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Abstract: This paper offers an approach for a sensor-based robot positioning system which solves the problem of
positioning the tool of an industrial robot relative to a work object for a subsequent assembly or application in the
same way as it was done once during setup with a reference workobject. The approach takes sensors as abstract
data sources and is therefore able to use different kinds of sensors at the same time to fulfill its task. The proposed
solution focusses on a flexible system that suits the needs ofthe industry in respect of good maintainability, good
robustness and high accuracy.
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1 Introduction

The modern industry is affected by an increasing
level of automation to assure higher levels of product
quality or just for reasons of economy. With the
increasing number of automation applications grow
the requirements of accuracy and flexibility of todays
industrial robot applications. The components that
have the most important influence over the accu-
racy of the complete process are the manipulator
system itself (consisting of the robot, of the tool
and probably of external axes), the conveyor system
and the amount of production tolerances in the
work object. To compensate these tolerances the
usage of sensor systems for robot control is inevitable.

Besides sensor-based path correction systems for
industrial robots that are capable of controlling the
path of the robot along a usually fixed work object
(see e.g. [11] or [16]) there is a class of applications
that is considered in this paper. They solve the
problem of positioning the robot relative to the fixed
work object for a subsequent handling or alternatively
track the work object with the robot while it is moved
with the conveyor system. The user defines the
nominal position of the robot relative to a reference
object once during system setup. Each production
cycle the system tries to position the robot relative
to the work object in an identical way compensating
the tolerances mentioned above. Fig. 1a shows the
schematic of the situation of the system setup with
the nominal positioning of the tool relative to the

reference work object. In Fig. 1b there is a different
work object in a different position. The system uses
the four sensors to pose the robot tool relative to
the work object in a same way like it was during
setup. Remaining sensor residuals because of form
deviations in the work object are evenly distributed
over all sensors. The result of this behavior is shown
in Fig. 1c.

(a) (b) (c)

Fig. 1: Functionality of robot positioning system

A system for sensor controlled robots has to have
some important features to suit the needs of the indus-
try. Some of these qualities like a good usability can
be realized when finally implementing the system,
but others have to be taken into consideration much
earlier when developing the basic methods. These are
discussed in the following paragraph.

Modern technology offers a wide range of
different kinds of sensors, each having its individual
advantages and disadvantages. So it would be nice
if the system has the flexibility to use different kinds
of sensors even at the same time (“multi sensor sys-
tem”), to give the user the ability to choose the best
sensor type for a certain task. So the system should
be general enough not to be a special solution for a
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special problem. Other of these qualities are a quick
and easy installation and a good maintainability. A
time-consuming setup procedure or longer downtime
due to complicated repairs reduces the availability
and therefore the productivity. A replacement of a
defect sensor for example or the addition of a further
one should be possible without difficult re-calibration.
To even avoid failures the system should be capable to
handle smaller problems like temporary malfunction
of single sensors without failure of the total system,
which addresses the quality of robustness. Last
but not least the system should be able to reach a
high accuracy to realize the desired quality in the
production process.

This paper presents a solution for a positioning
system for industrial robots that solves the given prob-
lem and that sets value on the following qualities:

• High flexibility

• Easy installation, good maintainability

• Good robustness

• High accuracy

First of all Section 2 gives an overview over the
system, Section 3 shows some references to related
publications. Section 4 provides a more in-depth de-
scription of single interesting aspects. Section 5 is a
short survey.

2 OVERVIEW
The three main components in this system are the
robot, the sensors and the position control system it-
self. The robot usually is a general-purpose indus-
trial robot with six joints and six degrees of freedom
(DOF). Because the position control system requires
a real-time position control interface to the robot, it
has to provide such an interface. The position control
system is implemented in software which runs on an
industrial-proof computer system. This computer has
to have an interface to connect it with the robot and
one or more interfaces for the sensors involved. To
allow the usage of different kinds of sensors, the sys-
tem uses abstract data sources as input. Such a data
source can be a channel of an I/O interface card as
well as the result of an evaluation algorithm that works
with more complex sensor data or the output of mul-
tiple sensors (see Section 4.1). During system setup
the robot and the reference work object are posed in
a way that should be reproduced during production.
For self-calibration the system executes now a num-
ber of robot moves and automatically determines from

the data collected during this procedure an approxi-
mate relationship between robot movements and sen-
sor value changes (see Section 4.2). This knowledge
is used during production to calculate robot position
corrections from sensor values. The system estab-
lishes a closed-loop control to feed the robots real time
interface with current correction values (see Section
4.3).

3 RELATED WORK

The usage of cameras as sensors to control manipula-
tors and robots has a long history, starting at the first
definition of termvisual servoingin [7] in the year
1979. The most extensive overview over the field
of visual servoing before 1993 can be found in [4].
This work is complemented by the tutorial [9] which
offers an in-depth introduction into the subject as well
as a classification of systems controlling robots with
sensors. A more recent discussion can be found in [2]
and [3].

The self-calibration capability of sensor-
controlled robot systems is a common practice
specified in many works, see for example [19], [18],
[8] or [16]. Most approaches have in common the
calculation of the Jacobian via the inversion of the
feature Jacobian instead of a direct calculation of
the Jacobian by solving a linear system as proposed
in this paper. An interesting paper discussing the
advantages for a direct calculation over the inversion
is [12]. We have discussed in this paper the advantage
of the direct calculation in respect to the weighting
of sensor signals with similar information content
and with different signal-noise ratio. The sensor
signals carrying more noise are suppressed due to
the least-squares condition. When determining the
feature Jacobian, each DOF and each feature is taken
separately which leads to equal-weighting of sensors
with different noise ratio.

The thought of using an abstraction of sensors is
quite common, a similar approach can be found in
[5], where the termlogical sensorsis used for abstract
sensors. The referred paper mainly focuses on the
subject of multi-sensor data fusion.

4 DETAILS

4.1 Sensors
To be able to handle different kinds of sensors in the
system calls for an abstraction of the sensor interface
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(see Fig. 2). Sensors are pieces of hardware in the
first place. After execution of a measurement we get
raw sensor data. This data can be simple enough
to be used directly for robot control like distance
information from a laser point sensor measuring a
single distance. But usually the data is more complex
like a monochrome camera picture or a set of distance
points from a laser stripe sensor. So there has to be
a step where the sensor raw data is evaluated by an
algorithm to extract interesting geometrical features
like the position of a screw-nut in a camera picture
expressed as two numerical values. We call these
valuessensor signals. A sensor signal is a numerical
value expressing a feature independent from the
sensor type, no matter if it is a value read from
an I/O interface with some kind of external sensor
attached to it or the result of a complex calculation
on raw data. Sensor signals should be in the unit of
millimeters or degrees to simplify conception when
used in connection with robot movements but thats
not obliged.

Signals
Sensor

Hardware
Sensor

Data
Raw

Measurement

Evaluation

Laser Pnt.

s d x y

Camera

x=80
y=96

Fig. 2: Sensors and sensor signals

The mounting position of the sensors is com-
pletely free. In our system the sensors measure
some geometry that has to change when the robot is
moved and thats it. For convenience most sensors are
mounted at the robots tool or at an extension of this
tool. The latter one is called asensor tree. There
are sensors which signals change when the sensors
mounting position is changed (like a distance sensor)
and some are indifferent to change of position (like
a camera measuring a gap width between two metal
sheets). This is important to consider e.g. when you
have to exchange faulty sensors and think about recal-
ibration of the system.

4.2 Calibration
Let m ∈ N be the number of DOF of the robot that
should be controlled (up to a number of 6 DOF). A
robot status vector contains a number of coordinates
in a fixed robot coordinate system (e.g. the robot base
coordinate system or the work object coordinate sys-
tem):

r =







r1

...
rm






∈ R

m (1)

Let n ∈ N be the number of sensors signals used to
control the robot. A sensor status vector contains the
status of all sensor signals at a certain time:

s =







s1

...
sn






∈ R

n (2)

To control a robot on the basis of sensor information
the knowledge of the unknown function

f :

{

R
n −→ R

m

s −→ r
(3)

would be helpful which describes the relationship
between sensor signals and robot position. During
the system (self-) calibration - calledtraining - a
linearized approximate solution forf in a certain
working point is determined.

Before the actual training we pose the robot rela-
tive to a reference work object in the nominal position
that the system should reproduce at different work ob-
jects during production. We save the nominal robot
position r0 and the nominal sensor valuess0. From
now on all robot positions and sensor values are taken
relative to these nominal values:

∆r = r− r0 (4)

∆s = s − s0 (5)

Now the robot performs a series of moves within
a training range for each of them DOFs to be
controlled. It moves into the negative and positive
direction of that particular DOF keeping all other
DOFs constant and stopping at the nominal position
again. During this movement the system continuously
saves tuples of robot position and related sensor
values. The setT containing all tuples(∆ri,∆si)
with i ∈ [1 . . . k] is called atrace, k ∈ N is the
number of samples in the trace. The robot movements
for each DOF are orthogonal in the robot position
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vector space to get as much information aboutf in
the area around the working pointr0 as possible.
Fig. 3 shows the result of an example trace in the
X direction for three sensor signals plotted into a
diagram. You can see that all signals change linearly
when the robot moves in X between−5mm and
+5mm. Signal 3 shows the most significant change,
signal 2 remains nearly zero.

Sensor 1
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Sensor 3

−4 −2  0  2  4

−4

−2

 0

 2

 4

X Coordinate (mm)

S
en

so
r 

S
ig

na
l (

m
m

)

Fig. 3: Example trace for one DOF and three sensor
signals

We see a noticeable gap between the trace data
points of Signal 3 of the forward and the backward
movement of the robot. There are two reasons
for this behavior. One reason is the hysteresis
as a mechanical property of the robot caused by
effects like gear slackness and elasticities. The
other reason is the delay between the sampling of
the sensor data and the determination of the robot
position which is not completely avoidable since
the trace is recorded during robot movement and
the involved components have only limited real
time capabilities. For signal 3 this hysteresis has
a size of about0.15mm measured in the sensor space.

We arrange the result of a trace as two matrices:
The first matrixR has the sizek ×m and contains all
trace robot positions as row vectors, the second ma-
trix S has the sizek × n and contains all trace sensor
values as row vectors. The row-ordering ofR andS

is free, but the robot position of thei-th row vector of
R has to correspond with the sensor values in thei-th
row vector ofS for all i ∈ [1 . . . k]. To get a linear
solution for f we need to solve the overdetermined
linear system

S · J = R (6)

whereJ is the parameter matrix with a size ofn×m.

Because the elements ofJ can be comprehended as
partial derivatives of a single DOF with respect of a
single sensor signal

J =

(

∂rj

∂si

)

1≤i≤n,1≤j≤m

(7)

the parameter matrix is a Jacobian matrix. In visual
servoing this matrix is often referred asinverse
feature Jacobian.

The solution for the linear system is calculated by
using the pseudo inverse ofS (see [13] and [14])

J = S
+ · R (8)

becauseS is hardly ever a square matrix. For
calculation of the pseudo inverse thesingular value
decomposition(SVD) is quite applicable, see [6] or
[15] for more information. The calculated solution
is least-squaresoptimal which means it is optimized
for a minimal residual square sum. The result of
a training are the nominal values as well as the
Jacobian. The Jacobian remains untouched during
normal system operation.

Fig. 4 displays an example configuration of robot,
sensors and work object. On the left side you see the
base coordinate system of the robot, right besides it
is a simple work object: A box. The robot moves a
sensor tree with four sensors all measuring distances
to the work object. We record a trace with the robot
moving±5mm in X, Y andZ containingk = 2750
samples in total. We first ignore sensor 4 and get the
following parameter matrix:

J1 =





0.1015 0.9950 0.0002
0.0026 −0.0131 0.9972
0.9966 −0.1042 0.0012



 (9)

Each row of the Jacobian reflects how one DOF is
calculated from the sensor signals. So for theX di-
rection the sensor signal of sensor 3 is used, for the
Y direction signal 1 and for theZ direction signal 2
just like you would suppose because of the schematic.
The signs are correct too because if the robot moves
in positive direction, the measured distance increases
for all sensors. Adding the fourth signal we get the
following Jacobian:

J2 =









0.7876 0.3749 −0.1549
0.0013 −0.0120 0.9975
0.9952 −0.1029 0.0015
−0.6907 0.6242 0.1561









(10)

Now theY direction is represented by signals 1 and
4 (see second row), but at a different rate (signal 1:
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0.37, signal 4: 0.62). The reason for this is, that
the Jacobian is result of a least-squares solution.
Since the analysis of the signal 1 in the trace showed
a slightly higher noise rate than signal 4, signal 4
is favoured. This is quite a nice feature because
when two signals carry a similar information but
one signal has a higher signal-noise ratio, the signal
with higher noise rate is suppressed automatically
because the solution is least-squares optimal. Another
conspicuous fact are the high rates for signal 1 and 2
for theX direction with different sign each (signal 1:
0.79, signal 4:−0.69). These factors compensate for
the sensitivity of signal 3 for theY direction.

X

Y

Z

Work ObjectRobot Base

S1S2

S3

S4

Fig. 4: Robot and sensor example configuration

A sufficient density of samples together with the
way the training movements are executed are a pre-
condition for getting enough information about the
connection of robot movements and sensor value
changes. But a well-conditioned solution requires a
sensor configuration that is able to detect changes in
every DOF that has to be controlled: If a movement
in a certain DOF does not lead to significant sensor
changes, this DOF can not be controlled with this sen-
sor configuration. To get an idea of the quality of a
given solution, we use thecoefficient of determina-
tion (see e.g. [17] chapter 9.5). First we calculate the
residual matrixE by

E = S · J − R. (11)

Each row ofE contains the difference vector between
the robot position estimated on the basis of the linear
model ofJ and the true robot position. The coefficient
of determination for each DOF is then defined by the
term

R2

j = 1 −
|ej |

2

k · σ2
rj

(12)

whereej is thej-th column vector ofE, rj the j-th
column vector ofR andj ∈ [1 . . . m]. Or written in

detail

R2

j = 1 −

k
∑

i=1

E
2

ij

k
∑

i=1

R2

ij −
1
k

(

k
∑

i=1

Rij

)2
. (13)

The quality of the complete solutionR2 is the product
of the coefficients of determination of each DOF

R2 =

m
∏

j=1

R2

j . (14)

R2 is a value between0 and 1 and gives an idea
on how many percent of the output change (sensor
signals) can be explained with the input changes
(robot movements) under the given solution. So a
value ofR2 = 1 indicates an ideal solution,R2 = 0
a totally unusable solution. Reasons for a low quality
can be among others a badly-conditioned sensor
configuration (e.g. a change of a certain DOF does
not lead to significant sensor value changes) or
non-linearities (e.g. distance sensor moves over a
step-shaped object contour).

Calculating the coefficients of determination for
the example above and the Jacobian in (9) we get:

0.99825 · 0.99930 · 0.99917 = 0.99673. (15)

After adding the fourth sensor signal and calculat-
ing the Jacobian in (10) the qualities are slightly in-
creased:

0.99834 · 0.99938 · 0.99918 = 0.99690. (16)

Even though the underlying data is real world data,
the quality results of these trainings are very good. If
we include a rotation around theY axis of±0.5 ◦ in
the trace, the result becomes:

0.99669 · 0.99919 · 0.99912 · 0.05321 = 0.052944. (17)

A look on Fig. 4 shows that a rotation around the
Y axis is hardly to detect with the given sensor
configuration.

The system saves the complete trace data for later
use. If a sensors fails during system operation the Ja-
cobian can be recalculated without the missing sensor
offering the user a continued operation at a certain loss
of accuracy. This loss can be minimized when using
redundant sensors.
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4.3 Robot Control

Fig. 5 shows an overview over the control structure
of the system. The nominal sensor valuess0 acquired
during training are used in connection with the cur-
rent sensor valuess to get the sensor value difference
∆s. This is the basis for calculating the current robot
correction∆r using the Jacobian:

∆r = J
T · ∆s. (18)

This correction is multiplied with a gainKp (sim-
ple proportional controller) and sent to the robot con-
troller. The robot controller moves the robot which
changes the geometry between robot tool and work
object. This leads to new sensor values that are evalu-
ated in the next control step. The stop criterion stops
the control process when the current correction∆r is
small enough over a certain time (to avoid precipitate
control stops on zero-crossings).

s∆ ∆x
K p

s

−
J Robot

xs0
Sensors

Fig. 5: Control flow diagram

Classifying the system after Hutchinson (see [9])
it is a dynamic look-and-movesystem because it does
not directly control the robot but sends corrections to
the original robot controller. It is further animage-
based controlsystem since the nominal values are
sensor values or feature values. The sensors directly
measure geometrical relationships between robot
tool and work object so the system is anendpoint
closed-loop(ECL) system.

The theory in this paper has been tested with
robots fromKUKA Robotics Corporation. Together
with theKRC2controllers they provide a system that
is calledRobot Sensor Interface(RSI, see [10]) and is
a real-time interface for external robots. It is part of
the KUKA Robot Language(KRL) and consists of a
toolbox for accessing sensors that are connected with
I/O components of the robot controller. An extension
developed by the company Amatec (see [1]) allows
the access of the robot interface via Ethernet from
external computer systems. This is the way the robot
can be controlled from outside: The robot program
moves the robot into the nominal position and passes
control to the positioning system, this returns control
to the robot after the positioning task. Other robot
manufacturer are developing comparable interfaces,
but none seems to be ready for the market yet.

The RSI/Corob robot interface accepts new cor-
rection values with the same frequency as the internal
interpolator, every12ms. If the sensor subsystem and
the correction calculation is fast enough, the robot
controller can be provided with new corrections at
that speed. If the sensor subsystem is slower (and
this is first of all the case if the evaluation of the
sensor raw data is a time-consuming task, e.g. the
feature extraction of camera pictures) there is not
necessarily a problem because the electrical and
mechanical components of robot are unable to adapt
new corrections at that high speed. Additionally the
speed of the robot can be controlled with the gain
Kp. If the gain is too small, the robot moves very
slowly towards the target. A gain that is too high lets
the robot reach the area around target position very
fast but might lead to an oscillation around the target
position without reaching it in stable way.

Now we take a look at an example control pro-
cess done with the setup described in the example in
Fig. 4. The system controlled the directionsX, Y and
Z with three sensor signals, Fig. 6 shows the current
actuation values∆x sent to the robot over the con-
trol time. The accuracy chosen as stop criterion was
0.01mm for all DOFs over a time of120ms, the con-
trol gain wasKp = 0.2, the resulting total control time
was around3.2 s. Fig. 7 shows the sensor deviations
from the nominal position∆s over the time. The data
in both figures has been thinned out to make the single
signals distinguishable.
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Fig. 6: Example control process: Actuation

5 CONCLUSIONS AND FUTURE
WORKS

5.1 Conclusions
The system presented in this paper meets the quality
requirements described in the introduction. Because
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Fig. 7: Example control process: Signal Deviations

of the abstract sensor concept the system is flexible
enough to handle different kinds of sensors to obtain
the best results. The setup process involves an auto-
mated self-calibration process which makes the sys-
tem easy to install and easy to maintain. With the data
collected in the calibration the system is able to re-
configure even on-the-fly within the control process
if single sensors fail which makes the system quite
robust. Since the system uses a closed-loop control
in connection with the real-time robot interface it ob-
tains high accuracies. So the relative positioning to
the work object is better even than the repeat accuracy
of the robot. The robot in the control process exam-
ple above had a repeat accuracy of±0.15mm but it
was possible to position it relative to the work object
with a remarkable accuracy of±0.01mm in a stable
way. This makes the usage of the system interesting in
connection with applications with high accuracy posi-
tioning demands.

5.2 Future Works
A nice future extension of the system would be the
ability to integrate new sensor signals into the system
without running a new training. When adding a new
signal the control process is executed using the old
signals, but the values of all signals and the robot
position during control are logged. With this logging
information, lets call itcontrol trace, it should be
possible to identify the properties of the new signal
and integrate it without the need of a new training.
This would make sensor addition and replacement
fairly easy.

Another subject that needs further attention is the
evaluation of the non-linearity-effects that occur in the
traces caused by the robot mechanics. For one thing
there is the robot hysteresis and for another thing some
gear effects that cause the appearance of saw-shaped
signals in the trace diagram. Furthermore it would

be interesting to develop a method to automatically
detect the linearity range for each DOF using the trace
data before actually calculating the Jacobian.
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