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Abstract: 3D laser range sensors provide range data of objects in a scene. Most of the known approaches for object 

recognition and localization in range data try to extract features and determine the position of the object 

from this information. In opposite we create a virtual scene, make a virtual range image with a virtual 3D 

laser range sensor and compare the result with range data of the real 3D laser range sensor. This idea is 

integrated in a system for automated robotic bin picking. Our simulation process is combined with a 

hierarchical registration process using the iterative closest point algorithm and Progressive meshes to refine 

our simulation results. 

1. INTRODUCTION 

Object recognition and object localization has a long 

history in two dimensional image processing[1],[2]. 

Due to the lack of the third dimension the position of 

an object in the scene can not be fully determined. 

By using data provided by laser range sensors our 

approach is able to find objects in three dimensional 

(3D) scenes. There exist many advantages to use 

range data provided by 3D laser range sensors. We 

achieve a better accuracy of the object poses 

compared to stereo camera solutions. Many of the 

known solutions are limited to simple shaped objects 

or objects with specific features. But in many 

industrial automation processes the handling of 

objects with complex shapes without any specific 

features is still an unsolved problem in the field of 

robotic automation. [3],[4].  

Object recognition and pose estimation is used in 

industrial fields like depalletizing or robotic bin 

picking. Almost all processes for robotic bin picking 

can be divided into different steps. First of all a 

visual capture device takes a picture of the scene. 

After that an algorithm has to recognize and localize 

the objects in that representation of the scene. This is 

the most important component of the bin picking 

process. The position and pose are transformed into 

scene coordinates and afterwards transferred to the 

robot. The robot picks the object considering 

adequate grasp points and possible collision points 

with the surrounding environment. The object must 

be guided to the target position, where the object has 

to be placed. These steps are repeated iteratively for 

each object in the scene.  

As mentioned above the object localization step is 

the most challenging step in the whole process. In 

1991 Lowe[5] projects 3D-Models in the image 

plane and compares them with the image of the 

scene to estimate the object pose. We extend this 

approach by comparing range images. We simulate 

industrial laser range sensors to transfer cad aided 

design models to a scene representation.  

As we compare the shape appearance of every single 

object in the simulated scene with the real scene, we 

are able to handle nearly all kind of objects without 

any feature extraction. With new computational 

improvements in computer hardware like parallel 

computing on Multi-Core processors and graphical 
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processing units (GPU) our simulation will 

overcome many performance problems and lead to a 

better accuracy and robustness of the whole system.  

Our second contribution is the possibility to adjust 

the process time of the system. We implement a 

flexible coarse-to-fine algorithm by changing the 

threshold for the needed accuracy.  

We give a short overview of our system in section 2. 

The coarse pose estimation is introduced in section 

3. We describe the laser sensor simulation, the 

comparison of the virtual representation and the real 

sensor image. Section 4 shows the modified Iterative 

Closest Point (ICP) algorithm to refine the coarse 

solutions to increase the accuracy. After that we 

conclude with upcoming extensions of our approach. 

2. SYSTEM OVERVIEW 

Figure 1 shows an overview of our object 

localization system. We use a two step object 

localization approach. The pose estimation provides 

a number of the best position candidates to the 

refinement step. This pre-selection helps to decrease 

the number of candidates for the refinement process 

and leads to a reduction of high computational costs. 

This hierarchical coarse-to-fine object localization is 

related to hypotheses and verification approaches 

like [5]. 

 
 

In the pose estimation step we compare the input 

data from range sensors with our simulated range 

data from the “object pose simulation”. This “object 

pose simulation” includes the main contribution to 

our system: the virtual sensor. This virtual sensor 

delivers a virtual range image of the objects pose for 

our object pose database. Every virtual range image 

is compared during the “comparison” step with the 

real range data in the scene. The best matching poses 

are transferred to the refinement step. The 

refinement step uses a modified Iterative Closest 

Point (ICP) algorithm combined with hierarchical 

level of detail (LOD) representations of our object 

candidates. The next chapters will further explain 

the steps of our proposed system. 

3. POSE ESTIMATION 

The purpose of the object pose estimation is to find 

adequate coarse positions of an object in the scene 

and can be divided into three parts. At first the scene 

is acquired by the laser range sensor in the data 

acquisition step (see figure 1). The Object pose 

simulation delivers the virtually scanned scene 

which is compared with the real scene.  

3.1 Data acquisition 

One of our contributions is that we take features of 

real range sensors into consideration to adapt the 

simulated range sensor to real range sensors. 

Therefore this chapter will shortly introduce the data 

acquisition with industrial range sensors.  

Non-contact visual range measurement methods are 

proportionally fast and efficient. They allow us to 

obtain information about substances which may be 

hot, chemically aggressive, sticky or sensitive, 

provided that sufficient light is reflected from the 

surface.  

Visual data sources in the industrial environment can 

be separated into active and passive sources. The 

most common passive data sources for industrial 

applications are still camera based systems. Cameras 

provide a 2-dimensional projection of a scene 

without depth information. With the help of two or 

more cameras and the known transformation 

between these cameras distance values can be 

determined[6]. Other active sensor solutions use 

defined light patterns which are projected to the 

scene. Unfortunately many camera based solutions 

suffers from surrounding lightning conditions and 

have a lower accuracy[4].  

At the current state-of-the-art active visual data 

sources like non- contact industrial laser range 

sensors are superior to other industrial measurement 

methods regarding their accuracy, costs and 

robustness [4],[7]. Additionally active methods 

produce dense sampling points compared to passive 

methods. Two major principles of laser based 

distance measuring methods are used in industrial 

applications: Triangulation and time-of-flight (TOF). 

For active triangulation, the scene is illuminated by a 

laser source from one direction and viewed by a 

sensor from the other direction. TOF measures the 

 
Fig. 1.  After the data acquisition follows the object 

localization. When the object position is known, the robot 

picks up the object and transports it to the target position.  
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time of a reflected laser pulse to determine the 

distance to an object. More or less TOF and phase 

measurement methods are long range technologies 

(over 1.0 meter) and triangulation based methods 

belong to close range methods.  

3.1.1 Triangulation based sensors  

The principle of triangulation bases on simple 

geometrical constraints. In the case of a laser 

triangulation sensor an active triangulation system 

contains a light source and a receiving unit (usually 

a CCD- or CMOS camera). A laser diode emits a 

laser beam with a defined angle towards the object. 

The surface of this object reflects this beam to the 

receiver. The base length between laser source and 

the receiving unit is known from calibration. The 

distance from the object to the instrument is 

geometrically determined from the recorded angle 

and base length. 

 
 

Figure 2 shows an arrangement for a one 

dimensional distance measurement. The beam is 

reflected to a defined position on the CCD- Array. 

With known extrinsic parameters of the arrangement 

the distance to the object z can be calculated with 

the following equation.  
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All variables (like the focal length f, the distance d 

and the angle a between the laser source and the 

camera) of the arrangement are known. Smaller 

angles leads to bad sampling and large angles lead to 

occlusions, so the angle of emitted beams usually 

ranges from 15° to 45°. The distance between the 

object and the sensor z mainly depends on the 

position x where the reflected beam intersects the 

CCD array. This principle is extended to two 

dimensions by using a CCD- or CMOS camera 

instead of an array and the laser beam is split by lens 

optics to a laser line.  

 
The accuracy (usually ~1:1000) depends on the 

distance between laser and receiving unit and the 

object distance. Active triangulation is usually used 

in measuring range of 0.1 to 5.0 meters. For larger 

distances the distance between laser and receiving 

unit must be increased, in turn this leads to a 

vulnerability of occlusions.  

3.1.2 Time of flight sensors 

Time-of-flight (TOF) sensors send out a light beam 

towards an object. The time that light needs to travel 

from the laser diode to the object surface and back is 

measured. The existing principles of TOF can be 

separated into the following categories[7]: 

 

- Pulsed time-of flight 

- Continuous wave phase shift measurement 

 

A pulsed time-of flight sensor emits a light pulse and 

starts high accuracy stopwatch. The light pulse 

travels to the target, is diffusely reflected by the 

surface of the object and a part of the light returns to 

the receiver. When the light pulse arrives, the 

stopwatch is stopped in order to determine the time 

of flight. With the known speed of light the distance 

to the object is determined.  

In the case of pulsed TOF the travel time is directly 

proportional to the distance, like shown in the 

following equation: 

 
Fig. 3.  The laser line extends the triangulation to a 2D 

contour recognition. Moving the object orthogonally to the 

laser line while recording provide a 2.5D surface 

representation. 

 
Fig. 2.  With the triangulation the distance depends only on 

the angle a given through x and x0.  
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The constant c is the velocity of light and ∆t is the 

time needed by the signal to travel from the source 

to the object and back. The equation contains the 

refraction index n of the involved medium (nair ~ 1) 

and the factor ½ for the way to the object and back. 

The second method for TOF distance measuring is 

the measuring of the phase shift. This method 

measures the difference between emitted and 

received signal. A continuous wave laser emits light 

continuously with a modulated phase. 

The distance information is extracted from the 

received signal by comparing its modulation phase 

with that of the emitted signal. The distance can be 

calculated with the equation: 
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The range of these TOF sensors depends on 

wavelength of the modulated signal so the distance 

resolution of these sensors can be increased. A short 

wavelength leads to a smaller maximum range[7]. 

The quality of the received signal must have an 

adequate level to calculate a valid distance. In some 

field of application this leads to invalid results, 

because of reflection properties of the object or 

different external interferences.  

Phase shift measurement has a higher precision than 

the conventional TOF measuring, so a combination 

of these two procedures is usually used. The higher 

precision is achieved by using modulation with a 

variable frequency or using more than one frequency 

simultaneously (Frequency modulated continuous 

wave). Another possibility is an amplitude 

modulated continuous wave (AMCW) modulated in 

amplitude by varying the power.  

One of the major advantages of TOF is that it is free 

of corresponding problems of passive triangulation 

and the range ambiguities of the passive 

triangulation. In most existing arrangements the 

active light source and the receiver are located very 

closely to each other. So illumination and 

observation directions are approximately collinear to 

avoid occlusions. 

Compared to Triangulation based sensors TOF 

sensors have advantages regarding accuracy and 

resolution in measurement ranges up to 100m and do 

not suffer from occlusions. Theoretically the 

accuracy of the depth measuring is independent to 

the distance of the object of the camera and only 

depends on the precision of measuring the travel 

time. Precision in sub-millimeter range requires 

pulse lengths of a few tens of picoseconds and the 

associated electronics (at least with over 100Ghz). 

Mainly the pulse rate and the amount of reflected 

photons which reach the detector influence the 

maximum range for TOF sensors. Some long range 

sensors use the pulsed TOF method to measure 

distance up to a few kilometers for cartographical 

mapping [8]. But in our case of applications they are 

less accurate especially at close range setups. The 

accuracy is between some millimeters and two or 

three centimeters, depending on the distance 

between the object and the sensor, because of the 

lack of electronical realization for high accuracy 

time measurement at the moment. 

 
Fig. 4. For every angle step a light beam is emitted along the x 

axis.  

 

To create a two dimensional distance contour 

common TOF laser sensors (like Sick LMS sensors) 

redirect the beam in defined angle steps. This can be 

achieved by a rotation mirror inside the sensor. For 

every emitted and received beam the mirror is 

rotated an angle step. This principle is shown in 

figure 4. With a parameterized scanning frequency a 

distance for every angle step is collected and results 

in an array of distance values along a line.  

3.1.3 Creating 3D information 

Most of the industrial laser range sensors deliver a 

two-dimensional distance contour. To get a three 

dimensional representation of the scene the laser 

range sensor must be moved over the real scene 

preferably in a linear way [9]. This step is often 

called the scanning process (refer to fig. 3). The 

sensor moves from the start point to the end point 

with specific incremented steps. The step width is 

connected with the scan frequency of the sensor and 

depends also on the properties of the mechanical 

αi 

αn 
αi+1 

xi xi+1 

z 

x 
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hardware (i.e. resolution of linear axis encoder 

units). In industrial applications the step width is 

often fixed due to the process cycle time. Beside the 

number of scans and scan frequency the step width 

is directly proportional to the data acquisition time 

of the whole process.  

Moreover, the step width in the sensor simulation 

influences the simulation time significantly, which is 

shown in the next section. 

3.2 Object pose simulation 

The object pose simulation creates a virtual range 

image (VRI) with help of a simulated sensor and a 

virtual scene. 

3.2.1 Sensor simulation 

The sensor model for the simulation adopts all 

properties of the real sensors introduced in the 

previous chapter. Therefore, the properties of the 

scanning process of the objects in the scene must 

also be known. Beside parameters and properties of 

the sensors itself, this mainly includes the distance 

between ground and sensor and the direction of the 

scanning process.  

The simulation of laser sensors in the computer is 

related to the field of computer graphics. We 

simulate a TOF sensor by using commonly known 

algorithms and principles (like Raytracing) of the so 

called virtual reality. Virtual scenes are often used in 

computer games. This gives us the chance to use all 

hardware accelerations and ready to use 

programming libraries like Microsoft ©DirectX or 

©OpenGL. 

In most workspaces like defined in Microsoft 

©DirectX or ©OpenGL in the research field of 

computer graphics the camera workspace is defined 

in a right-handed coordinate system. The distance to 

an object in an image is aligned to the z coordinate 

axis[18]. Simulating a TOF sensor, the sensor model 

unifies the light source and the model of a perfect 

pinhole camera. Therefore we have no lens or the 

sending aperture with a size greater than zero. The 

sensor is reduced to a theoretical point in the 3D 

space. In this case every other point in the 

workspace forms exactly one line with the camera.  

In virtual scenes beams of the light source are called 

rays. Creating rays like a real TOF sensor and 

tracing them to their intersection with the object is 

one major principle of raytracing. We reduce the 

known algorithms to a simple distance calculation. 

The resolution of resulting depth image/distance 

field defines the number of beams starting in camera 

point of view. 

 

 
As shown in figure 5 the distance between camera 

and the scene Znear is define by the sensor position 

and the object space (frustum) in the virtual 

coordinate system. The distance Zfar between the 

camera and the maximum distance point of the scene 

can be set to maximum range of the real laser sensor. 

According to the principle of real laser distance 

sensors one scanline is separated into angle steps 

along the scan direction x like already shown in 

figure 4. For one line with n distance values n rays 

are created. The direction of each ray is calculated 

with the help of the angle α. For every step i the 

normalized direction vector for xi is calculated with 

the following equation: 
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The y coordinate is fixed to the position of the 

sensor in the scene and is constant for one scan line. 

For every scan line a spread of rays are calculated 

depending on the needed resolution in x. Every ray 

is tested for intersection with the object in scene. To 

describe our scene in the virtual scene our objects 

must be modelled in a defined representation.  

3.2.2 Virtual scene object representation  

The object model is a mathematical description of a 

three dimensional object. The model can be 

described with different defined data representation 

(i.e. Boundary representations, polygonal meshes or 

 

x

y 

z 

zfarznear 

object model 

Sensor movement 

α 

Fig. 5.  The virtual scene is given by the frustum of the virtual 

TOF sensor. The movement in y enables the scanning process 

to provide 2.5D surface data. 
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implicit NURBS). The most intuitive representation 

for object models is polygonal mesh. This data 

structure contains mainly the geometry and the 

texture information of the object model. Geometries 

of polygonal meshes are a collection of unstructured 

simple polygons like triangles or quadrilaterals. One 

common form of polygonal meshes is the triangle 

mesh. Three points in the model coordinate space 

(vertices) define a triangle. A list of triangles 

(triangle mesh) defines the geometry of the model. 

Additionally every triangle in this structure contains 

further information like face normals, texture and 

reflection parameters which are used to improve the 

performance of the process. The sensor simulation in 

this work uses data structures for graphics 

processing units (GPU) which are encapsulated in 

the libraries of DirectX© or OpenGL©. These 

libraries provide interfaces to import vertices. The 

intersection tests of the sensor simulation can be 

reduced to a simple ray-triangle intersection test by 

dividing the object into single triangles. So the 

simplicity of intersection tests is a further advantage 

of this object model representation. 

3.2.3 Virtual Range Image creation  

To create a Virtual Range Image(VRI) every ray of 

the virtual sensor has to be intersected with every 

triangle of the scene. We use efficient variants of 

ray-triangle intersection tests. To compare the 

performance of our implementation, we 

implemented a slightly modified intersection test 

based on the work of Moeller and Trumbore [10].  

They proposed an algorithm for fast ray/triangle 

intersection test. Their main contribution is that they 

do not require the calculation of the plane equation. 

Instead they use a series of transformations to 

translate the triangle to the origin and to transform it 

to a unit right angled triangle.  

We use a bounding box or bounding volume to 

decide whether the ray shoots in the direction of the 

model or not. The bounding volume is aligned with 

the axis of the model coordinate system. Due to this 

axis aligned bounding box (AABB) the intersection 

test integration is very efficient. We convert the 

bounding box into a triangle list to ensure the 

compatibility to the ray-mesh intersection function. 

After that we test the intersection of the rays, which 

hit the boundary intersection test, and model 

triangles. This intersection test is made by a DirectX 

function. The performance is about 200 times faster 

than the reference algorithm[10], which must be 

traced back to the fact, that the DirectX function is 

heavily optimized and uses the computational power 

of the GPU. This tremendous performance boost 

allows us to do our sensor simulation in an adequate 

time.  

As already mentioned above range sensors which 

deliver a distance profile are moved over the object 

in order to get distance maps[9]. This is also 

necessary for the sensor simulation. To compare the 

results from simulation to the real images the 

resolution of the data in moving direction should be 

similar. To acquire a full three dimensional distance 

image, the sensor model is moved virtually in the 

direction of y as shown in figure 5. The step width 

depends on the application requirements. To ensure 

the compatibility between the real sensor setup and 

the sensor simulation, the resolution in y is 

connected to the resolution of hardware encoders in 

different applications. 

3.3 Comparison  

The sensor simulation results in a virtual range 

image (VRI). If there are many objects in the real 

scene, we choose a simple solution in order to 

compare the VRI to the real range image(RRI). We 

simulate only one object of the scene in its possible 

position and pose and compare these VRIs with the 

RRI. The process of our initial application robotic 

bin picking allows us to reduce the object 

recognition and localization to the search for the best 

candidate. Therefore we do not need to simulate all 

objects in the scene. Figure 6 illustrates the idea of 

the comparison.  

 
 

In the pose estimation step we try to reduce the 

number of possible numbers of candidates and select 

the best candidate in the pose refinement step. 

Therefore we compare every possible VRI with the 

RRI.  To decrease the computational costs we create 

all possible VRI’s within fixed increment of ∆X, 

 
Fig. 6.  The simulated door joint is compared to the real scene 

data in the comparison step. 
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∆Y, ∆Z and angles of one object offline before and 

store them in a database. The density of positions 

and the rotational degree of freedom of the object to 

create a VRI is the most important parameter to 

adjust the accuracy and the performance in our 

system. Different VRI’s for different kind of objects 

are compared with the RRI in the same way. So the 

object classification is integrated in the step of 

object localization assuming we can separate the 

appearance of the different objects in the real scene. 

Every VRI is compared with the RRI with a defined 

error function returning an error value. If the error 

value is low the VRI matches with the RRI. Because 

of the fact, that all VRI are compared to the RRI, 

each VRI gets an error value. The error value is a 

scalar specifying the level of the correlation between 

VRI and RRI.  

∑
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The error is defined as the mean of the difference 

between every distance value Z1 of the simulated 

object and the distance value Z2 of the scene within 

the area of the simulated object distance values.  

This error function provides a rate of how good the 

pose of the model matches with the real image in the 

distance measurement.  Often we can reject degrees-

of-freedom of the object mainly due to a-priori 

knowledge of the object position in the scene or 

appearance. To increase the performance in special 

application like shown in figure 6 the comparison 

can be reduced to a two dimensional search. This 

provides the possibility to use well known and 

highly optimized algorithms of signal and image 

processing. To measure the correlation between two 

signals usually the cross correlation is used in image 

processing. Taking the mean of the signal into 

consideration we use the normalized cross 

correlation (NCC) 
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Due to the fact that the cross correlation is related to 

the convolution process the calculation can be done 

in the frequency domain, to increase the speed of the 

calculation process. The resulting cross correlation 

coefficient is high at this position where the pattern 

fit with the image.  

 
Figure 7 shows the peak in the cross correlation 

"surface" at the positions of the best match. This test 

is made for one object in the scene and one pattern 

with fixed distance and fixed rotation to the sensor 

(see figure 6). This shows the advantage of cross 

correlation calculation: The high performance of the 

frequency domain calculation for large pattern and 

images. The two dimensional cross correlation can 

be extended to an n-dimensional cross correlation to 

deal with all degrees of freedom.  

The simulated object poses with the lowest error 

values are selected for pose refinement. The number 

of best matching VRI’s can be limited by an error-

threshold or a fixed number of VRI candidates or a 

combination. We decided to use a combination of 

both: As we know the maximum number of 

simulated object poses, we select the candidates 

within the best 10% of all error values in the coarse 

pose estimation process. This seems to be a good 

initial percentage proven in our experiments. All of 

these poses must be under an error threshold, which 

depends on the complexity of the simulated object, 

the used sensor (with its sensor errors), outliers and 

invalid points. Due to this the error threshold could 

not be fixed for every application.  

In our experiments this pre-selection results in 10-15 

VRI candidates in the application. These VRI 

candidates are delivered to the pose refinement 

process, starting with the best matching candidate. 

The process for our coarse pose estimation can be 

summarized in the following way: 

- the RRI is delivered by the sensor 

- all VRI in the database (one for each possible 

pose) are compared to the RRI 

- the best VRI candidates are selected for pose 

refinement 

 
Fig. 7.  The maximum of the normalized cross correlation 

indicate the best matching position of the virtual range image 

in the scene. 
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4. POSE REFINEMENT 

The task of the pose refinement is to find an exact 

matching pose between the object in the scene and 

the simulated object. The best VRI candidates were 

chosen regarding their error value for every pose.  

The pose refinement in our case is very similar to 

the process of range image registration medicine, 

face recognition and many other fields of 

research[11]. The registration process aligns a 

representation of an object to another pose of this 

object and determines the transformation between 

them. We use an iterative registration algorithm to 

find the exact position for all VRI candidates. Due to 

the fact that the chosen iterative Closest Point 

algorithm is computational especially for large point 

datasets, we combine the ICP with a hierarchical 

object representation in the pose refinement step. 

Therefore we use Progressive Meshes introduced by 

Hoppe [12] in 1996. We call this combination 

Progressive Mesh Iterative Closest Point Algorithm 

(PMICP).  

4.1 Iterative Closest Points 

The most commonly used algorithm for the 

determination of rigid transformations is the 

Iterative Closest Point algorithm (ICP) [13],[14] 

[15]. Real time implementations [15] show the 

potential of the ICP-Algorithm for small point 

datasets. As the name already implies, the ICP is an 

iterative algorithm which transforms the view of an 

object to another view of the same object or another 

object. The algorithm minimizes the mean square 

error of the point-to-point[13] or point-to-plane[14] 

distance in several iteration steps. The algorithm 

converts monotonously to a local minimum. 

Therefore an approximate initial solution is 

important for the success of the method. The model 

points M and the scene points P consist of three 

dimensional points with the coordinates x,y,z in the 

coordinate system of our simulated sensor. Due to 

the fact that the simulated and real coordinate 

systems are equal, we get the rigid transformation 

between the VRI and RRI by minimizing the error 

E. 

∑ −−=
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The error between the model points and the scene 

points is extended to the three dimensional 

Euclidean distance to increase the accuracy of the 

solution. To find the rotation R and the translation t 

we use the closed form solution with the help of unit 

quaternions[16]. Every point of the model (here 

VRI) is assigned to the Euclidean closest point of the 

scene (RRI). We use a point-to-point metric 

according to Besl and McKay[13]. The object 

coordinates of best VRI candidate is selected and 

used as the final result in our object localization 

step. 

4.2 Progressive Mesh 

To increase the performance of the iterative closest 

point algorithm we use an implicit hierarchical 

dataset for the points given by Progressive 

meshes[12]. The Progressive Mesh consists of 

triangles defined by three points and edges defined 

by the line between two points of two adjacent 

triangles. The precision of the object depends on the 

number of triangles used to model the object. If the 

number of triangles is too small, the real object does 

not fit with the original anymore. This data 

representation provides a highly efficient 

implementation for adjusting the level of detail in a 

point dataset and includes an inbuilt noise reduction. 

To create a Progressive Mesh we triangulate our 

point clouds with a two dimensional Delaunay 

Triangulation. The representation of Progressive 

meshes is given by a set of meshes M0 to Mn. M0 is 

the mesh with the lowest accuracy and Mn is the 

mesh with the highest accuracy. 

Generating Progressive Meshes means to apply edge 

collapse transformations to the mesh Mn, which is 

shown in figure 8. The edge {i,j} is reduced to one 

point or vertex. The opposite of the edge collapse 

transformation is the edge split transformation. In 

this case one triangle is split into two triangles with 

the vertices ijk and l. Edge swapping is made if an 

edge collapse will lead to a higher inaccuracy of the 

mesh representation. The decision can be made with 

the calculation of an energy function which takes 

 
Fig. 8.  The three Progressive Mesh operations. 
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distance of vertices, their number and a 

regularization term into consideration (See  [17] for 

further details). The complete process is described in 

the following equation: 

n

ecoll
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esplit
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−

−

1

1

1

1

0

0
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(8) 

Every single step Mi is restored to recover the mesh 

of this step. So every mesh Mi with the needed 

accuracy can be retrieved in a very efficient way.      

4.3 The combination PMICP   

The ICP algorithm suffers from two major problems. 

First, the performance is poor if the ICP has to 

calculate with a huge amount of points in scene and 

model. Reducing the number of points decreases the 

complexity dramatically.  In every iteration step all 

points of the two meshes must be compared to each 

other with a complexity of O(n*m) where n is the 

number of scene points and m is the number of 

model points. We reduce this complexity by 

comparing only the Mi representations of each mesh. 

The ICP starts with only a few points and increases 

the number in every iteration step. The 

computational complexity is reduced in average to 

O((0.5*n)*(0.5*m)) assuming we do not stop the 

iteration until we reach the end (Mn). If the iteration 

process is stopped, because the ICP reached the 

minimum, the performance of our implementation is 

always better than O((0.5*n)*(0.5*m)). So our 

Progressive Mesh ICP needs in average 25% of the 

time of the standard ICP implementation using a 

linear ∆Mi. 

The second problem of the ICP Algorithm is 

given by its sensitivity to outliers[15]. With our 

combination PMICP we can increase the robustness 

against outliers. By reducing the Level of Detail 

(LOD) of the mesh up to M0 all outliers are 

automatically removed from the object 

representation of the scene and the model. The M0 

shape of the model and the scene representation is a 

single triangle. Because of this initial pose 

transformation are not influenced by outliers. The 

performance of our pose refinement is shown in our 

prior experiments [18]. It is shown that results 

naturally depend on the number of points, error in 

the datasets and their initial pose. This combination 

increase robustness and convergence performance 

over many types of datasets.  

 

5 CONCLUSIONS 

We described a system which uses a two step object 

localization layout. The first step we focused on uses 

a model-based scalable hierarchical system without 

the need of segmentation or feature extraction to 

find a coarse pose of our object in the scene. We 

introduced the sensor simulation for object pose 

estimation using well known algorithms from the 

field of computer graphics to increase the 

performance. The pose estimation results in a 

number of pose candidates. These candidates are 

matched with an improved ICP Algorithm in the 

following refinement step.  

The system will be used in industrial robotic bin 

picking and includes -beside the object localization- 

an adequate sensor selection, an application-

invariant localization algorithm, a robot control 

interface, a grasp point definition and a collision 

avoidance strategy. The described two-step object 

localization has potential to meet different 

requirements and cover a high percentage of 

applications in robotic bin picking. The system does 

not use any segmentation algorithms, but uses 3D 

information which is aligned to the input data in a 

hierarchical system.  

Simulating the real world and comparing the 

appearance of this simulation to the appearance of 

the real world is a very ambitious goal. Our 

approach rudimentary includes this general solution 

and offers many possible extensions. Due to the 

incremental process object positions can be verified 

and tracked over all data acquirements of the scene.  

The scalability of our approach offers a great 

potential in the future. Starting with the coarse pose 

estimation process, we are able to adjust the needed 

accuracy with simple changes in the position and 

orientation step width.  

The complexity of the object localization also 

depends on the chosen algorithm and the complexity 

of the object. The main problem of our algorithm is 

the high computational cost, if we have very 

complex objects models and sensors with high 

resolutions. But depending on the application and 

the used PC, we can change this computational time-

memory-trade off by increasing the number of pre-

calculated VRIs in our database. We are not limited 

to only one object, because we can store as many 

objects in our database as we want. This is one big 

advantage of the whole system.  

Our approach offers a wide range of possible 

extensions and improvements. New sensors with 

higher resolution can be modelled and integrated 

without any problem. All real range sensors deliver 
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range images with measurement errors, reflections, 

and noise[7]. To increase our accuracy we will take 

these additional features into consideration. The 

complexity of the ICP algorithm in our refinement 

step depends mainly on the number of points in the 

dataset. The search of the closest points has a 

computational complexity of O((0.5*m)*(0.5*n)) 

over all iteration steps. This can be reduced using 

Kd-Trees implementations[19] to O(0.5*log(n)) 

0.5*log(m)) ).  

Using Progressive Meshes in the iteration steps of 

the ICP algorithm offers several methods of 

adjusting the number of triangles. We used the 

current iteration counter in the iteration process to 

connect the level of detail in the meshes. Every 

iteration step of the ICP algorithm the number of 

faces in the model mesh and the scene mesh are 

increased with a define value. Taking the degree of 

performance of one ICP iteration step into 

consideration we could adjust the number of 

triangles in the current Progressive Mesh to the 

current iteration step error as stated in [18].  
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