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Abstract: - The work presented proposes two diverse FPGA based architectures with high-speed and low area 
constraints for suitable implementation of Advanced Encryption Standard (AES). The main focus of this paper 
is to compare different design architectures existing in literature with the proposed ones, based on application 
specific constraints. The high speed design presented here proposes a good engineering solution to high speed 
applications where area constraint can not be totally neglected. The high speed design manages to achieve a 
reasonable 6 Gbps throughput despite of the fact that it only covers mere 5800 slices in area .Low area 
architecture achieves a decent throughput of 1.98 Mbps with low slices count of 297. Some common 
applications of high speed design include broadband switches and firewall, whereas the low area design mainly 
focuses on compact applications like PDAs and cell phone in which area and power constraints are critical. 
Both the designs are implemented and tested using a Xilinx Spartan-III (XC3S2000) target device. 
 
Key-Words: - Advanced Encryption Standard (AES), Subpipelined, High Speed, Low Area, Unrolled 
architecture, Cryptography, Throughput, FPGA, and Data Encryption Standard (DES). 
 
1 Introduction 
Cryptography has been used for years and plays a 
vital role in security of data transmission [1]. In 
October 1997, Advanced Encryption Standard 
(AES) replaced the older Data Encryption Standard 
(DES) and two years later Cipher-Rijndael 
algorithm was named AES Algorithm. Its major 
applications include smart cards, high-speed 
networks, ATMs and DVDs [1]. There are two 
possible hardware implementations of AES 
algorithm. First is to provide higher throughput and 
second is to utilize as small area on chip as possible. 
This paper presents both of the possible 
implementations, one favoring higher throughput 
and the other with a low area constraint. The main 
focus of this work is to investigate various design 
architectures associated with the Advanced 
Encryption Standard (AES) in context to their 
specific application areas. Hardware designs and 
architectures have been the major focus for AES 
afterwards. Enormous research efforts have been 
done in order to find suitable hardware 
implementation specific to certain applications. 
Choice of a design for a particular application 
depends on system specifications such as speed and 
the number of resources utilized in terms of area [2]. 
Common terminologies that can be found in 
literature describing system resources and 

specifications for AES architectures are area and 
throughput.  
Previous efforts [1],[2],[3],[11],[12],[13] done for 
high speed pipelined architectures mainly focuses 
on high throughput constraint without giving much 
focus to area constraints. The work presented here 
proposes a high speed sub-pipelined architecture 
which also focuses on area constraint in order to 
provide an overall good engineering design. Three 
optimization approaches are commonly used in term 
of hardware architectures: pipelining, subpipelining 
and loop unrolling.  This design employ loop 
unrolling architecture thus maintaining a high 
throughput while the low area is achieved using 
Non-LUT based approaches thus involving complex 
hardware for inversions in Galois field GF (28). This 
design mainly focuses on applications where area is 
also a secondary constraint in addition to high 
speed.  
A detailed comparison of some low area 
architectures [2],[4],[5],[10] is also presented. Most 
of the quoted designs are built around a 32 bit 
datapath, but this work proposes a very compact 
architecture based on 8-bit design. The proposed 
design is mainly based on the work proposed by 
Tim in [2] with major modifications made in the 
design of ShiftRows. Some major modifications are 
also proposed in mixcoloumns module which 
considerably reduces the count of slices. Again the 
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design employs Galois field GF (28) inversions thus 
reducing overall area in slices as compared to LUT 
based approaches.       
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The rest of the paper is organized as follows: 
Section 2 briefly describes the AES algorithm. 
Section 3 gives the overall design and architectural 
modification details, for both high speed and low 
area specialized architectures. Section 4 provides a 
performance based comparison of proposed 
architectures with other FPGA based designs. 
Section 5 concludes with comparing different 
quoted design architectures with the proposed ones 
based on their target applications. 
 
 
2 AES Algorithm 
Unlike asymmetric-key algorithms, AES is a 
symmetric key cipher thus only a single key is used 
at the encryption as well as decryption end. Data 
block is limited to 128 bits, while the key length is 
adjustable between 128, 192 or 256 bits 
respectively. The data block is arranged in a 4x4 
array called the state [1] on which all the subsequent 
internal operations are performed. Every byte 
present in the state block is considered to be an 
element of GF(28). The specific irreducible 
polynomial used by the AES algorithm 

is
8 4 3( ) 1p x x x x x= + + + + . Encryption can be 

achieved by applying the four transformations in 
each round: SubBytes, ShiftRows, MixColumn, and 
the AddRounKey. However final round does not 
involve the ColoumnMixing transform. Subbyte is a 
non-linear transformation and acts separately on 
each byte of the state. Main operations include 
computing the multiplicative inverse for each byte 
subsequently followed by affine transformation [1]. 
SubBytes can be mathematically described by  

)1('
,

'
, CMSS jiji +=  

ShiftRows is a transformation which involves 
simple shifting of bytes.  First row of the state 
remain unchanged, while the second, third and 
fourth row undergo cyclic shifting by one, two and 
three bytes respectively [1]. The MixColumn 
transformation can be mathematically expressed as              

The data input/output ports of the system are 32 bits 
wide. This architecture was chosen as it proved to 
provide the best utilization of the Spartan-3 FPGA 
resources. It was chosen to be column oriented, 
mainly to allow a simple and efficient 
implementation MixColumn which in turn 
facilitates performance improvements (in terms of 
Throughput VS Area) in comparison to [1].  The 
key data input is 128 bits wide facilitating a simple 
key input procedure for the user. Calculated 
roundkeys are distributed through a 32 bit internal 
bus. 

 
Finally the AddRounKey is a simple bit-wise XOR 
operation of the modified state array and the Cipher 
key. The decryption process is the inverse process 
of encryption and uses exactly similar structure. The 
only change is the sequence of transformations 
involved in the decryption process. This feature can 
be  exploited  by  resource  sharing in  encryptor and  

 
 
decryptor architectures [6],[14],[15]. Key expansion 
process produces 4-byte 

words  [6].  The initial key 
comprising of Nk words is used to generate the rest 
of the words. Nk can be computed to be 4, 6 or 8 
depending upon respective key lengths (128, 192 or 
256-bits respectively). Detailed description of the 
key expansion process can be found in [1].  

),.....,,( 1)1(410 −+Nrwww

 
 
3 Proposed Application Specific High 
Speed and Low Area Designs 
This section provides detailed architectural designs 
for both application specific implementations. Some 
major modifications in the previous designs and 
subsequent performance improvements are 
highlighted. Both the implementations are 
specifically meant and best suited to certain 
applications. 
 
 
3.1 Proposed High Speed Unrolled 
Architecture 
This section presents the design of high speed 
unrolled architecture for both encryption/decryption. 
The key factors of the design are: 
 
 
3.1.1 32 bit main data path / 128 bits key input 
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3.1.2 Subpipelined architecture 
Every individual module of our architecture is 
subpipelined as in [1], providing the potential of 
higher clock speeds, thus higher data throughput.  
 
 
3.1.3 On the Fly round keys calculation 
A fundamental process of AES 
encryption/decryption is key expansion. Our 
architecture inputs a key from the user and 
calculates the 10 roundkeys on the fly and supplies 
them when and where required. 
 
 
3.1.4 Continuous data flow 
All loops are completely unrolled, thus there is no 
module waiting to be reused in the course of the 
processing of a single block. The flow of data is 
completely linear. On condition that the key remains 
the same, it will keep calculating one column per 
clock cycle indefinitely. 
 
 
3.1.5 Implementation of Individual modules 
This section explains all the individual modules 
required to be executed in a single round. The 
individual modules like SubBytes and MixColumn 
are implemented according to Zhangs architecture 
[1]. The design of ShiftRows and AddRoundKey are 
modified in order to improve overall design of 
individual modules in comparison to similar 
approaches. The design modifications allow 
reasonable throughput achievements considering the 
small area covered. Detailed architecture for 
individual modified modules is discussed below. 
ShiftRows is the module which performs the 
ShiftRows step in encryption and inverseShiftRows 
in decryption. Both these steps involve no 
mathematical operations. They are simple horizontal 
rearranging of bytes. In our column oriented 32bit 
architecture, the rearranging of bytes within the 
same row becomes an issue requiring some 
consideration. Unlike [1],[2],[3],[16],[17] our 
architecture makes use of a programmable tap 16bit 
shift register, which performs two functions. The 
first is to store the bytes of each row as they come in 
one by one and output them in the correct 
rearranged order required by 
ShiftRows/invShiftRows. 
As the amount of clock cycles for doing that is not 
the same for each row, another shift register is daisy 
chained in order to provide programmable delay. 
Fig.1 shows the general architecture of the row 
shifting module. This will ensure that all bytes at the 
output belong to the same (transformed) column and 

the result is uniform. Since our architecture makes 
use of seven programmable elements, an appropriate 
mechanism is required to control their behavior. 
This is done by an accurately designed state 
machine which determines the tap position and 
delay for each row, according to the column being 
processed and the selected mode (encryption or 
decryption). It is obvious that synchronization is a 
key concept of this design. On the module level, it is 
achieved by a single input, which asynchronously 
resets the state machine back to its initial state. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 General Architecture for row shifting module  
 
Proper synchronization requires a single, accurately 
timed pulse prior to every data feed session. By 
exploiting the resource capabilities of SRL16 “16-
Bit Shift Register Look- Up Table” and by proper 
scheduling and flow of data through the row shifting 
block, we managed to improve the overall 
performance of the system by restricting the number 
of cycles consumed by the row shifting to a very 
low count as compared to [1],[3]. Considerable 
amount of area optimization was also achieved by 
using SRL16 as it requires minimal slices. The most 
crucial issue concerned to Roundkey addition is the 
proper synchronization which will ensure that every 
clock cycle, the current 32 bit column of the state 
will always be added to the corresponding column 
of the round key. Our AddroundKey module is 
correctly “tuned” by a carefully timed pulse prior to 

WSEAS TRANSACTIONS on ELECTRONICS S. S. Naqvi, S. R. Naqvi, S. A. Khan, S. A. Malik

ISSN: 1109-9445 429 Issue 10, Volume 5, October 2008



the arrival of the input data stream as shown in 
Fig.2. 
The main characteristics of our implementation 
which makes this module comparable to the 
previous implementations in terms of throughput are 
given below: 
 

• Processes 32 bits (a single column) per 
clock cycle. Sub-pipelined, therefore 
increased throughput. 

 
• Roundkey storage is managed directly with 

a series of registers thus providing fast 
access. Whenever a change of key occurs 
these subsequent registers are automatically 
overwritten. 

 
• Synchronization is achieved by a single 

pulse per uninterrupted data stream. This 
refers to a single round’s AddRoundKey 
module.  

 
For all 11 AddRoundKey modules, 11 pulses 
will have to be produced. Thus mitigating the 
problem of synchronization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 shows the architecture for key expansion 
module. The stage of Key expansion includes 
roundkey generation from the plain Cipher key. 
There were two possible approaches to achieve this 
task.  
 
Roundkeys can be either generated beforehand and 
stored in memory or generated on the fly. In our 
design we chose to generate the Roundkeys on the 

fly as in [2] and the obvious advantage was to 
improve throughput of the overall design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.3 Architecture for Key expansion module 

 
 
 
However it was a tradeoff between area, speed and 
power on the cost of increasing the complexity of 
the overall architecture. The main motivation behind 
generating keys on the fly was target applications in 
which the key changes at regular intervals [19]. 
 
 
3.2 Proposed Low Area Implementation 
Modern communication systems require faster 
processing speeds i.e. greater throughput and at the 
same time small area utilization. It has always been 
designers challenge to find an appropriate tradeoff 
either in speed and/or area utilization in order to 
achieve an optimal solution. 
 
Before making a final decision about our 
architecture, we thought of implementing a smallest 
possible design and then determine the stages where 
it might be possible to tradeoff area against 
throughput. Previous research [2],[4],[5],[18] 
suggested several architectures which we analyzed 
and found Tim’s solution probably the most 
optimum one.  

Fig.2 General Architecture for AddRoundKey module 

 
Fig.4 shows proposed organization of modules, 
where feedback logic is used which is believed to 
minimize additional delays and pipeline registers 
thus reducing slices count significantly.  
 
First multiplexer allows selection of any row or 
column at a time and the second multiplexer allows 
to select any operation as required. On completion 
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of every step, updated values or intermediate results 
are loaded back into state memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 shows the organization of shift registers and 
MixColumn unit that enable the data from state 
memory to be moved into the unit in round robin 
sequence.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Path-1 is used to load data (4 bytes) during first four 
clock cycles. After that, path-2 is used to reduce 
these bytes four times again. 
 
 
3.2.1 Data Path 
Since our foremost target was to utilize as small 
area as possible, we decided to make our input bus 
only 8-bit wide. Although it requires sixteen clock 
cycles each for the Cipher key and the State input to 

load, it saves a large number of device resources as 
far as input/output port utilization is concerned.  
 
3.2.2 Internal Architecture of Modules 
Internal architectures of SubByte and MixColumn 
are almost similar to those suggested by Zhang [1]. 
However, our organization makes it possible to 
avoid a unit required to perform ShiftRows since a 
feed back path is already supported which allows us 
to rotate any row as many times as required.  
 
Previous works [2],[4],[5] suggests a feedback shift 
register at the top of MixColumn unit. During first 
four cycles, data are chosen from path-1 until the 
shift registers are occupied. Later during each clock 
cycle, shift register is right shifted by one byte and 
the mux chooses data from path-2 as shown in Fig. 
5. Fig.6 shows the modified ShiftRows unit.  
 
The Shift Row logic helps in reducing number of 
slices used by Mix Column Unit. During the first 
four cycles, bytes are entered based on similar 
principle as before. However, using this design it is 
possible to keep using Shift Row logic in order to 
rotate the bytes as many times as required. 

Fig.4 General Organization of Proposed Modules 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Path- 

Path- 

Fig.6 Modified ShiftRow logic. 
          Fig.5 Organization of Shift Registers and MixColumn Unit . 

 
 
 
We suggest a modification in Zhangs [1] 
architectures by removing this feed back logic. 
Since our state memory already supports feed back 
path, we keep on rotating each column until 
operation completes by making use of ShiftRow 
logic.  
 
This way we reduce MixColumn architecture by not 
less than six slices resulting in a much reduced 
architecture utilizing thirty three slices only. Device 
utilization  summary for this design is given in 
Table 1. 
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4 Comparison With Other FPGA 
Designs 
This section provides a brief comparison of our two 
proposed architectures with other implementations 
existing in literature. The criteria for comparing 
various high speed and low area designs depends on 
the design parameters formulated in Table 2 and 
Table 3.  
 
Graphical comparisons in terms of Throughput Vs 
Area and Design frequency Vs Throughput/slice are 
depicted in Fig 7 and Fig 8 respectively. When 
comparing different design parameters referenced 
here for various implementations the following 
attributes are considered [20],[21]: 
 

• Targeted Device (Which FPGA part is 
used). 

 
• Key expansion process included or not. 
 
• Only Encryption or Encryption/Decryption 

datapath is included. 
 
Table 2. shows that first three high speed designs in 
[3],[7],[9] respectively, give performance details for 
encryption architecture only thus justifying high 
throughput but area covered still remains 
unjustified.  
 
High speed designs from Tim [2] and Zhang [1] are 
very impressive in terms of throughput but at the 
cost of area covered in slices. Our design offers a 
significant tradeoff between area covered in slices 
and high throughput. The noticeable balance 
between high throughput and low area makes our 
proposed design a good engineering solution.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 provides a comparison of various high-speed 
architectures in terms of throughput achieved and 
the area in slices covered. It can be observed that 
our design manages considerable amount of 
throughput in Mbps while maintaining a minimal 
slice count.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module No. of Slices 
Utilized 

Sub Bytes 52 

Mix Columns 33 

Key Schedule 36 
Control Unit plus 
Design 

80 

Memory Units 48x2 = 96 

Table 1. Device Utilization Summary 

Table 2. Comparison of proposed and previous high speed design. 

Fig.7 Graphical comparison of proposed and previous high 
speed designs (Throughput Vs Area)  
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Fig.8 shows that despite of low Mbps/slice factor 
our design still manages to have almost the highest 
frequency in all designs. This result becomes even 
more acceptable when considering that our design 
includes both encryption and decryption.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3 provides a comparison of proposed low area 
design with various existing architectures. The 
results show that the proposed design is quite 
efficient in terms of efficiency in comparison to 
previous designs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Although, the throughput of the proposed design is 
less when compared with Chodowiec & Gaj [4] and 
Rouvroy [5] designs, but the proposed design is 
placed among the two smallest designs. 
 
Fig.9 gives a comparison for various low area 
designs in terms of throughput achieved and the area 
covered in slices. It is clearly evident from the 
figure that our design achieves a respectable 
throughput to other designs [2],[4],[5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8 Graphical comparison of proposed and previous 
high speed designs (Freq(MHZ) Vs Throughput/Slice)  

 Fig.9 Graphical comparison of proposed and previous 
low area designs (Throughput Vs Area)   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.10 Graphical comparison proposed and previous low area 

designs (Freq(MHZ) Vs Throughput/Slice)  Table 3. Comparison of proposed design with previous low area deigns.  
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Fig.10 gives a comparison of clock rate of the 
design and throughput/slice for various low area 
architectures. The results show that the proposed 
design achieves considerable throughput/slice factor 
with a restricted 8-bit datatpath. 
 
 
5 Conclusions 
The work presented provides a comprehensive study 
and comparison of various high speed and low area 
designs reported in literature with the design 
proposed in this paper.  
 
Comparative study and analysis show that high 
speed design reported in literature need million of 
logic gates to synthesize them, whereas it is evident 
from the performance parameters that our high 
speed design provides a moderate throughput with 
extraordinary low area factor despite the fact that it 
includes the whole encryption/decryption designs. 
Furthermore our design also manages key expansion 
procedure in the quoted number of slices. 
 
All high speed designs are targeted to high-speed 
applications providing data rates more than 4000 
Mbps e.g. High-speed networks. This work suggests 
a high speed and area constrained, overall good 
engineering design particularly targeting fast 
applications where area is also an auxiliary 
constraint in addition to high speed. Some of such 
common applications include broadband switches, 
firewalls and remote access concentrators.  
 
Proposed low area design is particularly dedicated 
for applications where area is of vital importance. 
Furthermore the design achieves a respectable 
throughput considering the datapath is only 8-bits 
wide. The low area design being very small is 
particularly concentrated to compact applications 
where throughput doesn’t mean a great deal in 
comparison to area constraints. Some common 
targeted applications where such a design  can  be  
deployed  are  wireless  applications such as PDAs 
and cell phones where area and power constraints 
are crucial.  
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Appendix 
Due to wide range of applications Rijndael 
algorithm supports various implementations 
favoring diverse scenarios. Currently AES is 
targeted to four different solutions depending upon 
applications.  
 
Very Fast    
These solutions aim applications with data rates 
even faster than 2000Mbits/sec. 
 
Fast 
These solutions target applications like VPN 
security products deployed in routers, firewalls and 
switches. They are best suited for applications 
supporting data rates up to 2000Mbits/sec. Fig. 11 
exhibits a practical example. Fast AES solution is 
incorporated in a secure wireless communication 
system.  
 

 Fig. 11 Block Diagram of a secure wireless communication system.  
  
 
Standard 
It can provide rates up to 500 Mbits/sec and is 
targeted for applications like VOIP. 
 

 
 Fig. 12 Block Diagram of a secure VOIP system using AES.  

  
Compact  
The compact or low area applications are perfectly 
suited to wireless products like PDAs and cell 
phones, where power requirements are the greatest 
concern.  
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