
Application Specific Scalable Architectures for Advanced Encryption
Standard (AES) Algorithm

S.S.Naqvi, S.R.Naqvi, S.A Khan, S.A. Malik

Department of Electrical Engineering
COMSATS Institute of Information Technology

Department of Electrical Engineering, Chak Shazad Campus Islamabad
Pakistan

{saud_naqvi, shaihdk, smalik}@comsats.edu.pk, rameeznaqvi83@hotmail.com

Abstract: - The work presented proposes two diverse FPGA based architectures with high-speed and low area
constraints for suitable implementation of Advanced Encryption Standard (AES). The main focus of this paper
is to compare different design architectures existing in literature with the proposed ones, based on application
specific constraints. The high speed design presented here proposes a good engineering solution to high speed
applications where area constraint can not be totally neglected. The high speed design manages to achieve a
reasonable 6 Gbps throughput despite of the fact that it only covers mere 5800 slices in area .Low area
architecture achieves a decent throughput of 1.98 Mbps with low slices count of 297. Some common
applications of high speed design include broadband switches and firewall, whereas the low area design mainly
focuses on compact applications like PDAs and cell phone in which area and power constraints are critical.
Both the designs are implemented and tested using a Xilinx Spartan-III (XC3S2000) target device.

Key-Words: - Advanced Encryption Standard (AES), Subpipelined, High Speed, Low Area, Unrolled
architecture, Cryptography, Throughput, FPGA, and Data Encryption Standard (DES).

1 Introduction
Cryptography has been used for years and plays a
vital role in security of data transmission [1]. In
October 1997, Advanced Encryption Standard
(AES) replaced the older Data Encryption Standard
(DES) and two years later Cipher-Rijndael
algorithm was named AES Algorithm. Its major
applications include smart cards, high-speed
networks, ATMs and DVDs [1]. There are two
possible hardware implementations of AES
algorithm. First is to provide higher throughput and
second is to utilize as small area on chip as possible.
This paper presents both of the possible
implementations, one favoring higher throughput
and the other with a low area constraint. The main
focus of this work is to investigate various design
architectures associated with the Advanced
Encryption Standard (AES) in context to their
specific application areas. Hardware designs and
architectures have been the major focus for AES
afterwards. Enormous research efforts have been
done in order to find suitable hardware
implementation specific to certain applications.
Choice of a design for a particular application
depends on system specifications such as speed and
the number of resources utilized in terms of area [2].
Common terminologies that can be found in
literature describing system resources and

specifications for AES architectures are area and
throughput.
Previous efforts [1],[2],[3],[11],[12],[13] done for
high speed pipelined architectures mainly focuses
on high throughput constraint without giving much
focus to area constraints. The work presented here
proposes a high speed sub-pipelined architecture
which also focuses on area constraint in order to
provide an overall good engineering design. Three
optimization approaches are commonly used in term
of hardware architectures: pipelining, subpipelining
and loop unrolling. This design employ loop
unrolling architecture thus maintaining a high
throughput while the low area is achieved using
Non-LUT based approaches thus involving complex
hardware for inversions in Galois field GF (28). This
design mainly focuses on applications where area is
also a secondary constraint in addition to high
speed.
A detailed comparison of some low area
architectures [2],[4],[5],[10] is also presented. Most
of the quoted designs are built around a 32 bit
datapath, but this work proposes a very compact
architecture based on 8-bit design. The proposed
design is mainly based on the work proposed by
Tim in [2] with major modifications made in the
design of ShiftRows. Some major modifications are
also proposed in mixcoloumns module which
considerably reduces the count of slices. Again the

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 427 Issue 10, Volume 5, October 2008

mailto:smalik%7D@comsats.edu.pk

design employs Galois field GF (28) inversions thus
reducing overall area in slices as compared to LUT
based approaches.

{ } { } { } { }
{ } { } { } { }
{ } { } { } { }
{ } { } { } { }

)2(40

02010103
03020101
01030201
01010302

,3

,2

,1

,0

16161616

16161616

16161616

16161616

'
,3

'
,2

'
,1

'
,0

≤≤

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

c

S

S

S

S

S

S

S

S

c

c

c

c

c

c

c

c

The rest of the paper is organized as follows:
Section 2 briefly describes the AES algorithm.
Section 3 gives the overall design and architectural
modification details, for both high speed and low
area specialized architectures. Section 4 provides a
performance based comparison of proposed
architectures with other FPGA based designs.
Section 5 concludes with comparing different
quoted design architectures with the proposed ones
based on their target applications.

2 AES Algorithm
Unlike asymmetric-key algorithms, AES is a
symmetric key cipher thus only a single key is used
at the encryption as well as decryption end. Data
block is limited to 128 bits, while the key length is
adjustable between 128, 192 or 256 bits
respectively. The data block is arranged in a 4x4
array called the state [1] on which all the subsequent
internal operations are performed. Every byte
present in the state block is considered to be an
element of GF(28). The specific irreducible
polynomial used by the AES algorithm

is
8 4 3() 1p x x x x x= + + + + . Encryption can be

achieved by applying the four transformations in
each round: SubBytes, ShiftRows, MixColumn, and
the AddRounKey. However final round does not
involve the ColoumnMixing transform. Subbyte is a
non-linear transformation and acts separately on
each byte of the state. Main operations include
computing the multiplicative inverse for each byte
subsequently followed by affine transformation [1].
SubBytes can be mathematically described by

)1('
,

'
, CMSS jiji +=

ShiftRows is a transformation which involves
simple shifting of bytes. First row of the state
remain unchanged, while the second, third and
fourth row undergo cyclic shifting by one, two and
three bytes respectively [1]. The MixColumn
transformation can be mathematically expressed as

The data input/output ports of the system are 32 bits
wide. This architecture was chosen as it proved to
provide the best utilization of the Spartan-3 FPGA
resources. It was chosen to be column oriented,
mainly to allow a simple and efficient
implementation MixColumn which in turn
facilitates performance improvements (in terms of
Throughput VS Area) in comparison to [1]. The
key data input is 128 bits wide facilitating a simple
key input procedure for the user. Calculated
roundkeys are distributed through a 32 bit internal
bus.

Finally the AddRounKey is a simple bit-wise XOR
operation of the modified state array and the Cipher
key. The decryption process is the inverse process
of encryption and uses exactly similar structure. The
only change is the sequence of transformations
involved in the decryption process. This feature can
be exploited by resource sharing in encryptor and

decryptor architectures [6],[14],[15]. Key expansion
process produces 4-byte

words [6]. The initial key
comprising of Nk words is used to generate the rest
of the words. Nk can be computed to be 4, 6 or 8
depending upon respective key lengths (128, 192 or
256-bits respectively). Detailed description of the
key expansion process can be found in [1].

),.....,,(1)1(410 −+Nrwww

3 Proposed Application Specific High
Speed and Low Area Designs
This section provides detailed architectural designs
for both application specific implementations. Some
major modifications in the previous designs and
subsequent performance improvements are
highlighted. Both the implementations are
specifically meant and best suited to certain
applications.

3.1 Proposed High Speed Unrolled
Architecture
This section presents the design of high speed
unrolled architecture for both encryption/decryption.
The key factors of the design are:

3.1.1 32 bit main data path / 128 bits key input

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 428 Issue 10, Volume 5, October 2008

3.1.2 Subpipelined architecture
Every individual module of our architecture is
subpipelined as in [1], providing the potential of
higher clock speeds, thus higher data throughput.

3.1.3 On the Fly round keys calculation
A fundamental process of AES
encryption/decryption is key expansion. Our
architecture inputs a key from the user and
calculates the 10 roundkeys on the fly and supplies
them when and where required.

3.1.4 Continuous data flow
All loops are completely unrolled, thus there is no
module waiting to be reused in the course of the
processing of a single block. The flow of data is
completely linear. On condition that the key remains
the same, it will keep calculating one column per
clock cycle indefinitely.

3.1.5 Implementation of Individual modules
This section explains all the individual modules
required to be executed in a single round. The
individual modules like SubBytes and MixColumn
are implemented according to Zhangs architecture
[1]. The design of ShiftRows and AddRoundKey are
modified in order to improve overall design of
individual modules in comparison to similar
approaches. The design modifications allow
reasonable throughput achievements considering the
small area covered. Detailed architecture for
individual modified modules is discussed below.
ShiftRows is the module which performs the
ShiftRows step in encryption and inverseShiftRows
in decryption. Both these steps involve no
mathematical operations. They are simple horizontal
rearranging of bytes. In our column oriented 32bit
architecture, the rearranging of bytes within the
same row becomes an issue requiring some
consideration. Unlike [1],[2],[3],[16],[17] our
architecture makes use of a programmable tap 16bit
shift register, which performs two functions. The
first is to store the bytes of each row as they come in
one by one and output them in the correct
rearranged order required by
ShiftRows/invShiftRows.
As the amount of clock cycles for doing that is not
the same for each row, another shift register is daisy
chained in order to provide programmable delay.
Fig.1 shows the general architecture of the row
shifting module. This will ensure that all bytes at the
output belong to the same (transformed) column and

the result is uniform. Since our architecture makes
use of seven programmable elements, an appropriate
mechanism is required to control their behavior.
This is done by an accurately designed state
machine which determines the tap position and
delay for each row, according to the column being
processed and the selected mode (encryption or
decryption). It is obvious that synchronization is a
key concept of this design. On the module level, it is
achieved by a single input, which asynchronously
resets the state machine back to its initial state.

Fig.1 General Architecture for row shifting module

Proper synchronization requires a single, accurately
timed pulse prior to every data feed session. By
exploiting the resource capabilities of SRL16 “16-
Bit Shift Register Look- Up Table” and by proper
scheduling and flow of data through the row shifting
block, we managed to improve the overall
performance of the system by restricting the number
of cycles consumed by the row shifting to a very
low count as compared to [1],[3]. Considerable
amount of area optimization was also achieved by
using SRL16 as it requires minimal slices. The most
crucial issue concerned to Roundkey addition is the
proper synchronization which will ensure that every
clock cycle, the current 32 bit column of the state
will always be added to the corresponding column
of the round key. Our AddroundKey module is
correctly “tuned” by a carefully timed pulse prior to

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 429 Issue 10, Volume 5, October 2008

the arrival of the input data stream as shown in
Fig.2.
The main characteristics of our implementation
which makes this module comparable to the
previous implementations in terms of throughput are
given below:

• Processes 32 bits (a single column) per
clock cycle. Sub-pipelined, therefore
increased throughput.

• Roundkey storage is managed directly with

a series of registers thus providing fast
access. Whenever a change of key occurs
these subsequent registers are automatically
overwritten.

• Synchronization is achieved by a single

pulse per uninterrupted data stream. This
refers to a single round’s AddRoundKey
module.

For all 11 AddRoundKey modules, 11 pulses
will have to be produced. Thus mitigating the
problem of synchronization.

Fig.3 shows the architecture for key expansion
module. The stage of Key expansion includes
roundkey generation from the plain Cipher key.
There were two possible approaches to achieve this
task.

Roundkeys can be either generated beforehand and
stored in memory or generated on the fly. In our
design we chose to generate the Roundkeys on the

fly as in [2] and the obvious advantage was to
improve throughput of the overall design.

 Fig.3 Architecture for Key expansion module

However it was a tradeoff between area, speed and
power on the cost of increasing the complexity of
the overall architecture. The main motivation behind
generating keys on the fly was target applications in
which the key changes at regular intervals [19].

3.2 Proposed Low Area Implementation
Modern communication systems require faster
processing speeds i.e. greater throughput and at the
same time small area utilization. It has always been
designers challenge to find an appropriate tradeoff
either in speed and/or area utilization in order to
achieve an optimal solution.

Before making a final decision about our
architecture, we thought of implementing a smallest
possible design and then determine the stages where
it might be possible to tradeoff area against
throughput. Previous research [2],[4],[5],[18]
suggested several architectures which we analyzed
and found Tim’s solution probably the most
optimum one.

Fig.2 General Architecture for AddRoundKey module

Fig.4 shows proposed organization of modules,
where feedback logic is used which is believed to
minimize additional delays and pipeline registers
thus reducing slices count significantly.

First multiplexer allows selection of any row or
column at a time and the second multiplexer allows
to select any operation as required. On completion

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 430 Issue 10, Volume 5, October 2008

of every step, updated values or intermediate results
are loaded back into state memory.

Fig.5 shows the organization of shift registers and
MixColumn unit that enable the data from state
memory to be moved into the unit in round robin
sequence.

Path-1 is used to load data (4 bytes) during first four
clock cycles. After that, path-2 is used to reduce
these bytes four times again.

3.2.1 Data Path
Since our foremost target was to utilize as small
area as possible, we decided to make our input bus
only 8-bit wide. Although it requires sixteen clock
cycles each for the Cipher key and the State input to

load, it saves a large number of device resources as
far as input/output port utilization is concerned.

3.2.2 Internal Architecture of Modules
Internal architectures of SubByte and MixColumn
are almost similar to those suggested by Zhang [1].
However, our organization makes it possible to
avoid a unit required to perform ShiftRows since a
feed back path is already supported which allows us
to rotate any row as many times as required.

Previous works [2],[4],[5] suggests a feedback shift
register at the top of MixColumn unit. During first
four cycles, data are chosen from path-1 until the
shift registers are occupied. Later during each clock
cycle, shift register is right shifted by one byte and
the mux chooses data from path-2 as shown in Fig.
5. Fig.6 shows the modified ShiftRows unit.

The Shift Row logic helps in reducing number of
slices used by Mix Column Unit. During the first
four cycles, bytes are entered based on similar
principle as before. However, using this design it is
possible to keep using Shift Row logic in order to
rotate the bytes as many times as required.

Fig.4 General Organization of Proposed Modules

Path-

Path-

Fig.6 Modified ShiftRow logic.
 Fig.5 Organization of Shift Registers and MixColumn Unit .

We suggest a modification in Zhangs [1]
architectures by removing this feed back logic.
Since our state memory already supports feed back
path, we keep on rotating each column until
operation completes by making use of ShiftRow
logic.

This way we reduce MixColumn architecture by not
less than six slices resulting in a much reduced
architecture utilizing thirty three slices only. Device
utilization summary for this design is given in
Table 1.

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 431 Issue 10, Volume 5, October 2008

4 Comparison With Other FPGA
Designs
This section provides a brief comparison of our two
proposed architectures with other implementations
existing in literature. The criteria for comparing
various high speed and low area designs depends on
the design parameters formulated in Table 2 and
Table 3.

Graphical comparisons in terms of Throughput Vs
Area and Design frequency Vs Throughput/slice are
depicted in Fig 7 and Fig 8 respectively. When
comparing different design parameters referenced
here for various implementations the following
attributes are considered [20],[21]:

• Targeted Device (Which FPGA part is
used).

• Key expansion process included or not.

• Only Encryption or Encryption/Decryption

datapath is included.

Table 2. shows that first three high speed designs in
[3],[7],[9] respectively, give performance details for
encryption architecture only thus justifying high
throughput but area covered still remains
unjustified.

High speed designs from Tim [2] and Zhang [1] are
very impressive in terms of throughput but at the
cost of area covered in slices. Our design offers a
significant tradeoff between area covered in slices
and high throughput. The noticeable balance
between high throughput and low area makes our
proposed design a good engineering solution.

Fig.7 provides a comparison of various high-speed
architectures in terms of throughput achieved and
the area in slices covered. It can be observed that
our design manages considerable amount of
throughput in Mbps while maintaining a minimal
slice count.

Module No. of Slices
Utilized

Sub Bytes 52

Mix Columns 33

Key Schedule 36
Control Unit plus
Design

80

Memory Units 48x2 = 96

Table 1. Device Utilization Summary

Table 2. Comparison of proposed and previous high speed design.

Fig.7 Graphical comparison of proposed and previous high
speed designs (Throughput Vs Area)

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 432 Issue 10, Volume 5, October 2008

Fig.8 shows that despite of low Mbps/slice factor
our design still manages to have almost the highest
frequency in all designs. This result becomes even
more acceptable when considering that our design
includes both encryption and decryption.

Table 3 provides a comparison of proposed low area
design with various existing architectures. The
results show that the proposed design is quite
efficient in terms of efficiency in comparison to
previous designs.

Although, the throughput of the proposed design is
less when compared with Chodowiec & Gaj [4] and
Rouvroy [5] designs, but the proposed design is
placed among the two smallest designs.

Fig.9 gives a comparison for various low area
designs in terms of throughput achieved and the area
covered in slices. It is clearly evident from the
figure that our design achieves a respectable
throughput to other designs [2],[4],[5].

Fig.8 Graphical comparison of proposed and previous
high speed designs (Freq(MHZ) Vs Throughput/Slice)

 Fig.9 Graphical comparison of proposed and previous
low area designs (Throughput Vs Area)

 Fig.10 Graphical comparison proposed and previous low area

designs (Freq(MHZ) Vs Throughput/Slice) Table 3. Comparison of proposed design with previous low area deigns.

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 433 Issue 10, Volume 5, October 2008

Fig.10 gives a comparison of clock rate of the
design and throughput/slice for various low area
architectures. The results show that the proposed
design achieves considerable throughput/slice factor
with a restricted 8-bit datatpath.

5 Conclusions
The work presented provides a comprehensive study
and comparison of various high speed and low area
designs reported in literature with the design
proposed in this paper.

Comparative study and analysis show that high
speed design reported in literature need million of
logic gates to synthesize them, whereas it is evident
from the performance parameters that our high
speed design provides a moderate throughput with
extraordinary low area factor despite the fact that it
includes the whole encryption/decryption designs.
Furthermore our design also manages key expansion
procedure in the quoted number of slices.

All high speed designs are targeted to high-speed
applications providing data rates more than 4000
Mbps e.g. High-speed networks. This work suggests
a high speed and area constrained, overall good
engineering design particularly targeting fast
applications where area is also an auxiliary
constraint in addition to high speed. Some of such
common applications include broadband switches,
firewalls and remote access concentrators.

Proposed low area design is particularly dedicated
for applications where area is of vital importance.
Furthermore the design achieves a respectable
throughput considering the datapath is only 8-bits
wide. The low area design being very small is
particularly concentrated to compact applications
where throughput doesn’t mean a great deal in
comparison to area constraints. Some common
targeted applications where such a design can be
deployed are wireless applications such as PDAs
and cell phones where area and power constraints
are crucial.

Acknowledgments

This work was supported by the University of
Sheffield, UK. The authors would like to thank Dr.
Luke seed and Dr. Mohammad Bennaisa for their
useful suggestions and discussion.

Appendix
Due to wide range of applications Rijndael
algorithm supports various implementations
favoring diverse scenarios. Currently AES is
targeted to four different solutions depending upon
applications.

Very Fast
These solutions aim applications with data rates
even faster than 2000Mbits/sec.

Fast
These solutions target applications like VPN
security products deployed in routers, firewalls and
switches. They are best suited for applications
supporting data rates up to 2000Mbits/sec. Fig. 11
exhibits a practical example. Fast AES solution is
incorporated in a secure wireless communication
system.

 Fig. 11 Block Diagram of a secure wireless communication system.

Standard
It can provide rates up to 500 Mbits/sec and is
targeted for applications like VOIP.

 Fig. 12 Block Diagram of a secure VOIP system using AES.

Compact
The compact or low area applications are perfectly
suited to wireless products like PDAs and cell
phones, where power requirements are the greatest
concern.

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 434 Issue 10, Volume 5, October 2008

References:

ems, Vol. 12, Iss. 9, pp. 957 -
967, Sept. 2004.

heffield Mappin
Street Sheffield S1 3JD, UK.

achines
(FCCM'04), pp. 308-309, April 2004.

pp.
319 – 333, Springer-Verlag, October 2003.

CC 2004), pp. 583 – 587,
Vol. 2, April 2004.

Encryption Standard (AES), Nov.
26, 2001.

2003), Monterey, CA, pp. 207–215, Feb. 2003.

FPGA Implementation, Proc. FPL 2004, 2004

c. CHES
2003, Cologne, Germany, Sept. 2003.

[1] X. Zhang, K. K. Parhi, High-speed VLSI

architectures for the AES algorithm, IEEE
Trans. VLSI Syst

[2] Tim good, Mohammad Benaissa, “ AES on

FPGA from fastest to the smallest”,
Department of Electronic and Electrical
Engineering, University of S

[3] A. Hodjat, I. Verbauwhede, A 21.54 Gbits/s

Fully Pipelined AES Processor on FPGA, 12th
Annual IEEE Sypmosium on Field-
Programmable Custom Computing M

[4] P. Chodowiec, K. Gaj, Very Compact FPGA

Implementation of the AES Algorithm,
Cryptographic Hardware and Embedded
Systems (CHES 2003), LNCS Vol. 2779,

[5] G. Rouvroy, F. X. Standaert, J. J. Quisquater, J.

D. Legat, Compact and efficient
encryption/decryption module for FPGA
implementation of the AES Rijndael very well
suited for small embedded applications,
Procedings of the international conference on
Information Technology: Coding and
Computing 2004 (IT

[6] Advanced

[7] K. U. Jarvinen, M. T. Tommiska, and J. O.

Skytta, A fully pipelined memoryless 17.8
Gbps AES-128 encryptor, Proc. Int. Symp.
Field-Programmable Gate Arrays (FPGA

[8] J. Zambreno, D. Nguyen, A. Choudhary,

Exploring Area/Delay Trade-offs in an AES

[9] F. Standaert, G. Rouvroy, J. Quisquater, and J.

Legat, Efficient implementation of rijndael
encryption in reconfigurable hardware:
Improvements & design tradeoffs, Pro

[10] A. Satoh, S. Morioka, K. Takano, S. Munetoh,
A Compact Rijndael Hardware Architecture
with S-Box Optimization, Proceedings of
ASIACRYPT 2001, LNCS Vol. 2248, pp. 239
- 254, Springer-Verlag, December 2001.

[11] G. P. Saggese, A. Mazzeo, N. Mazocca, and A.

G. M. Strollo, An FPGA based performance
analysis of the unrolling, tiling and pipelining
of the AES algorithm, Proc. FPL 2003,
Portugal, Sept. 2003.

[12] M. McLoone and J.V. McCanny, High

Performance Single-Chip FPGA Rijndael
Algorithm Implementations, CHES 2001,
Paris, France, 2001.

[13] N. Pramstaller and J. Wolkerstorfer, A

Universal and efficient AES co-processor for
Field Programmable Logic Arrays, FPL 2004,
LNCS Vol. 3203, pp. 565-574, Springer-
Verlag, 2004.

[14] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar.

An FPGA implementation and performance
evaluation of the AES block cipher candidate
algorithm finalist. Presented at Proc. 3rd AES
Conf. (AES3). [Online]. Available:
http://csrc.nist.gov/encryption/aes/round2/conf
3/aes3papers.html.

[15] V. Fischer and M. Drutarovsky, “Two methods

of Rijndael implementation in reconfigurable
hardware,” in Proc. CHES 2001, Paris, France,
May 2001, pp. 77–92.

[16] K. Gaj and P. Chodowiec. Comparison of the

hardware performance of the AES candidates
using reconfigurable hardware. presented at
Proc. 3rd AES Conf. (AES3). [Online].
Available: http://csrc.nist.gov
/encryption/aes/round2/conf3/aes3papers.html.

[17] H. Kuo and I. Verbauwhede, “Architectural

optimization for a 1.82 Gbits/sec VLSI
implementation of the AES Rijndael
algorithm,” in Proc. CHES 2001, Paris, France,
May 2001, pp. 51–64.

[18] M. McLoone and J. V. McCanny, “Rijndael

FPGA implementation utilizing look-up
tables,” in IEEEWorkshop on Signal
Processing Systems, Sept. 2001, pp. 349–360.

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 435 Issue 10, Volume 5, October 2008

[19] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar,
J. R. Rao, and P. Rohatgi, “Efficient
implementation of Rijndael encryption with
composite field arithmetic,” in Proc. CHES
2001, Paris, France, May 2001, pp. 171–184.

[20] M. H. Jing, Y. H. Chen, Y. T. Chang, and C. H.

Hsu, “The design of a fast inverse module in
AES,” in Proc. Int. Conf. Info-Tech and Info-
Net, vol. 3, Beijing, China, Nov. 2001, pp.
298–303.

[21] X. Zhang and K. K. Parhi, “Implementation

approaches for the advanced encryption
standard algorithm,” IEEE Circuits Syst. Mag.,
vol. 2, no. 4, pp. 24–46, 2002.

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 436 Issue 10, Volume 5, October 2008

	29-279
	32-252
	32-345

