Uch,nom known), and 

we assume the tension UHT of the node HT as 

known. Knowing Pout≡Pch and Qout≡Qch and also 

Uin≡UHT the relation (20) determines U'out≡U'ch and 

the relation (15) gives Uout≡Uch. The angle θa of the 

step-down transformer is given by (23), QchH T≡Qin is 

calculated from (25) and PchH T≡Pin≡Pout is given by (12). 

Finally, the relations (36) and (37) allow the calculation of 

Pch,nom and Qch,nom.  
 

 

4 Ideal Transformers 
The ideal transformer shown schematically in 

Figures 6 and 7 corresponds to that of paragraph 2 

where the reactance X is zero. This model retains 

the active and reactive powers, and also the 

frequency and phase. The voltage output (Uout) is 

equal to the input voltage (Uin) multiplied by the 

transformation ratio (r). The ratio of output current 

and input current is the inverse transformation ratio 

(1/r). 

 

4.1 Current Model of the Ideal Transformer 
The input quantities of the current model of the 

ideal step-up transformer are the active and reactive 

currents IPnet (kA) and IQnet (kA), the voltage Ualt 

(p.u.) and the frequency deviation ∆falt (Hz). To 

express the output quantities, active and reactive 

current IPnet (kA) and IQnet (kA), in quantities per 

unit, we must introduce the conversion factor 

rI=UTe,nom /Snom between currents. The relationship 

between the voltages is rU=UTe,nom. The current 

model of ideal step-down transformer has for the 

inputs the active and reactive current réactif IPch 

(kA) and IQch (kA), voltage UHT (kV) and frequency 

deviation ∆fHT (Hz). The output quantities are 

IPchHT=ra× IPch, IQch=ra× IQch, Uch=ra×UHT and 

∆fch=∆fHT. For step-down transformer, we have 

rI=ra and rU=ra. Fig. 6 and Tab. 3 summarize these 

results [6]. 
 

 
Fig. 6: Current model of the ideal transformer. 

 

4.2 Power Model of the Ideal Transformer 
The power model of the step-up transformer has for 

inputs the active and reactive powers Pnet (MW) and 

Qnet (Mvar), the voltage Ualt (p.u.) and the 

frequency deviation ∆falt (Hz). For obtaining the 

active and reactive powers Palt and Qalt in quantities 

per unit to the exit, we must introduce the 

conversion factor rP=1/Snom. The relationship 

between the voltages is rU=UTe,non. As the power 

model of ideal step-down transformer has entries 

for the active and reactive power Pch (MW) et Qch 

(Mvar), UHT voltage (kV) and frequency deviation 

∆fHT (Hz), the output quantities are PchHT=Pch, 

QchHT=Qch, Uch=ra×UHT and ∆fch=∆fHT. For the step-

down transformer, we have rU=ra a n d  r P = l . Fig. 7 

and Tab. 3 summarize these results. 
 

 
Fig. 7: Power model of the ideal transformer.  

 

 

5 Simulations 
This demonstration illustrates the use of the linear 

transformer to simulate a three-winding distribution 

transformer rated 75 kVA - 14400/120/120 V (Fig. 

8). The transformer primary is connected to a high 

voltage source (14,400 V rms). Two identical 

inductive loads (20 kW -10 kvar) are connected to 

the two secondaries. A third capacitive load (30 kW 

-20 kvar) is fed at 240 V. Initially, the circuit 

breaker in series with Load 2 is closed, so that the 

system is balanced [17]. Open the powergui block 
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to obtain the initial voltage and current phasors in 

steady state [8], [10].  
 

 
Fig. 8: Transformer model in Simulink. 

 

 
Fig. 9: Linear transformer by Simulink. 

 

As loads are balanced the neutral current is 

practically zero. Furthermore, as the inductive 

reactive power of Load 1 and Load 2 (2× 10 kvar) 

is compensated by the capacitive reactive power of 

Load 3 (20 kvar), the primary current is almost in 

phase with voltage. The small phase shift (-2.8 deg) 

is due to the reactive power associated with 

transformer reactive losses. Open the two scopes 

and start the simulation. The following observations 

can be made: when the circuit breaker opens, a 

current starts to flow in the neutral as a result of the 

load unbalance. The active power computed from 

the primary voltage and current is measured by a 

Simulink block which can be found in the 

Extras/Measurement library. When the breaker 

opens, the active power decreases from 70 kW to 

50 kW. 
 

 

 
      Fig. 10: Parameters transformer. 

 

This demonstration (Fig.11) illustrates 

measurement distortion due to saturation of a 

current transformer (CT). A current transformer 

(CT) is used to measure current in a shunt inductor 

connected on a 120 kV network [9]. The CT is 

rated 2000 A / 5 A, 5 VA. The primary winding 

which consists of a single turn passing through the 

CT toroidal core is connected in series with the 

shunt inductor rated 69.3 Mvar, 69.3 kV 

(120kV/sqrt(3)), 1 kA rms. The secondary winding 

consisting of 1× 2000/5=400 turns is short circuited 

through a 1 ohm load resistance.  
 

 
Fig. 11: Current Transformer Saturation by Simulink; 

in order to observe CT saturation, change the Breaker 

closing time to t=1/50 s (1 cycle). 
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A voltage sensor connected at the secondary reads a 

voltage which should be proportional to the primary 

current. In steady state, the current flowing in the 

secondary is 1000× 5/2000=2.5 A (2.5 Vrms or 

3.54 Vpeak read by the voltage mesurement block 

V2). Open the CT dialog box and observe how the 

CT parameters are specified. The CT is assumed to 

saturate at 10 pu and a simple 2 segment saturation 

characteristic is used. The primary current reflected 

on the secondary and the voltages developped 

across the 1 ohm resistance are sent to trace 1 of the 

Scope block. The CT flux, measured by the 

Multimeter block is converted in pu and sent to 

trace 2. The switch connected in series with the CT 

secondary is normally closed. This switch will be 

used later to illustrate overvoltages produced when 

CT secondary is left open.    
 

 
Fig. 12: Parameters transformer 

(1pu flux=0.0125V*sqrt(2)/(2*pi*50)=5.63e-5 V.s) 

 

     Normal operation. In this test, the breaker is 

closed at a peak of source voltage (t=1.25 cycle). 

This switching produces no current asymmetry. 

Start the simulation and observe the CT primary 

current and secondary voltage (first tace of Scope 

block). As expected the the CT current and voltage 

are sinusoidal and the measurement error due to CT 

resistance and leakage reactances is not significant. 

The flux contains a DC component but it stays 

lower than the 10 pu saturation value [15].  

     CT saturation due to current asymmetry. Now, 

change the breaker closing time in order to close at 

a voltage zero crossing (Use t=1/50s). This 

switching instant will now produce full current 

asymmetry in the shunt reactor. Restart the 

simulation. Observe that for the first 3 cycles, the 

flux stays lower than the saturation knee point (10 

pu).  The CT voltage output V2 then follows the 

primary current. However, after 3 cycles, the flux 

asymmetry produced by the primary current causes 

CT saturation, thus producing large distortion of  

CT secondary voltage.   

     Overvoltage due to CT secondary opening. 

Reprogram the primary breaker closing time at t= 

1.25/50 s (no flux asymmetry) and change the 

secondary switch opening time to t=0.1 s. Restart 

the simulation and observe the large overvoltage 

produced when the CT secondary is opened. The 

flux has a square waveshape chopped at +10 and -

10 pu. Large dphi/dt produced at flux inversion 

generates high voltage spikes (250 V). This 

demonstration illustrates simulation of hystersis in 

a saturable transformer (Fig. 13). One phase of a 

three-phase transformer is connected on a 500 kV, 

5000 MVA network. The transformer is rated 500 

kV/230 kV, 450 MVA (150 MVA per phase). The 

flux-current saturation characteristic of the 

transformer is modelled with the hysteresis or with 

a simple piecewise nonlinear characteristic. A 

Thrre-Phase Programmable Voltagge Source is 

used to vary the internal voltage of the equivalent 

500 kV network. During the first 3 cycles source 

voltage is programmed at 0.8 pu. Then, at t=3 

cycles (0.05 s) voltage is increased by 37.5% (up to 

1.10 pu). In order to illustrate remanent flux and 

inrush current at transformer energization, the 

circuit breaker which is initially closed is first 

opened at t=6 cycles (0.1 s),  then it is reclosed at 

t=9 cycles (0.15 s). The Initial flux 0ψ  (phi0) in the 

transformer is set at zero and source phase angle is 

adjusted at 90 degrees so that flux remains 

symetrical around zero when simulation is started. 
 

 

Fig. 13: Saturable transformer with hysteresis by 

Simulink. 
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A Multimeter block and a Scope block are used to 

monitor waveforms of flux, magnetization current 

(not including the eddy currrents which are 

modelled by the Rm resistance), excitation current 

(including eddy current modeled by Rm), voltages 

and current flowing into primary winding. A X-Y 

Graph block is used to monitor the transformer 

operating point moving on the flux-current 

characteristic (Fig. 14). 
 

 

Fig. 14: Flux-current characteristic. 

 

     A) Simulation of saturation with hysteresis. The 

saturation characteristics consist of two regions: 

- The main hysteresis loop: In this region there are 

2 different flux values for a single current value. 

- The saturated region defined by a simple line 

segment starting from the maximum point (Is, Fs) 

of the main loop (Fig. 14). 

The hysteresis loop is defined by the following 3 

points marked by red crosses on the main loop:    

[I=0; Remanent flux (Fr=0.85pu)], [Coercive 

Current(Ic=0.004 pu); F=0], [Saturation current (Is 

= 0.015 pu); Saturation flux (Fs=1.2 pu)] 
 

plus the slope dF/dI at coercive current (F=0). 

Using the 'Zoom around hysteresis' checkbox and 

'Display' button you can view the whole 

charactersistic or zoom on the hysteresis. Start the 

simulation and observe the following phenomena 

on the two scope blocks:  

     a) From 0 to 0.05 s: voltage and flux peak values 

are at 0.8 pu. Notice typical square wave of 

magnetization current. As no remanent flux was 

specified, magnetization current and flux are 

symetrical. Flux travels on inner loops (inside the 

main loop).  

     b) From 0.05 to 0.1 s: voltage is 1.1 pu. Flux 

now reaches approximately +1.1pu. A slight flux 

asymetry is produced at voltage change and the flux 

which varies between +1.14 pu and -1.05 pu now 

travels on the main loop. Current pulses appear on 

the magnetization current (Imag), indicating 

begining of saturation. 

     c) From 0.1 to 0.15 s: at first zero crossing after 

the breaker opening order, the current is 

interrupted, and a flux of 0.84 pu stays trapped in 

the transformer core. 

     d) From 0.15 to 2 s: the breaker is reclosed at 

t=9 cycles, at a zero crossing of source voltage, 

producing an additional flux offset of 

approximatlely 1 pu. The peak flux now reaches 

1.85 pu, driving the transformer into the saturated 

region. Peak excitation current now reaches 0.81 

pu. 

     B) Simulation of saturation with a piecewise 

nonlinear characteristic. Open the transformer 

menu and deselect 'Simulate hysteresis'. The 

saturation will now be simulated by a piecewise 

nonlinear single-valued characteristic defined by 7 

points. Current/Flux pairs (in p.u.) are: [0 0; 0.0 

0.85; 0.015 1.2; 0.03 1.35; 0.06 1.5; 0.09 1.56; 0.12 

1.572]. The saturated region is the same, but the 

hysteresis loop is not simulated. Note that this 

single valued characteristics still allows specifation 

of a remanent flux (keep phi0=0 flux as with 

hysteresis saturation model). 
 

 
Fig. 15: Parameters transformer. 

 

 

6 Conclusions 
Theoretical results were compared with data from 

transformer manufacturers and the good agreement 

between both validates theoretical results. 

    If the model of the step-up transformer considers 

the active losses in the transformer, it will calculate 
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the gross active power from the power net and other 

quantities. With the assumptions described above, 

the quantities set a priori to describe the initial 

situation of the system are: the frequency (nominal 

value), the voltage at each busbar HT, the 

production and consumption of each zone (except 

for the balance node where only the active power 

consumption is set) and consumption of reactive 

charges. 
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